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Supplementary Notes 

Supplementary Note 1: Details of the interpretability module of Cancer-Finder 

Saliency Map1 was utilized to determine the model's interpretability. Specifically, 

the gradient of the loss function can be obtained as follow based on backpropagation:  

𝐖 = {𝑤1, 𝑤2, … , 𝑤𝑚}𝑇 = Gradient(Loss(𝛉)) (1) 

where Loss(𝛉) is the loss function, W is the gradient containing m elements, and m is 

the number of features. m = 5000 for ST and m = 4572 for single cell data. After one 

training loop, the salience value for each feature (gene) was defined as follows: 

salienceGene 𝑖 = sum(𝑤Gene 𝑖) = ∑  |𝑤𝑖
𝑒|

𝑛

𝑒=1
(2) 

where 𝑛 is the number of samples within a training loop. The salience value indicates 

the contribution of each gene to the training. The genes were subsequently ranked based 

on their contributions during training. After the top ten genes remained unchanged for 

20 epochs, it was concluded that the ranking of the genes, in terms of their contribution 

to the training, had reached a stable state. In our experiments, this occurred between the 

69-89th training rounds, at which point we selected the ten most significant genes for 

co-localization and subsequent analysis. 

 

Supplementary Note 2: Details of Data Preprocessing 

Dataset collection and merging. As training sets, matrices of single-cell expression 

obtained from TISCH2, which contain a total of 79 single-cell datasets from the tumor 

microenvironment, were utilized. Following the removal of 5 mouse datasets, 74 human 

datasets remained. We annotate each cell in these datasets according to the 'Celltype' 

column in the metadata file provided by the database. This column includes the five 

label categories: Malignant, Immune, Stromal, HSC, and Others. Stromal and immune 

cells were utilized as non-malignant cells. Due to the difficulty of determining the 

malignancy status of cells annotated as HSC and Others and the limited amount of data 

in these two categories, we eliminated 68,759 HSC and Others cells, leaving 73 data 

sets containing 1,925,117 cells, including 378,691 malignant cells and 1,546,426 non-

malignant cells. 

Subsequently, we merged 73 datasets into 17 tissue datasets including bladder, 

blood, bone, brain, breast, colorectal, eye, head and neck, kidney, liver, lung, lymph 

node, nervous system, pancreas, pelvis, skin, and stomach based on the tissue 

information provided by the database. Due to the absence of malignant cells, 3 of the 

tissue data (bladder, kidney, lymph node, a total of 6 datasets containing 162,846 cells) 

were discarded, leaving 14 tissue data (67 datasets containing 1,762,271 cells) for 

further analysis. 

In the context of spatial transcriptomic data, we utilized the same treatment 

protocol and obtained 14 sections of 10x Visium ST data. In addition to the 10x 

Genomics website (https://www.10xgenomics.com/resources/, including 2 BRCA and 

1 OV sections), these data were collected from three independent studies (including 3 

https://www.10xgenomics.com/resources/


CRC3, 4 HCC4, 1 ICC4, and 3 RCC5 slides). The collected data were then classified into 

six distinct tissue categories, namely mammary, colorectal, renal, hepatic, biliary, and 

ovarian. The classification of non-malignant and malignant spots was referenced from 

a previous study6 and revised by pathologists, and some slides without available 

annotation were manually annotated by pathologists directly. A HCC section (HCC-4L) 

was used to determine the final training round, while the remaining datasets were used 

for training. 

Balanced sampling.To achieve a 1:1 ratio between malignant and non-malignant cells 

in each tissue dataset, malignant and non-malignant cells were down-sampled. In four 

tissues (bone, brain, nerve, and eye), there are more malignant cells. Thus, all non-

malignant cells were utilized, while malignant cells were randomly down-sampled to 

match the number of non-malignant cells. In the remaining ten tissues, non-malignant 

cells were down-sampled and all malignant cells were utilized. Lastly, the 1:1 balanced 

dataset consists of 340,178 cells from 14 tissues (named as TICSH data 1) . 

These training data have already been normalized by the developer of the TICSH 

database (the 'NormalizeData' function from Seurat was used for global scaling 

normalization), and have thus been used directly for subsequent analysis. For external 

validation sets and test sets, the raw count is normalized using the same method. ST 

data is handled in the same manner. 

Feature selection. Based on TICSH data 1, two sets of features were extracted and 

were compared for model training. The first set, feature concatenation, contained 28256 

genes expressed in at least one tissue. The second set, the feature intersection set, 

contained 4572 genes expressed in all 14 tissues. The performance of these two feature 

sets was evaluated by randomly selecting 4/5 of the training data as the training set and 

1/5 as the internal validation set. The model trained on the concatenation set had lower 

accuracy (77.34%) than the intersection set (92.75%), so genes in the intersection set 

were used as selected features in subsequent analysis. The training set of ST data had a 

large intersection of features (31908 genes). Training on such a large number of features 

is excessively time-consuming, so we chose the top 5000 genes with the highest cellular 

expression variance as selected features. 

Model parameter determination. β serves as an important hyperparameter in the risk 

extrapolation method, controlling the balance between reducing the average risk and 

enforcing equality of risks, with beta → 0 recovering ERM, and beta → ∞ leading to 

focus entirely on making the risk equal7. Using 5-fold cross-validation, several β values 

were accessed. β was set to 0, 0.2, 0.4, 0.6......1.8, 2 and 4, 6, 8 for model training. Here, 

models were trained and evaluated using the scRNA-seq training set with 340,178 cells. 

Models training was terminated when the accuracy of breast cancer data prediction 

reached a stable maximum. As shown in Supplementary Figure 15, the most effective 

β fluctuates around 1 (0.6-2) during 5-fold cross-validation. Considering that the larger 

the β, the less weight is given to the evaluation of the total training risk in the loss 

function, β = 1 was chosen to control the overall training risk (cross-entropy loss). 

Cross-validation. For a thorough assessment of the model, leave-datasets-out, leave-

cells-out, and leave-one-cancer-type-out cross-validations were carried out. Leave-



datasets-out cross-validation was performed by excluding scRNA-seq data from one 

dataset, training Cancer-Finder with data from other datasets, and predicting cell 

annotation labels for the excluded dataset. Leave-one-cancer-out cross-validation was 

performed by excluding scRNA-seq data from one tissue, training Cancer-Finder with 

data from other tissues, and predicting cell annotation labels for the excluded tissue. In 

this study, leave-cells-out is commonly employed for 5-fold cross-validation by 

randomly selecting 80% of cells for model training and 20% for model validation. 

In the single-cell analysis, TISCH data 1 was used to evaluate the model. The 

STAD (Stomach) dataset (GSE134520) has the lowest accuracy in the result of leave-

one-cancer-type-out cross-validation. By comparing the database (TISCH) annotation 

to the original study8, annotation errors in this dataset were identified (according to the 

annotations of the TISCH database, malignant cells are present in the samples of 

patients with NAG, CAG, and IM diseases, but not in the samples of patients with early 

gastric cancer (EGC)). Thus, this dataset was removed.  In the result of leave-datasets-

out cross-validation, three datasets (NSCLC_GSE131907, BRCA_GSE138536, and 

Glioma_GSE138794) show low accuracies, and there are conflicts between the original 

studies' annotation and TISCH data. These datasets were deleted as well. After balanced 

sampling, 63 datasets from 13 tissues consisting of 328,230 cells (defined as TISCH 

data 2) were used for subsequent model training. 

Model training for external validation. Model training for external validation involved 

training Cancer-Finder five times to complete the five repetitions, without any fine-

tuning applied to the test data. Specifically, the training dataset from TISCH (328,230 

cells) was divided into five folds. In each time, the model underwent training using four 

out of the five folds and was evaluated on the external validation sets. 

The decision to conduct multiple training sessions stems from two primary reasons. 

Firstly, since most of the other four algorithms exhibit some level of randomness in 

their results across runs, we ran them five times to better reflect the randomness and 

accuracies of these methods. Secondly, even though Cancer-Finder consistently 

produces uniform predictions on the external datasets, its training process and training 

data introduce a degree of randomness that may result in fluctuations. Therefore, to 

comprehensively showcase Cancer-Finder's accuracies, we performed five training 

sessions to capture the potential range of its performance. For ikarus (retrained), we 

employed the same strategy. 

 

Supplementary Note 3: Details on evaluation metrics  

We use two distinct terms for the same metric because the label reliability in the 

benchmark datasets differs. We use accuracy to describe the accuracy of Cancer-Finder 

on the gold standard dataset because the reference labels of cells on the gold standard 

dataset are highly trustworthy. Because the reference labels on the silver standard 

dataset were annotated by other studies and may not be completely reliable, we use 



similarity to characterize Cancer-Finder's prediction of labels on the silver standard 

dataset. 

 

Supplementary Note 4: Specifics of the calculation time evaluation 

The calculation time of each algorithm was assessed using scRNA-seq data from 

mixed cell lines (dataset 1). To accurately measure the execution time of the algorithms 

on datasets with varying sizes, samples containing 100, 1000, 10,000, 100,000 and 

1,000,000 cells were created. There are 5001 cells in the original scRNA-seq data for 

mixed cell lines. We randomly downsampled the data in order to obtain the 100-cell 

and 1,000-cell datasets. For other datasets, random upsampling was employed. The 

time evaluated encompassed the interval between data loading and result generation. 

We used the 'time' package to record the time for Cancer-Finder and Ikarus9, which 

were executed using Python commands. The time of CopyKAT10 was derived from its 

log file. Linux's 'date' command was utilized to record the time for CaSee11, which was 

executed via a shell command. For SCEVAN12, we used the R function 'Sys.time()' to 

record the time, which is run with the R command. To test the speed of Cancer-Finder 

further, we stored the expression matrix in binary files using the Python "pickle" 

package, taking 4.15 seconds and 39.46 seconds for the inference of 10,000 and 

100,000 cells, respectively. 

 

Supplementary Note 5: Applications to spatial transcriptomic (ST) data derived 

from diverse spatial transcriptomic sequencing platforms 

Other than the commercial platform 10X Visium, which has been utilized in a 

variety of applications, other platforms have fewer use cases, and even fewer data on 

cancer tissues. In this situation, it is challenging to collect a large enough training set 

(including at least 2-3 types of cancer data) to train a pre-trained model on data from 

multiple platforms. Consequently, this study focuses primarily on predicting data from 

other platforms using the training results from the existing training set (the pre-trained 

models based on scRNA-seq data and 10X Visium data). Here, we primarily focus on 

making predictions using datasets from one imaging-based technique (MERFISH13) 

and two sequencing-based techniques with different resolutions, namely Slide-seq14 

and legacy ST15. Detailly, four MERFISH slides (https://info.vizgen.com/ffpe-

showcase), four Slide-seq slides16 and two legacy ST slides17 were downloaded. 

Considering that MERFISH data are most similar to the single-cell form, we 

initially trained the model with scRNA-seq data. Here, we trained the model using the 

single-cell sub-matrix (containing 550 genes measured in the MERFISH data), and 

utilized the training results to predict malignant cells in the MERFISH dataset. As 

shown in Supplementary Figure 7a and Figure 4, in the case of using a suitable 

Softmax threshold, Cancer-Finder has a high degree of accuracy on the MERFISH data. 

Notably, we observed that Cancer-Finder may generate false positives when the pre-

trained model was applied directly to MERFISH data with the default softmax threshold 

(threshold = 0.5) because single-cell data and MERFISH data are not identical. Based 

on a MERFISH slide, the ROC curve was used to determine the optimal threshold 

https://info.vizgen.com/ffpe-showcase
https://info.vizgen.com/ffpe-showcase


(threshold = 0.9766), Cancer-Finder was able to accurately predict MERFISH data 

(accuracy: 70.69–83.84 %, AUC: 0.7707–0.8969). 

Similarly, we have expanded our predictions to Slide-seq data. This is a second-

generation sequencing-based ST technology with near single-cell resolution (spot 

diameter of 10um), so we still made predictions with the pre-trained model we obtained 

on scRNA-seq dataset, and the results demonstrated that Cancer-Finder performs 

exceptionally well on the majority of the datasets (Supplementary Figure 7b). 

Lastly, we attempted to extend the model to legacy ST slides with a larger spot 

(spot diameter of 100um) and made predictions utilizing a pre-trained model trained on 

10x Visium slides. As shown in Supplementary Figure 7c, the performance of Cancer-

Finder varies across datasets (slide 1: accuracy=0.8050, AUC=0.8227; slide 2: 

accuracy=0.5765, AUC=0.5650). 

 

Supplementary Note 6: The rationale for choosing V-REx 

In cell classification and annotation, neural networks have numerous applications 

and perform exceptionally well18. Tumor heterogeneity creates genetical differences in 

the distribution of gene expression in different cancers19, whereas neural networks are 

sensitive to distribution shift20. Domain generalization is specifically designed for this 

type of problem21. Among domain generalization strategies, V-REx7 (risk exploration) 

has a simple and efficient mathematical form, which makes its computation less 

complex and computationally burdensome, and therefore more suitable for training on 

large datasets. In addition, nine domain generalization strategies were evaluated by 

Wang et al.21, and the evaluated results are available at github 

(https://github.com/jindongwang/transferlearning/tree/master/code/DeepDG) and 

detailed in Supplementary Table 17.  

Based on the results, V-REx exhibits consistent and robust performance across four 

sets of evaluations on two datasets (PACS dataset22 and Home-Office dataset23), 

consistently placing in the top three in three of these evaluations. Overall, we are 

confident that this approach can significantly enhance the annotation of the malignant 

state within the tumor microenvironment across various types of cancer. 

  

https://github.com/jindongwang/transferlearning/tree/master/code/DeepDG


Supplementary Tables 

Supplementary Table 1. Introduction of external test datasets used in this study 

Data Sets Cancer Type Tissue 

No. of 

cancer 

Cells 

Malignant 

Cell percent 

(%)  

Sequencing 

Platform 

Dataset 

type 

10k Peripheral 

Blood Mononuclear 

Cells24 

(dataset 1) 

None PBMC 0 0% 
10x 

Genomics 

Gold 

standard 

Tian, L. et al 25 

(dataset 2) 

Lung 

adenocarcinoma 

(LUAD) 

Lung 

(5 Cell 

lines) 

5001 100% 
10x 

Genomics 

Gold 

standard 

Riemondy, K. A. et 

al 26 

(dataset 3) 

Medulloblastom

a 

(MB) 

Brain 34243 85.72% 
10x 

Genomics 

Silver 

standard 

Bondoc, A. et al27 

(dataset 4) 

Hepatoblastoma 

(HB) 
Liver 52431 78.13% 

10x 

Genomics 

Silver 

standard 

Szczerba, B. M. et 

al28，Donato, C. et 

al29  

(dataset 5) 

 

Breast Cancer 

(BRCA) 

CTC 

(Breast) 
276 77.31% Smart-seq2 

Silver 

standard 

Qian, J. et al 30 

(dataset 6) 

Breast Cancer 

(BRCA) 
Breast 16235 36.88% 

10x 

Genomics 

Silver 

standard 

Qian, J. et al 30 

(dataset 7) 

Ovarian Cancer 

(OV) 
Ovary 14134 31.33% 

10x 

Genomics 

Silver 

standard 

Qian, J. et al 30 

(dataset 8) 

Color and 

Rectal Cancer 

(COADREAD) 

Colon 

and 

Rectum 

11103 24.85% 
10x 

Genomics 

Silver 

standard 

Qian, J. et al 30 

(dataset 9) 

Lung Cancer 

(LUNG) 
Lung 12312 13.16% 

10x 

Genomics 

Silver 

standard 

Eberhardt, C. S. et 

al31  

(dataset 10) 

Head and Neck 

Cancer 

(Head&Neck) 

Head 

and 

Neck 

0 0% 
10x 

Genomics 

Silver 

standard 

 

  



 

Supplementary Table 2. Details of annotation strategies of external test datasets 

used in their original studies 

Data Sets Annotation Methods Description 

10k Peripheral Blood 

Mononuclear Cells 24 

(dataset 1) 

Pure normal cells 
Peripheral blood mononuclear cells from a healthy 

donor 

Tian, L. et al 25 

(dataset 2) 
Pure cancer cells 

Mixed human lung adenocarcinoma cell lines 

including H2228, H1975, A549, H838 and 

HCC827 

Riemondy, K. A. et al 26 

(dataset 3) 

Clustering combined with 

inferCNV copy number 

variation inference for 

manual annotation 

scRNA-seq of human medulloblastoma samples 

Bondoc, A. et al27 

(dataset 4) 

Clustering followed by 

marker gene annotation 
scRNA-seq of human hepatoblastoma samples 

Szczerba, B. M. et al28，

Donato, C. et al 29 

(dataset 5) 

Experimental enrichment 

of specific cells 

Malignant circulating tumor cells (CTCs) and non-

malignant cells obtained from blood samples 

Qian, J. et al30  

(dataset 6-9) 

Clustering followed by 

marker gene annotation 

A pan-cancer study, including scRNA-seq of 

ovarian cancer, color&rectal cancer, lung cancer 

and breast samples 

Eberhardt, C. S. et al31  

(dataset 10) 
Pure normal cells (T cells) Enrichment of T cells using experiments 

 

  



 

Supplementary Table 3. Introductions of algorithms compared in this study 

Algorithms URL Training dataset Description 

CopyKAT10 

https://www.nature.com/a

rticles/s41587-020-

00795-2 

Unnecessary 
Copy number variation 

inference 

Casee11 

https://www.nature.com/a

rticles/s41388-022-

02478-5 

Bulk sequence data 

Transfer learning using 

bulk data as the source 

domain 

Ikarus9 
https://doi.org/10.1186/s1

3059-022-02683-1 

Single-cell sequence 

data, with performance 

varying with the choice 

of training set 

 Logistic regression 

SCEVAN12 

https://www.nature.com/a

rticles/s41467-023-

36790-9 

Unnecessary 
Detecting the clonal copy 

number substructure 

 

  



 

Supplementary Table 4. Performance comparison with existing methods in 

dataset 124 

Algorithms TP FN FP TN Accuracy NA* Repeat 

Cancer-Finder 

0 0 146 10839 98.67% 0 Repeat 1 

0 0 139 10846 98.73% 0 Repeat 2 

0 0 144 10841 98.69% 0 Repeat 3 

0 0 145 10840 98.68% 0 Repeat 4 

0 0 142 10843 98.71% 0 Repeat 5 

Casee 

0 0 8756 2229 20.29% 0 Repeat 1 

0 0 1756 9229 84.01% 0 Repeat 2 

0 0 5551 5434 49.47% 0 Repeat 3 

0 0 4677 6308 57.42% 0 Repeat 4 

0 0 5392 5593 50.91% 0 Repeat 5 

CopyKAT 

0 0 6590 3778 36.44% 617 Repeat 1 

0 0 6484 3884 37.46% 617 Repeat 2 

0 0 6614 3754 36.21% 617 Repeat 3 

0 0 6579 3789 36.55% 617 Repeat 4 

0 0 6603 3765 36.31% 617 Repeat 5 

SCEVAN 

0 0 3805 6625 63.52% 555 Repeat 1 

0 0 3805 6625 63.52% 555 Repeat 2 

0 0 3805 6625 63.52% 555 Repeat 3 

0 0 3805 6625 63.52% 555 Repeat 4 

0 0 3805 6625 63.52% 555 Repeat 5 

Ikarus_default 

0 0 0 10985 100.00% 0 Repeat 1 

0 0 0 10985 100.00% 0 Repeat 2 

0 0 0 10985 100.00% 0 Repeat 3 

0 0 0 10985 100.00% 0 Repeat 4 

0 0 0 10985 100.00% 0 Repeat 5 

Ikarus_retrained 

0 0 146 10839 98.67% 0 Repeat 1 

0 0 126 10859 98.85% 0 Repeat 2 

0 0 110 10875 99.00% 0 Repeat 3 

0 0 114 10871 98.96% 0 Repeat 4 

0 0 123 10862 98.88% 0 Repeat 5 

*In the CopyKAT test, 'NA' represents the number of cells predicted to be 'not.defined' or discarded. 

In SCEVAN's tests, 'NA' indicates the number of cells that have been omitted from the calculation 

or marked as 'filtered' in the result file.  



Supplementary Table 5. Performance comparison with existing methods in 

dataset 225 

Algorithms TP FN FP TN Accuracy NA* Repeat 

Cancer-Finder 

4866 135 0 0 97.30% 0 Repeat 1 

4871 130 0 0 97.40% 0 Repeat 2 

4880 121 0 0 97.58% 0 Repeat 3 

4874 127 0 0 97.46% 0 Repeat 4 

4869 132 0 0 97.36% 0 Repeat 5 

Casee 

4129 872 0 0 82.56% 0 Repeat 1 

4046 955 0 0 80.90% 0 Repeat 2 

4319 682 0 0 86.36% 0 Repeat 3 

4227 774 0 0 84.52% 0 Repeat 4 

4358 643 0 0 87.14% 0 Repeat 5 

CopyKAT 

879 3257 0 0 21.25% 516 Repeat 1 

880 3256 0 0 21.28% 516 Repeat 2 

876 3260 0 0 21.18% 516 Repeat 3 

873 3263 0 0 21.11% 516 Repeat 4 

883 3253 0 0 21.35% 516 Repeat 5 

SCEVAN 

3417 769 0 0 81.63% 816 Repeat 1 

3417 769 0 0 81.63% 816 Repeat 2 

3417 769 0 0 81.63% 816 Repeat 3 

3417 769 0 0 81.63% 816 Repeat 4 

3417 769 0 0 81.63% 816 Repeat 5 

Ikarus_retrained 

637 4364 0 0 12.74% 0 Repeat 1 

634 4367 0 0 12.68% 0 Repeat 2 

645 4356 0 0 12.90% 0 Repeat 3 

670 4331 0 0 13.40% 0 Repeat 4 

595 4406 0 0 11.90% 0 Repeat 5 

*In the CopyKAT test, 'NA' represents the number of cells predicted to be 'not.defined' or discarded. 

In SCEVAN's tests, 'NA' indicates the number of cells that have been omitted from the calculation 

or marked as 'filtered' in the result file.  



Supplementary Table 6. Performance comparison with existing methods in 

dataset 326 

Algorithms TP FN FP TN Similarity NA* Repeat 

Cancer-Finder 

34206 37 484 5219 98.70% 0 Repeat 1 

34208 35 484 5219 98.70% 0 Repeat 2 

34216 27 491 5212 98.70% 0 Repeat 3 

34212 31 488 5215 98.70% 0 Repeat 4 

34205 38 486 5217 98.69% 0 Repeat 5 

Casee 

28561 5682 3550 2153 76.89% 0 Repeat 1 

29675 4568 3926 1777 78.74% 0 Repeat 2 

28537 5706 3683 2020 76.50% 0 Repeat 3 

30029 4214 3880 1823 79.74% 0 Repeat 4 

26839 7404 3269 2434 73.28% 0 Repeat 5 

CopyKAT 

13323 18437 479 3561 47.16% 4146 Repeat 1 

11791 19969 1224 2816 40.80% 4146 Repeat 2 

12682 19078 1285 2755 43.12% 4146 Repeat 3 

12786 18974 1296 2744 43.38% 4146 Repeat 4 

13132 18628 469 3571 46.66% 4146 Repeat 5 

SCEVAN 

12358 20088 295 4105 44.68% 3100 Repeat 1 

12717 19729 296 4104 45.65% 3100 Repeat 2 

12722 19724 296 4104 45.67% 3100 Repeat 3 

12721 19725 285 4115 45.69% 3100 Repeat 4 

12357 20089 284 4116 44.71% 3100 Repeat 5 

Ikarus_retrained 

34237 6 577 5126 98.54% 0 Repeat 1 

34237 6 582 5121 98.53% 0 Repeat 2 

34238 5 578 5125 98.54% 0 Repeat 3 

34238 5 581 5122 98.53% 0 Repeat 4 

34240 3 590 5113 98.52% 0 Repeat 5 

*In the CopyKAT test, 'NA' represents the number of cells predicted to be 'not.defined' or discarded. 

In SCEVAN's tests, 'NA' indicates the number of cells that have been omitted from the calculation 

or marked as 'filtered' in the result file.  



Supplementary Table 7. Performance comparison with existing methods in 

dataset 427 

Algorithms TP FN FP TN Similarity NA* Repeat 

Cancer-Finder 

52004 427 10102 4577 84.31% 0 Repeat 1 

52030 401 10194 4485 84.21% 0 Repeat 2 

52058 373 10237 4442 84.19% 0 Repeat 3 

52055 376 10334 4345 84.04% 0 Repeat 4 

52038 393 10232 4447 84.17% 0 Repeat 5 

Casee 

50969 1462 11659 3020 80.45% 0 Repeat 1 

50086 2345 10565 4114 80.76% 0 Repeat 2 

50715 1716 8723 5956 84.44% 0 Repeat 3 

51076 1355 11005 3674 81.58% 0 Repeat 4 

50777 1654 11934 2745 79.75% 0 Repeat 5 

CopyKAT 

29329 18318 7695 6472 57.92% 5296 Repeat 1 

30144 17503 8308 5859 58.24% 5296 Repeat 2 

30779 16868 8398 5769 59.13% 5296 Repeat 3 

35285 12362 8393 5774 66.42% 5296 Repeat 4 

30527 17120 7670 6497 59.90% 5296 Repeat 5 

SCEVAN 

37215 10966 7351 6967 70.69% 0 Repeat 1 

37215 10966 7351 6967 70.69% 0 Repeat 2 

37389 10792 7361 6957 70.95% 0 Repeat 3 

37123 11058 7316 7002 70.60% 0 Repeat 4 

37297 10884 7326 6992 70.86% 0 Repeat 5 

Ikarus_default 

47429 5002 14574 105 70.83% 0 Repeat 1 

47295 5136 14574 105 70.63% 0 Repeat 2 

47110 5321 14574 105 70.35% 0 Repeat 3 

47347 5084 14574 105 70.71% 0 Repeat 4 

47340 5091 14574 105 70.70% 0 Repeat 5 

Ikarus_retrained 

52424 7 11386 3293 83.02% 0 Repeat 1 

52427 4 12054 2625 82.03% 0 Repeat 2 

52425 6 11424 3255 82.97% 0 Repeat 3 

52427 4 12051 2628 82.04% 0 Repeat 4 

52423 8 11204 3475 83.29% 0 Repeat 5 

*In the CopyKAT test, 'NA' represents the number of cells predicted to be 'not.defined' or discarded. 

In SCEVAN's tests, 'NA' indicates the number of cells that have been omitted from the calculation 

or marked as 'filtered' in the result file.  



Supplementary Table 8. Performance comparison with existing methods in 

dataset 528,29  

Algorithms TP FN FP TN Similarity NA* Repeat 

Cancer-Finder 

244 18 14 81 91.04% 0 Repeat 1 

244 18 14 81 91.04% 0 Repeat 2 

244 18 14 81 91.04% 0 Repeat 3 

244 18 15 80 90.76% 0 Repeat 4 

244 18 15 80 90.76% 0 Repeat 5 

Casee 

238 24 23 72 86.83% 0 Repeat 1 

244 18 40 55 83.75% 0 Repeat 2 

238 24 23 72 86.83% 0 Repeat 3 

241 21 23 72 87.68% 0 Repeat 4 

238 24 18 77 88.24% 0 Repeat 5 

CopyKAT 

108 152 0 94 57.06% 3 Repeat 1 

108 152 0 94 57.06% 3 Repeat 2 

108 152 0 94 57.06% 3 Repeat 3 

108 152 0 94 57.06% 3 Repeat 4 

108 152 0 94 57.06% 3 Repeat 5 

SCEVAN 

108 152 0 94 57.06% 3 Repeat 1 

108 152 0 94 57.06% 3 Repeat 2 

108 152 0 94 57.06% 3 Repeat 3 

108 152 0 94 57.06% 3 Repeat 4 

108 152 0 94 57.06% 3 Repeat 5 

Ikarus_retrained 

235 27 11 84 89.36% 0 Repeat 1 

235 27 11 84 89.36% 0 Repeat 2 

235 27 11 84 89.36% 0 Repeat 3 

235 27 11 84 89.36% 0 Repeat 4 

235 27 11 84 89.36% 0 Repeat 5 

*In the CopyKAT test, 'NA' represents the number of cells predicted to be 'not.defined' or discarded. 

In SCEVAN's tests, 'NA' indicates the number of cells that have been omitted from the calculation 

or marked as 'filtered' in the result file.  



Supplementary Table 9. Performance comparison with existing methods in 

dataset 630 

Algorithms TP FN FP TN Similarity NA* Repeat 

Cancer-Finder 

10686 5549 648 27141 85.92% 0 Repeat 1 

10615 5620 645 27144 85.77% 0 Repeat 2 

10673 5562 667 27122 85.85% 0 Repeat 3 

10649 5586 661 27128 85.81% 0 Repeat 4 

10603 5632 638 27151 85.76% 0 Repeat 5 

Casee 

12164 4071 13161 14628 60.86% 0 Repeat 1 

11111 5124 11243 16546 62.82% 0 Repeat 2 

11281 4954 11695 16094 62.18% 0 Repeat 3 

13210 3025 15422 12367 58.10% 0 Repeat 4 

11331 4904 11985 15804 61.64% 0 Repeat 5 

CopyKAT 

3984 3199 6715 16626 67.52% 13500 Repeat 1 

3863 3320 6332 17009 68.38% 13500 Repeat 2 

3713 3470 5885 17456 69.35% 13500 Repeat 3 

3349 3834 6079 17262 67.52% 13500 Repeat 4 

3932 3251 6587 16754 67.77% 13500 Repeat 5 

SCEVAN 

3860 3670 6156 18174 69.16% 12164 Repeat 1 

3866 3664 6190 18140 69.07% 12164 Repeat 2 

3811 3719 7250 17080 65.57% 12164 Repeat 3 

3805 3725 7216 17114 65.66% 12164 Repeat 4 

3871 3659 6232 18098 68.95% 12164 Repeat 5 

Ikarus_default 

14507 1728 8209 19580 77.43% 0 Repeat 1 

14502 1733 8196 19593 77.45% 0 Repeat 2 

14503 1732 8196 19593 77.45% 0 Repeat 3 

14504 1731 8205 19584 77.43% 0 Repeat 4 

14505 1730 8201 19588 77.44% 0 Repeat 5 

Ikarus_retrained 

14280 1955 8402 19387 76.47% 0 Repeat 1 

14331 1904 7167 20622 79.40% 0 Repeat 2 

14356 1879 8476 19313 76.48% 0 Repeat 3 

14347 1888 7169 20620 79.43% 0 Repeat 4 

14335 1900 8383 19406 76.64% 0 Repeat 5 

*In the CopyKAT test, 'NA' represents the number of cells predicted to be 'not.defined' or discarded. 

In SCEVAN's tests, 'NA' indicates the number of cells that have been omitted from the calculation 

or marked as 'filtered' in the result file and the number of cells in the dataset 6 where Patient No. 

40 terminated the run in SCEVAN, and did not output the result. 



Supplementary Table 10. Performance comparison with existing methods in 

dataset 730 

Algorithms TP FN FP TN Similarity NA* Repeat 

Cancer-Finder 

11200 2934 4231 26749 84.12% 0 Repeat 1 

11172 2962 4262 26718 83.99% 0 Repeat 2 

11190 2944 4306 26674 83.93% 0 Repeat 3 

11139 2995 4129 26851 84.21% 0 Repeat 4 

11156 2978 4205 26775 84.08% 0 Repeat 5 

Casee 

10028 4106 11891 19089 64.54% 0 Repeat 1 

9441 4693 10782 20198 65.70% 0 Repeat 2 

9470 4664 10280 20700 66.88% 0 Repeat 3 

9376 4758 10120 20860 67.02% 0 Repeat 4 

9880 4254 11428 19552 65.24% 0 Repeat 5 

CopyKAT 

5162 2704 4791 15132 73.03% 17325 Repeat 1 

5156 2710 4844 15079 72.82% 17325 Repeat 2 

6232 1634 2656 17267 84.56% 17325 Repeat 3 

6441 1425 2810 17113 84.76% 17325 Repeat 4 

6404 1462 3124 16799 83.50% 17325 Repeat 5 

SCEVAN 

6300 1784 3157 17813 82.99% 16060 Repeat 1 

6609 1475 3170 17800 84.01% 16060 Repeat 2 

6300 1784 3157 17813 82.99% 16060 Repeat 3 

6300 1784 3157 17813 82.99% 16060 Repeat 4 

6300 1784 3157 17813 82.99% 16060 Repeat 5 

Ikarus_default 

2169 11965 2 30978 73.47% 0 Repeat 1 

2173 11961 2 30978 73.48% 0 Repeat 2 

2173 11961 2 30978 73.48% 0 Repeat 3 

2175 11959 2 30978 73.49% 0 Repeat 4 

2174 11960 2 30978 73.48% 0 Repeat 5 

Ikarus_retrained 

6223 7911 44 30936 82.37% 0 Repeat 1 

6388 7746 55 30925 82.71% 0 Repeat 2 

6227 7907 43 30937 82.38% 0 Repeat 3 

6327 7807 49 30931 82.59% 0 Repeat 4 

6379 7755 52 30928 82.69% 0 Repeat 5 

*In the CopyKAT test, 'NA' represents the number of cells predicted to be 'not.defined' or discarded. 

In SCEVAN's tests, 'NA' indicates the number of cells that have been omitted from the calculation 

or marked as 'filtered' in the result file.  



Supplementary Table 11. Performance comparison with existing methods in 

dataset 830 

Algorithms TP FN FP TN Similarity NA* Repeat 

Cancer-Finder 

9808 1295 4023 29558 88.10% 0 Repeat 1 

9774 1329 4059 29522 87.94% 0 Repeat 2 

9796 1307 4083 29498 87.94% 0 Repeat 3 

9763 1340 3966 29615 88.13% 0 Repeat 4 

9769 1334 4026 29555 88.00% 0 Repeat 5 

Casee 

7938 3165 11468 22113 67.25% 0 Repeat 1 

8071 3032 12658 20923 64.89% 0 Repeat 2 

7471 3632 9827 23754 69.88% 0 Repeat 3 

8682 2421 13660 19921 64.01% 0 Repeat 4 

8900 2203 15566 18015 60.23% 0 Repeat 5 

CopyKAT 

3563 1312 4385 20077 80.58% 15347 Repeat 1 

3334 1541 5086 19376 77.41% 15347 Repeat 2 

3219 1656 7191 17271 69.84% 15347 Repeat 3 

3599 1276 4695 19767 79.65% 15347 Repeat 4 

2986 1889 8589 15873 64.28% 15347 Repeat 5 

SCEVAN 

3663 1392 4985 20976 79.44% 13668 Repeat 1 

3663 1392 4985 20976 79.44% 13668 Repeat 2 

3663 1392 4985 20976 79.44% 13668 Repeat 3 

3663 1392 4985 20976 79.44% 13668 Repeat 4 

3663 1392 4985 20976 79.44% 13668 Repeat 5 

Ikarus_default 

9917 1186 12319 21262 69.78% 0 Repeat 1 

9917 1186 12318 21263 69.78% 0 Repeat 2 

9941 1162 12322 21259 69.82% 0 Repeat 3 

9917 1186 12317 21264 69.78% 0 Repeat 4 

9883 1220 12321 21260 69.70% 0 Repeat 5 

Ikarus_retrained 

10652 451 13002 20579 69.89% 0 Repeat 1 

10657 446 13017 20564 69.87% 0 Repeat 2 

10599 504 12881 20700 70.05% 0 Repeat 3 

10603 500 12891 20690 70.03% 0 Repeat 4 

10605 498 12792 20789 70.26% 0 Repeat 5 

*In the CopyKAT test, 'NA' represents the number of cells predicted to be 'not.defined' or discarded. 

In SCEVAN's tests, 'NA' indicates the number of cells that have been omitted from the calculation 

or marked as 'filtered' in the result file.  



Supplementary Table 12. Performance comparison with existing methods in 

dataset 930 

Algorithms TP FN FP TN Similarity NA* Repeat 

Cancer-Finder 

11844 468 5143 76120 94.00% 0 Repeat 1 

11844 468 5082 76181 94.07% 0 Repeat 2 

11840 472 5085 76178 94.06% 0 Repeat 3 

11820 492 4978 76285 94.15% 0 Repeat 4 

11838 474 5050 76213 94.10% 0 Repeat 5 

Casee 

11054 1258 41530 39733 54.27% 0 Repeat 1 

10600 1712 32183 49080 63.78% 0 Repeat 2 

10672 1640 34758 46505 61.10% 0 Repeat 3 

10849 1463 34928 46335 61.11% 0 Repeat 4 

10444 1868 32572 48691 63.20% 0 Repeat 5 

CopyKAT 

5627 1278 15052 34652 71.15% 36966 Repeat 1 

5632 1273 7339 42365 84.79% 36966 Repeat 2 

5539 1366 6164 43540 86.70% 36966 Repeat 3 

5697 1208 8495 41209 82.86% 36966 Repeat 4 

5454 1451 12525 37179 75.31% 36966 Repeat 5 

SCEVAN 

6268 855 15147 37277 73.13% 34028 Repeat 1 

6271 852 15145 37279 73.14% 34028 Repeat 2 

6271 852 15145 37279 73.14% 34028 Repeat 3 

6268 855 15147 37277 73.13% 34028 Repeat 4 

6268 855 15147 37277 73.13% 34028 Repeat 5 

Ikarus_default 

10221 2091 176 81087 97.58% 0 Repeat 1 

10218 2094 175 81088 97.58% 0 Repeat 2 

10209 2103 176 81087 97.56% 0 Repeat 3 

10207 2105 174 81089 97.56% 0 Repeat 4 

10221 2091 175 81088 97.58% 0 Repeat 5 

Ikarus_retrained 

11890 422 7544 73719 91.49% 0 Repeat 1 

11916 396 7747 73516 91.30% 0 Repeat 2 

11896 416 7563 73700 91.47% 0 Repeat 3 

11911 401 7676 73587 91.37% 0 Repeat 4 

11860 452 7350 73913 91.66% 0 Repeat 5 

*In the CopyKAT test, 'NA' represents the number of cells predicted to be 'not.defined' or discarded. 

In SCEVAN's tests, 'NA' indicates the number of cells that have been omitted from the calculation 

or marked as 'filtered' in the result file.  



Supplementary Table 13. Performance comparison with existing methods in 

dataset 1031  

Algorithms TP FN FP TN Similarity NA* Repeat 

Cancer-Finder 

0 0    150     56322 99.73% 0 Repeat 1 

0 0 141 56331 99.75% 0 Repeat 2 

0 0 150 56322 99.73% 0 Repeat 3 

0 0 153 56319 99.73% 0 Repeat 4 

0 0 143 56329 99.75% 0 Repeat 5 

Casee 

0 0 31103 25369 44.92% 0 Repeat 1 

0 0 18970 37502 66.41% 0 Repeat 2 

0 0 19543 36929 65.39% 0 Repeat 3 

0 0 11892 44580 78.94% 0 Repeat 4 

0 0 14139 42333 74.96% 0 Repeat 5 

CopyKAT 

0 0 18916 32935 63.52% 4621 Repeat 1 

0 0 25718 26133 50.40% 4621 Repeat 2 

0 0 24015 27836 53.68% 4621 Repeat 3 

0 0 25669 26182 50.49% 4621 Repeat 4 

0 0 31201 20650 39.83% 4621 Repeat 5 

SCEVAN 

0 0 18284 26704 59.36% 11484 Repeat 1 

0 0 19108 25880 57.53% 11484 Repeat 2 

0 0 18556 26432 58.75% 11484 Repeat 3 

0 0 18897 26091 58.00% 11484 Repeat 4 

0 0 18563 26425 58.74% 11484 Repeat 5 

Ikarus_default 

0 0 0 56472 100.00% 0 Repeat 1 

0 0 0 56472 100.00% 0 Repeat 2 

0 0 0 56472 100.00% 0 Repeat 3 

0 0 0 56472 100.00% 0 Repeat 4 

0 0 0 56472 100.00% 0 Repeat 5 

Ikarus_retrained 

0 0 2 56470 100.00% 0 Repeat 1 

0 0 2 56470 100.00% 0 Repeat 2 

0 0 1 56471 100.00% 0 Repeat 3 

0 0 2 56470 100.00% 0 Repeat 4 

0 0 1 56471 100.00% 0 Repeat 5 

*In the CopyKAT test, 'NA' represents the number of cells predicted to be 'not.defined' or discarded. 

In SCEVAN's tests, 'NA' indicates the number of cells that have been omitted from the calculation 

or marked as 'filtered' in the result file.  

  



 

Supplementary Table 14. Memory consumption comparison of five algorithms 

Number of cells 

Algorithms 
100 1,000 10,000 100,000 1,000,000 

Cancer-Finder 13,532 KB 13,568 KB 3,924,116 KB 
13,956,016 

KB 

14,865,940 

KB 

SCEVAN 1,657,160 KB 3,751,188 KB NA NA NA 

CaSee 
12,878,114 

KB 

13,429,636 

KB 

21,388,220 

KB 

118,324,804 

KB 

120,300,268 

KB 

CopyKAT 707,728 KB 3,871,888 KB 
25,668,260 

KB 
NA NA 

ikarus 298,576 KB 1,113,896 KB 
12,877,444 

KB 

165,325,312 

KB 

165,368,696 

KB 

'NA' indicates that the method could not run correctly on the data. 

  



Supplementary Table 15. Full name of cancer types 

Cancer type Full name of cancer types Up-regulated genes in malignant cells 

GBM Glioblastoma multiforme 
BEX3,MARCKSL1,SOX2,NOVA1,TUBB2B,CKB,P

TN,GPM6B,MAP2,UCHL1 

PDAC Pancreatic ductal adenocarcinoma 
TPM1,MDK,KRT18,EPCAM,SMIM22,DSTN,S100

A13,CYSTM1,CD59,KRT8 

LUAD Lung adenocarcinoma 

GSTP1,SPINT2,MGST1,CD9,KRT18,KRT8,S100A

13,RAB13,LGALS3BP, 

DSTN 

NSCLC Non-small cell lung carcinoma 

SLC34A2,ELF3,SFTA2,NAPSA,CXCL17,AGR2,AT

P1B1,CEACAM6,SOX4, 

MUC1 

CRC Colorectal cancer 

IFI27,KRT8,KRT18,S100A16,MDK,LGALS4,PDLI

M1,C19orf33,PHGR1, 

KRT19 

MCC Merkel cell carcinoma 
TFAP2A,SOX2,BEX1,NHLH1,ISL1,EPCAM,TUBB

2B,UCHL1,POU4F3,PKIB 

OV Ovarian cancer 
TNS4,LHX1,ZNF608,SHROOM3,LCP1,ZBED3,EL

F3,E2F5,PLPP3,SCEL 

ATC Anaplastic thyroid carcinoma 
CALD1,COL6A2,TCEAL9,GNG11,MAP1B,CTHR

C1,RAI14,MARCKS,SGCE,FAM114A1 

HCC Hepatocellular carcinoma 
ITM2C,MZB1,STMN1,HMGN1,HSP90AB1,PEBP

1,TSPAN13,HMGA1,PLD4,HLA-DQA1 

AA Aplastic anemia 

PTPRZ1,MIR9-

1HG,FABP7,BCAN,MT3,CKB,GPM6B,SLC1A2,T

SC22D4,RHOBTB3 

TNBC Triple-negative breast cancer 
KRT8,KRT7,CNN3,KRT19,MGST1,CD24,EPCAM,

SOX4,ELF3,PFN2 

UCEC Uterine corpus endometrial carcinoma 
DSP,CNN3,CDH1,KLF5,PRSS8,PKP3,LSR,KRT1

8,VTCN1,DMKN 

LUSC Lung squamous cell carcinoma 
CD9,HSPB1,GSTP1,KRT19,BEX3,CD59,KRT18,P

DLIM1,LGALS3BP,KRT8 

NBL Neuroblastoma 
CHGB,TPH1,TTR,PHGR1,SYT13,CHGA,TAC1,P

CSK1,SERPINA1,PCSK1N 

MIUBC 
Muscle-invasive urothelial bladder 

cancer 

PRKCDBP,CALD1,PPIC,PTRF,APP,PLS3,NGFR

AP1,TPM1,MXRA8,PHLDA3 

STAD Stomach adenocarcinoma 

SERINC2,KLF5,CLDN3,CXADR,LAD1,PPP1R1B,

SMIM22,FHL2,EPCAM, 

GMDS 

DCIS Ductal carcinoma in situ 

ANKRD30A,FXYD3,EPCAM,IRX3,SIX1,SPDEF,R

ERG,MYO6,CHMP4C, 

GATA3 

BCC Basal cell carcinoma 
CD9,CALD1,CAV1,SPARC,DST,APOE,SOX4,APP

,GSTP1,KRT5 

Gene names are formatted in italics. 

  



Supplementary Table 16. Information on the spatial transcriptome data 

Slide Publishes Cancer Type 
Number of 

Malignant spot 

Malignant 

rate 
Platform 

HCC-1L Rui, W. et al.32 
hepatocellular 

carcinoma 
969 38.59% 10x  Visium 

HCC-2L Rui, W. et al.32 
hepatocellular 

carcinoma 
2036 49.78% 10x Visium 

HCC-3L Rui, W. et al.32 
hepatocellular 

carcinoma 
1229 26.97% 10x Visium 

HCC-4L Rui, W. et al.32 
hepatocellular 

carcinoma 
2036 51.83% 10x Visium 

CRC-1 Qi, J. et al33 colorectal cancer 963 25.72% 10x Visium 

CRC-2 Qi, J. et al33 colorectal cancer 844 26.69% 10x Visium 

CRC-3 Qi, J. et al33 colorectal cancer 502 34.10% 10x Visium 

ICC Rui, W. et al32 

intrahepatic 

cholangiocarcinom

a 

1468 35.51% 10x Visium 

OV 
10x Company 

Website 
ovarian cancer 1822 67.68% 10x Visium 

BRCA-1 
10x Company 

Website 
breast cancer 2378 71.82% 10x Visium 

BRCA-2 
10x Company 

Website 
breast cancer 2208 55.13% 10x Visium 

RCC-1 Meylan, M. et al.34 
renal call 

carcinoma 
872 43.97% 10x Visium 

RCC-2 Meylan, M. et al.34 
renal call 

carcinoma 
928 68.79% 10x Visium 

RCC-3 Meylan, M. et al.34 
renal call 

carcinoma 
1215 60.54% 10x Visium 

  



Supplementary Table 17. Evaluation results of Domain Generalization strategies 

from Wang et al.21 

PACS dataset 

(ResNet-18) 

PACS dataset 

(ResNet-50) 

Home-Office dataset 

(ResNet-18) 

Home-Office dataset 

(ResNet-50) 

Methods 
Resul

t 
Methods Result Methods Result Methods Result 

V-REx7 83.85 Mixup 88.18 Mixup 64.33 Mixup 71.24 

RSC35 83.6 CORAL 87.9 MMD 64.15 V-REx 70.81 

DANN36,37  83.57 V-REx 87.75 CORAL 63.97 ERM 70.44 

MMD38 83.21 DANN 87.6 GroupDRO 63.92 GroupDRO 70.39 

CORAL39 82.83 MMD 87.07 V-REx 63.84 MMD 70.36 

ERM 82.75 RSC 86.85 ERM 63.54 CORAL 70.27 

Mixup40 82.26 GroupDRO 86.84 RSC 63.35 DANN 70.02 

GroupDRO41 82.19 ERM 86.31 DANN 62.57 RSC 69.36 

ANDMask42 80.47 ANDMask 85.07 ANDMask 60.69 ANDMask 67.59 

These results were gathered from https://github.com/jindongwang/transferlearning/tree/master/cod

e/DeepDG. The results of one strategy (DIFEX43) were discarded because it was evaluated only in 

one experiment and not in the other three experiments. 

  

https://github.com/jindongwang/transferlearning/tree/master/code/DeepDG
https://github.com/jindongwang/transferlearning/tree/master/code/DeepDG


Supplementary Figures 

 

Supplementary Figure 1 | Accuracy changes in breast cancer data across training 

epochs. When the accuracy of the breast cancer data (36,201 cells with 17,864 

malignant cells) is maximized, the model's training was terminated and it was employed 

for subsequent predictive analysis. Each line represents a training session. In five 

separate replicates, the model was optimized in 176, 166, 166 166, and 166 epochs 

(n=36,201 cells examined over 5 independent experiments). Source data are provided 

as a Source Data file. 

 



 

Supplementary Figure 2 | Comparison of the Precision of Cancer-Finder and four 

other cell annotation algorithms based on external validation datasets. Since most 

of these available algorithms exhibit some level of randomness in their results across 

runs, all tests were conducted in parallel five times. It is noteworthy that the pre-trained 

Cancer-Finder consistently yields uniform predictions on the external datasets. 

Recognizing that variations in the training process and data may introduce a degree of 

randomness, we conducted five training sessions for Cancer-Finder here, completing 

the specified 5 independent and repeated experiments (detailed in Supplementary 

Note 2). The detailed cell numbers (n numbers) and malignancy percentages for each 

dataset are shown in Figure 3a. For ikarus (retrained), we employed the same strategy. 

The presence of an ‘NA’ denotes that the method returns an error and cannot be 

executed with these data, or that the dataset contains only positive or negative samples, 

therefore the indicator cannot be calculated. Source data are provided as a Source Data 

file. 

  



 

Supplementary Figure 3 | Comparison of the F1-Scores and the recall rates of 

Cancer-Finder and four other cell annotation algorithms based on external 

validation datasets. a, Comparison of Cancer-Finder's F1-Scores to four other cell 

annotation algorithms on 10 external validation datasets. b, Comparison of Cancer-

Finder's recall rates to four other cell annotation algorithms on 10 external validation 

datasets. Since most of these available algorithms exhibit some level of randomness in 

their results across runs, all tests were conducted in parallel five times. It is noteworthy 

that the pre-trained Cancer-Finder consistently yields uniform predictions on the 

external datasets. Recognizing that variations in the training process and data may 

introduce a degree of randomness, we conducted five training sessions for Cancser-

Finder here, completing the specified 5 independent and repeated experiments (detailed 

in Supplementary Note 2). The detailed cell numbers (n numbers) and malignancy 

percentages for each dataset are shown in Figure 3a. For ikarus (retrained), we 

employed the same strategy. The presence of an ‘NA’ denotes that the method returns 

an error and cannot be executed with these data, or that the dataset contains only 

positive or negative samples, therefore the indicator cannot be calculated. Source data 

are provided as a Source Data file. 

 



 

Supplementary Figure 4 | AUROC of Cancer-Finder’s prediction results based on 

external validation datasets. Since most of these available algorithms exhibit some 

level of randomness in their results across runs, all tests were conducted in parallel five 

times. It is noteworthy that the pre-trained Cancer- Finder consistently yields uniform 

predictions on the external datasets. Recognizing that variations in the training process 

and data may introduce a degree of randomness, we conducted five training sessions 

for Cancer-Finder here, completing the specified 5 independent and repeated 

experiments (detailed in Supplementary Note 2). Each line represents the result of 

one training session. The detailed cell numbers (n numbers) and malignancy 

percentages for each dataset are shown in Figure 3a. For ikarus (retrained), we 

employed the same strategy. The average AUROC was presented. Source data are 

provided as a Source Data file. 

  



 

Supplementary Figure 5 | AUPRC of Cancer-Finder’s prediction results based on 

external validation datasets. Since most of these available algorithms exhibit some 

level of randomness in their results across runs, all tests were conducted in parallel five 

times. It is noteworthy that the pre-trained Cancer- Finder consistently yields uniform 

predictions on the external datasets. Recognizing that variations in the training process 

and data may introduce a degree of randomness, we conducted five training sessions 

for Cancer-Finder here, completing the specified 5 independent and repeated 

experiments (detailed in Supplementary Note 2). Each line represents the result of 

one training session. The detailed cell numbers (n numbers) and malignancy 

percentages for each dataset are shown in Figure 3a. For ikarus (retrained), we 

employed the same strategy. The average AUPRC was presented. Source data are 

provided as Supplementary Data 1. 

 

  



 

 

Supplementary Figure 6 | Results of leave-one-cancer-type-out and leave-datasets-

out cross-validations. a,b Results of leave-one-cancer-type-out cross-validation on 

single-cell data and balanced single-cell data. Leave-one-cancer-type-out cross-

validation was performed by excluding scRNA-seq data from one cancer, training 

Cancer-Finder with data from other cancers, and predicting cell annotation labels for 

the excluded cancer. Cancer-Finder performs well (accuracy > 0.8) on most cancers, 

but its performance is limited on hematologic tumors (colored in grey), possibly due to 

the significant difference between hematologic and solid tumors. Notably, a 

discrepancy was discovered between the original study8 and TISCH's annotation on 

cancer with the lowest accuracy (colored red), which may have been caused by database 

collection errors in the database. c,d Results of leave-datasets-out cross-validation on 

single-cell data and balanced single-cell data. Leave-datasets-out cross-validation was 

conducted by excluding one scRNA-seq dataset at a time, training Cancer-Finder with 

data from other datasets, and predicting cell annotation labels for the excluded dataset. 

On four datasets (colored red), discrepancies were discovered between the original 

study44,8,45,46 and TISCH's annotation, possibly due to database collection errors. These 

results demonstrated that Cancer-Finder can be a useful aid for relevant database 

annotation and error detection. The datasets represented by the green bars consist of 

either all-malignant or all-non-malignant cells and are therefore not included in the 

balanced single-cell data. Other datasets are colored in blue. Source data are provided 

as a Source Data file. 

 



 

 
Supplementary Figure 7 | Application expansion of Cancer-Finder. a, Performance 

of Cancer-Finder on MERFISH data. Here, the optimal Softmax threshold (threshold = 

0.9766) was determined according to the ROC curve based on an external MERFISH 

slide. ‘*’ denotes the slide used to determine the threshold value. b, Performance of 

Cancer-Finder on slide-seq data. c, Performance of Cancer-Finder on legacy ST data. 

Source data are provided as a Source Data file. 

 



 

Supplementary Figure 8 | Changes in the salience value of features during training. 

Here, the salience values for the top 20 genes are displayed. Gene names are formatted 

in italics. Source data are provided as a Source Data file. 

 

 

Supplementary Figure 9 | Gene signature score in 5 ccRCC slides. Here, the 

ssGESA scores in 5 ccRCC slides of the gene signature from Cancer-Finder are shown. 

Source data are provided as a Source Data file. 

 



 

Supplementary Figure 10 | Results of leave-platform-out cross-validations. Leave-

platform-out cross-validation was performed by excluding datasets from one platform, 

training Cancer-Finder with data from other platforms, and predicting cell annotation 

labels for the excluded datasets. Each point represents the accuracy of a dataset. The 

dataset from mCEL-seq2 was excluded from the balanced validation because it contains 

only non-malignant (negative) cells. Notably, several datasets were excluded from 

balanced validation because they contained only all-malignant or all-nonmalignant 

cells. For the data presented in (a), the displayed platforms are mCEL-Seq2 (n=1), 

Smart-seq2 (n=18), SNRS (n=1), inDrop (n=3), Microwell (n=2), MARS-seq (n=2), 

and 10x_Genomics (n=41). For the data presented in (b), the displayed platforms are 

Smart-seq2 (n=11), SNRS (n=1), inDrop (n=1), Microwell (n=2), MARS-seq (n=1), 

and 10x_Genomics (n=19). The boxes are centered at median values, where the range 

of boxes represents the interquartile range (IQR) bounded by the first quartile (Q1) and 

the third quartile (Q3). Source data are provided as a Source Data file. 

 

 
Supplementary Figure 11 | Performance of Cancer-Finder when the training set 

is partially incorrect. Here, we demonstrated that the overall performance of Cancer-



Finder remains stable in the presence of less than 35% incorrect labels by modifying 

the labels in the training set to incorrect annotations and then using them to train the 

model. Five-fold leave-cells-out cross-validation was performed for each rate (Error 

bars show mean ± standard deviation of these 5 validations, n=101,847 cells examined 

over 5 independent experiments). Source data are provided as a Source Data file. 

 

 

Supplementary Figure 12 | Comparisons between cells that were correctly and 

incorrectly predicted. Two gold standard datasets were used. a, Comparison of 

average expression of HVGs in correctly predicted and incorrectly predicted cells in 

the cell line dataset. Here, we use the top 2000 HVGs according to expression variance 

(n=5001, ****p<0.0001, paired t-tests). b, Comparison of average expression of HVGs 

in correctly predicted and incorrectly predicted cells in PBMC dataset. Here, we use 

the top 2000 HVGs according to expression variance (n=10985, ****p<0.0001, paired 

t-tests). c, Comparison of number of detected genes in correctly predicted and 

incorrectly predicted cells. Paired t-tests were used for the cell line dataset (n=5001, 

****p<0.0001) and the PBMC dataset (n=5001, ****p<0.0001). The violins are 

centered at median values, where the range of violins represents the interquartile range 

(IQR) bounded by the first quartile (Q1) and the third quartile (Q3). Source data are 

provided as a Source Data file. 

 

 

Supplementary Figure 13 | Performance of Cancer-Finder on identifying immune 

cells. Breast, lung, and ovary data are from Qian, J. et al30, and liver data is from Bondoc, 



A. et al27. The average accuracy on immune cell prediction reached 90.59% (Breast, 

n=44,024), 95.76% (Liver, n=67,110), 85.21% (Lung, n=93,575) and 88.18% (Ovary, 

n=45,114), respectively (Error bars show mean ± standard deviation of these 5 

validations). Independent experiments were repeated 5 times. Source data are provided 

as a Source Data file. 

 

 

Supplementary Figure 14 | Performance of Cancer-Finder trained specifically on 

hematologic tumors. Here, we evaluate the model's accuracy on four hematologic 

cancers using the leave-one-cancer-type-out strategy. Source data are provided as a 

Source Data file. 

  



 

Supplementary Figure 15 | 5-fold cross-validation of Cancer-Finder with various 

β. Source data are provided as a Source Data file. 

 

 
Supplementary Figure 16 | Sensitivity analysis on the ratio of positive to negative 

samples. Malignant or non-malignant cells (or spots) were sampled by down-sampling 

in each domain to produce a series of data with ratios ranging from 0.1:1 to 1:0.1. Then, 

5-fold leave-cells-out cross-validations were performed to assess the performance of 

Cancer-Finder (Error bars show mean ± standard deviation of these 5 validations, 

n=101,847 cells examined over 5 independent experiments). Source data are provided 

as a Source Data file. 
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