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Abstract: Breast cancer (BC) is the second most common cancer in women globally after lung cancer.
Presently, the most important approach for BC treatment consists of surgery, followed by radiotherapy
and chemotherapy. The latter therapeutic methods are often unsuccessful in the treatment of BC
because of their various side effects and the damage incurred to healthy tissues and organs. Currently,
numerous nanoparticles (NPs) have been identified and synthesized to selectively target BC cells
without causing any impairments to the adjacent normal tissues or organs. Based on an exploratory
study, this comprehensive review aims to provide information on engineered NPs and their payloads
as promising tools in the treatment of BC. Therapeutic drugs or natural bioactive compounds
generally incorporate engineered NPs of ideal sizes and shapes to enhance their solubility, circulatory
half-life, and biodistribution, while reducing their side effects and immunogenicity. Furthermore,
ligands such as peptides, antibodies, and nucleic acids on the surface of NPs precisely target BC
cells. Studies on the synthesis of engineered NPs and their impact on BC were obtained from
PubMed, Science Direct, and Google Scholar. This review provides insights on the importance of
engineered NPs and their methodology for validation as a next-generation platform with preventive
and therapeutic effects against BC.
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1. Introduction

Breast cancer (BC) is the outcome of aberrant and uncontrolled cell proliferation of
cancerous cells in the breast tissue. BC is the second most common cancer in females
and the third-leading cause of death globally [1]. BC therapy involves a multidisciplinary
approach comprising surgery as well as radiotherapy and chemotherapy as adjuvant
and neoadjuvant therapies [2]. Chemotherapy is a technique that kills cancer cells using
chemical agents. Although it is the most effective approach for cancer therapy, the cytotoxic
effects of these chemotherapy agents generate various side effects [3]. Radiotherapy also
decreases the risk of cancer recurrence and mortality. Nevertheless, it typically involves
radiation exposure to adjacent organs, increasing the risk of cardiac and lung diseases. Such
therapies may increase the risk of leukemia, especially in association with certain classes of
adjuvant chemotherapy [4]. Conversely, these therapeutic methods are often unsuccessful
in treating BC because of their adverse effects on healthy tissues and organs [5,6].

The main reason for these adverse effects and the mortality rate is the failure of thera-
peutic agents, which act not only on the tumor sites but also induce severe adverse effects
on healthy tissues and organs, causing toxicity to the individual. BC is a highly multifaceted
and heterogeneous disease and is categorized based on histopathological types. The most
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predominant BC cases are those of invasive ductal carcinoma, although other less-common
subtypes are noteworthy due to their ferociousness and clinical manifestations [7]. The
next major concern is the stage of the tumor. During cancer development, the primary
tumor occurs within the breast tissue (stage 1), and then rapidly spreads to the adjacent
tissues and lymph nodes (stage 2–3) or distant organs such as the lung, bone, liver, or
brain (metastasis, i.e., stage 4) [7,8]. Staging of the disease is clinically important. The
death rate increases as the tumor metastasizes. Moreover, BC is also categorized based on
the grade and molecular subtype, viz., luminal A and B, human epidermal growth factor
receptor 2 (HER2), and triple-negative BC (TNBC) [8]. Once the cancer metastasizes, the
effectiveness of most standard drugs is significantly low. Finding novel, effective, and
safe forms of therapy for this fatal malicious disease is thus critical. It is necessary to dis-
cover highly efficient therapeutics (the so-called “magic bullets”) which can pass through
natural barriers and differentiate between benign and malignant cells in order to target
malignant tissues. These agents “wisely” react to the complex tumor microenvironment
for an on-demand discharge of an optimum dose range [9,10].

Tumor nanotechnology has the potential to modernize cancer diagnosis and treat-
ment. Developments in protein engineering and material science have contributed to
the development of innovative nanoscale targeting strategies, providing new optimism
for BC patients. Nanoparticles (NPs), identified as pharmaceutical carriers, provide a
new juncture for drug delivery to cancer cells by infiltrating tumors deeply, resulting in
a high level of specificity to the targeted cancer cells [11–15]. Furthermore, NP treatment
minimizes destructive effects on healthy tissues and organs [16,17]. Nanotechnology has
been approved by the National Cancer Institute, which recognizes this technology as an
outstanding paradigm-shifting approach for improving the diagnosis and treatment of
BC [16].

Several therapeutic NPs, viz., Doxil®, Lipoplatin®, Onivyde®, Genexol-PM, and
Abraxane®, have already been approved and are extensively employed for BC adjuvant
therapy, with promising clinical outcomes [18–21]. NP-based drug delivery systems (DDSs)
include several valid designs with regard to the size, shape, and nature of the biomaterials
loaded with drugs, enhancing the solubility, drug stability, circulatory half-life, biodistribu-
tion, and drug release rate and reducing side effects, toxicity, and immunogenicity [22]. In
this review, we provide insights into the novel design and development of engineered NPs
and their payloads, which represent a tailored and promising tool for the treatment of BC.
Furthermore, targeting ligands can be included on the surface of NPs, precisely targeting
BC cells by attaching to the receptors on the cell surface. The tailoring of engineered NPs
may have a vital role in cancer specificity, anti-drug resistance, and anti-cancerous and
anti-metastasis effects.

2. Properties of BC Drugs

Commercial therapeutic drugs of BC can be categorized into two broad classes based
on water solubility: hydrophilic (polar) and hydrophobic (non-polar). They can also
be classified as highly charged or neutral drugs according to their electrostatic nature
(Table 1). When engineering NPs to be employed as the carrier for a specific class of
drug, it is essential to identify the behaviors and properties of the drug to achieve higher
encapsulation effectiveness with the desired discharge characteristics. Functionalized
or engineered NPs are highly attractive and auspicious candidates for DDS owing to
their distinctive sizes, tunable surface functionalities, and well-regulated drug discharge
(Figure 1).

For BC therapy, chemotherapeutic drugs are generally used either alone or in com-
bination with other drugs. Numerous investigations have been piloted to determine the
side effects of chemotherapeutic drugs both in animals and clinically [23–25]. For instance,
the use of doxorubicin for BC results in a high possibility of complications with regard to
hematopoiesis and gastrointestinal or cardiac toxicity [26–29]. Another commonly used
chemotherapeutic drug is paclitaxel, which also causes several side effects, including
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neutropenia and peripheral neuropathy [19,30]. Similarly, other commonly used drugs
for chemotherapy, such as docetaxel, cisplatin, tamoxifen, and trastuzumab, have been
reported to have many side effects, including fatigue, weight loss, peripheral neuropathy,
and nausea [24]. Thus, targeted delivery can be extremely essential in the treatment of BC,
especially during chemotherapeutic drug usage [21,31,32].
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Table 1. Cont.

Trade Name Therapeutic BC Drugs Chemical Structure References

Polar/Hydrophilic drugs
Avastin Bevacizumab Monoclonal antibody [24,42]

Erbitux® Cetuximab Monoclonal antibody [43,44]

Cytoxan or Neosar Cyclophosphamide
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Polar/hydrophilic drugs play a vital role in treating BC subtypes, and include macro-
molecules (peptides, nucleic acids, polysaccharides, and proteins) and several small molecu-
lar compounds [57,58]. For instance, hydrophilic drugs such as trastuzumab (a monoclonal
antibody) and gemcitabine (a nucleoside analogue) inhibit HER2 and TNBC, and thus
these drugs have been used to treat early-stage and metastatic BC [25,38,40,41]. However,
the effective use of hydrophilic drugs has been delayed by many setbacks, including an
impaired uptake of these active drugs by cells due to their failure to cross the hydrophobic
lipid-rich plasma membranes, poor bioavailability due to their low stability under enzyme
digestion, and their minimal half-life in the blood circulation [57,59].

To bypass these drawbacks, NPs have been actively equipped as carriers to encap-
sulate and deliver potential hydrophilic drugs. Loading efficiency is the main concern to
resolve because the full dosage needs to be increased when NPs with low drug contents
are given [60]. During the assembly of carriers, the most commonly used materials are
hydrophobic, presenting a technical hitch with regard to hydrophilic drugs owing to the
deprived miscibility between these two phases. For this reason, numerous strategies have
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been established to improve the loading efficacy of hydrophilic drugs. For instance, drug-
loading efficiency increases from 3.7% to 47.3% when 5-fluorouracil (5-FU) is replaced
with 1-alkylcarbonyloxymethyl (an amphiphilic prodrug of 5-FU) [61]. Similarly, another
study showed that adjusting the isoelectric point of a protein drug can elevate the drug-
loading efficiency [62]. Electrostatic and hydrophobic interactions between lipids and a
protein drug can also be increased to ease the assembly of protein–lipid complexes and
hence provide greater intracellular delivery [63]. Based on these alterations, the deprived
dispersion of a hydrophilic drug in NPs can result in rapid drug release. In addition, active
targeting of NPs consists of the targeting moiety (e.g., antibodies, receptor ligands, or
nucleic acids) trimming the surface of the nanocarrier to target receptors which are greatly
upregulated in BC cells as compared to the surrounding healthy cells. For example, recent
nanoformulations decorated on the surface with the anti-HER2 antibody trastuzumab and
loading doses of doxorubicin or paclitaxel present elevated cellular binding as well as
elevated uptake and intracellular distribution in HER2 + BC cells as compared to non-
decorated NPs [64,65]. Furthermore, presently novel antibody-conjugated NPs can be
active therapeutics when compared to small-molecule drug therapy. The schematic repre-
sentation in Figure 1 indicates the advantages of antibody-conjugated NPs in comparison
to antibody–drug conjugates. The antibodies on the NP surface can fix precisely to an
overexpressed receptor on target cells, overcoming many of the limitations of nude NPs,
including ineffective drug diffusion into the BC cells and the stimulation of multidrug
resistance (MDR) mechanisms [65]. Antibody-conjugated NPs are the ultimate system for
BC therapy and can effectively control drug loading and delivery in comparison to small
molecule drug treatment.

2.2. Non-Polar/Hydrophobic Drugs

The most common therapeutic BC drugs presently employed in the clinic are hy-
drophobic, presenting continuous challenges with regard to delivery to their target. Be-
cause hydrophobic drugs are water-insoluble they are incapable of crossing the water phase
(body and tissue fluids) and are unable to enter the cell membrane and intracellular targets.
Moreover, intravenous treatment can also lead to clinical side effects, including embolisms
and tissue toxicity [66]. Hence, an effective method to resolve the poor water solubility
of hydrophobic drugs is required for encapsulation using NP-based carriers. Numerous
carriers have been developed for hydrophobic drug delivery in BC therapy, including
polymer micelles and polymer NPs [16]. For instance, Manatunga and co-workers found
that hydroxyapatite (the mineral form of calcium apatite) in an aqueous medium can offer
high drug payloads, pH sensitivity, and controlled release of combined active ingredients
when encapsulated in polymer micelles [26]. NP–micelle copolymers are a carrier for
DDSs which are poorly dissolved in water (e.g., paclitaxel) and considerably increase the
concentration of drugs in the hydrophilic medium with encapsulation [38–41].

2.3. Neutral/Charged Drugs

Therapeutic BC drugs prepared based on DNA, miRNA, and siRNA are distinct types
with the greatest densities of charges. They serve as an authoritative molecular therapy for
BC [67]. These drugs are hydrophilic, show poor uptake by the cell, and break down faster
in the physical environment. Furthermore, fast clearance occurs during systemic treatment
with active drugs due to renal infiltration and the mononuclear phagocyte system. Effective
delivery of these highly charged drugs via carriers is still the main hindrance to attaining
therapeutic benefits. Henceforth, this approach represents the least important clinical
achievement in gene therapy today [55,56].

MicroRNAs play a vital role in BC, and earlier results have also indicated that miR-21
is a promising biomarker in the diagnosis and prediction of BC [68]. Nowadays, DNA,
miRNA, and siRNA drugs involve the electrostatic attraction between NPs carriers and
greatly charged nucleic acids. They are negatively charged molecules under normal condi-
tions and thus attract positively charged carriers from polymeric NPs and liposomes (which
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are cationic building blocks), resulting in greater loading efficiency [69,70]. Altınoglu and
his colleagues established a positively charged micelle system comprising amphiphilic
biopolymers, and successfully immobilized siRNA for delivery to the cell [71]. Regrettably,
NPs can generate various glitches in connection with toxicity and inflammatory immune
reactions [72]. The direct binding of miRNA and DNA drugs to the surface of NPs carriers
is an effective strategy for BC therapy that is well established [73]. By immobilizing nucleic
acids on the surface, the complications of the loading process can be reduced relative to the
method of encapsulation. For instance, Chan and colleagues firstly coated Au-NPs with a
layer of DNA comprising constructed sequences. Using the carrier complex of DNA-coated
Au-NPs, they generated immobilizing target DNA or siRNA of interest, providing effective
DDSs for BC treatment [74].

3. NPs for DDS

NPs generally range in size from 1 to 100 nm and have either active or passive targeting
capability, with a surrounding layer of several organic or inorganic coatings that determine
the properties of NPs. These properties can increase the drug concentration inside the
tumor and reduce systemic toxicity in healthy tissues. Several investigations have been
performed to establish the benefits of NPs in DDSs for BC therapy with regard to water
dispersion, biocompatibility, biodegradability, stability, half-life in the portal circulation,
renal clearance, accumulation, and uptake [11,12]. Hence, DDSs are of key importance for
understanding the responses to NPs by living systems at the level of cells and tissues. For
instance, liposomes are bi-layered phospholipids that can encapsulate both hydrophilic and
hydrophobic drugs. Indeed, engineered liposomes can preserve the drugs until they are
disturbed, showing that liposomes can promote the sustained delivery of drug formulation.
Moreover, they accumulate in cancer cells and increase the selectivity of the drug function,
leading to diminished toxicity [75] (Figure 2).
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Figure 2. The mechanisms of engineered liposomes loaded with therapeutic BC drugs on breast tumors. Passive tissue
targeting is succeeded by the extravasation of NPs through increased vascular permeability of the tumor (EPR effect). Active
cellular targeting can be attained by functioned liposomes of NPs with ligands that promote cell-specific recognition and
attachment. Based on the cellular penetration, NPs can release their contents close to the target cells.

The enhanced retention and permeability (EPR) effect plays a key function in passively
moving the NPs into BC tissues. Angiogenesis provides leaky and faulty blood vessels near



Pharmaceutics 2021, 13, 1829 7 of 32

the tumor spot, resulting in the EPR effect [76]. NPs, along with conventional medication,
provide greater benefits due to their passive targeting. Furthermore, the treatment of NPs
results in less complications and is auspicious in overwhelming MDR in tumor cells, which
is the main issue in BC therapy nowadays [77]. The FDA has approved many liposomal
anticancer drugs, including doxorubicin, which is a long-lasting form of encapsulated
doxorubicin with liposomes that treats BC [75]. Considering this, the engineered liposome
formulation contains polyethylene glycol (PEG) coated-liposomal doxorubicin, which
facilitates the transport doxorubicin into tumor sites. Presently, engineered liposomal
doxorubicin is employed to treat various diseases, including metastatic BC, AIDS-related
Kaposi’s sarcoma, ovarian cancer, multiple myelomas, and other cancers [78].

3.1. In Vitro DDS

Although screening, diagnosis, and treatment methods have improved in the last
decade, MDR remains a great challenge. Studies have indicated that BC resistance is
generally related to several signaling pathways involving hormones, receptors, survival,
apoptosis, and the stimulation of efflux pumps. The primary cause of chemotherapy failure
in BC is chemoresistance. Tumor cells can trigger numerous mechanisms to escape the
cytotoxic effects of drugs. Various mechanisms of MDR have been explicated, viz., changes
in cell-cycle checkpoints, the loss of apoptotic processes, the restoration of injured cellular
targets, and decreased accumulation of the drug. Decreased drug accumulation is due to
the overexpression of one or more ATP-dependent efflux pumps, such as P-glycoprotein or
mutated drug transporters [79].

The in vitro delivery of NPs is a key step in their effective function in the cell. NPs act
as a drug carrier which is initially appraised at the cellular level prior to their investigation
in vivo at the level of various tissues and organs. Conversely, the collection of adequate
information on NP–cell interactions can allow us to tailor the properties of NPs, resulting
in greater delivery in vivo and effective BC treatment (Table 2).

Table 2. Chemoresistance mechanisms of BC cells and their treatment by NP regimen.

Drug Drug Uptake
Pathway Chemoresistance Mechanisms Treatment with Nps References

Anthracyclines

Passive
diffusion

Doxorubicin-resistant MCF7 cells
are more condensed, with low

permeability on the plasma
membrane. The overexpression of

fatty acid synthase limits
doxorubicin uptake through the
high amount of palmitic acid in
MCF7 cells. Statins reduce the

lipid content and
membrane rigidity

Photosensitizer nanoparticles,
polyhydroxybutyrate-coated
magnetic nanoparticles, and

3-aminopropoxy-linked quercetin
loaded with doxorubicin have

synergistic effects on a
doxorubicin-resistant MCF-7

cell line

[80–82]

Transporters
Overexpression of organic cation

transporter 6 leads to greater
resistance to doxorubicin

The loading of colchicine and
coumarin-6 in oil-core carriers
protects doxorubicin-resistant

BC cells

[83,84]

Endocytosis

Non-specific, adsorptive
pinocytosis is increased in BC cell

lines which are resistant
to doxorubicin

Encapsulation of polymeric
prodrug containing hyaluronic

acid reduces the resistance
to doxorubicin

[85]
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Table 2. Cont.

Drug Drug Uptake
Pathway Chemoresistance Mechanisms Treatment with Nps References

Taxanes

Passive
diffusion

Extracellular pH triggers a high
migratory capacity and

chemoresistance to paclitaxel and
doxorubicin in MCF7 cells. The

addition of cholesterol to a plasma
membrane reduces paclitaxel entry

into BC cells

Polymer NPs containing
poly(γ-glutamic

acid)-g-poly(lactic-co-glycolic acid)
(γ-PGA-g-PLGA) loaded with

doxorubicin and cholesterol-PEG
form a type of combination

therapy against MDR BC cells

[86]

Endocytosis

Down-regulation of Plastin 3
increases the sensitivity of

MDA-MB-231 cells to paclitaxel by
an endocytosis mechanism

Surfactin loaded with doxorubicin
reverses MDR BC cells [87]

Platinum-based
drugs

Passive
diffusion

Levels of lipid bilayer constituents
such as cholesterol,

sphingomyelin,
phosphatidylglycerol, and

phosphatidylserine are elevated
and those of phosphatidylcholine
and phosphatidylethanolamines

are decreased in cisplatin-resistant
BC cells. Based on the membrane
molecular dynamics, lipid content

and cholesterol levels reduce
diffusion and permeability.

Fucoidan and mesoporous
platinum NPs and photothermal

nanocarriers can be promising
drugs for treating MDR BC cells

[88,89]

NPs normally encounter a cell and are rapidly adopted through endocytosis. Later,
they transport to other cell organelles such as the nucleus, mitochondria, endosomes,
lysosomes, Golgi apparatus, and endoplasmic reticulum. This transport usually facilitates
the movement of vesicles along the network of the lysosome. During intracellular transport,
nanocarriers undergo rapid degradation and release their payload into the organelles.
Remarkably, nanocarrier surfaces can be activated with a ligand to target an exact cell
organelle. Nowadays, endocytic-mediated pathways are very common, as these approaches
overcome chemoresistance to drug uptake in BC cells.

For the effective delivery of BC drugs, the nanocarriers require a design enabling
to them circumvent the network of the lysosome and enter the cytoplasm, which is the
distinctive working site for most BC drugs. Hence, most nanocarrier drugs are designed
for drug-specific targeting, cell interaction, and direct uptake into BC cells [90]. Liposomes
symbolize a class of DDS vehicles that are frequently employed to disable MDR in BC
treatment. Recently, epirubicin encapsulated by propylene glycol liposomes (EPI-PG-
liposomes) was established as being effective in overcoming MDR in BC [91]. Another
recent study has also demonstrated that engineered liposomes using arginine8-glycine-
aspartic acid (R8GD) encapsulated with daunorubicin and emodin selectively deposit at
the tumor site, hence demonstrating a distinct anti-BC effect [92]. Hence, the grouping
of targeted engineered liposomes with chemotherapeutic drugs can lead to potential
treatments for BC (Figure 3).

3.2. In Vivo DDS

In vitro studies on DDSs are largely focused NP–cell interactions. However, in vivo
studies mainly focus on how to transfer the engineered NPs from the infusion site to the
target lesion. After administration into the body, the engineered NPs reach the target
cells and accrue there. The transported NPs are now connected to the immune response,
with subsequent biodistribution, biodegradation, and clearance at the tissue, organ, and
system levels [93]. Practically, NPs that act as the carrier of a DDS should have the
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following features: (a) biodegradable constituents; (b) targeting efficacy to confirm the
selective accumulation at the target lesion with only minimal dosages in adjacent normal
tissues/organs; (c) detoxification from the body within a short time span; and (d) features
that minimize the development of resistance and immune-related noxiousness [94,95].
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The most commonly employed route for therapeutic NP administration is by intra-
venous injection, which circumvents the obstacles in the epithelial absorption by directly
entering into the blood circulation [96]. After administration, the NPs directly undergo
clearance via various body systems, viz., the mononuclear phagocyte system, immune
systems, kidneys, liver, spleen, and lungs [97]. Physico-chemical properties and behaviors
of the NPs can potentially be affected during circulation, targeting, and clearance [98].
For instance, the smaller-sized NPs (<8 nm) can be directly filtered by the kidneys, and
larger-sized NPs (8 nm and above) can either deposit in a lesion or be cleared by the
mononuclear phagocyte system as they cannot undergo glomerular filtration [99–101].

Hydrogels are 3D, cross-linked webs of hydrophilic polymers capable of retaining
water or physiological fluids in large quantities [102]. Naturally present polymers (alginate,
chitosan, collagen, dextran, gelatin, and hyaluronic acid) and synthetic polymers (poly (2-
hydroxyethyl methacrylate), poly (2-hydroxypropyl methacrylate), poly (ethylene oxide),
poly (N-isopropyl acrylamide, and poly (vinyl alcohol)) are employed for the preparation
of hydrogels [103]. Nowadays, tissue-engineered 3D cancer models using biomimetic
hydrogels as cellular scaffolds provide an appropriate in vitro summary of the native
tumor microenvironment, with huge importance for use in BC research [104]. Poly (PEG)-
fibrinogen can be used as an appropriate biosynthetic hydrogel for the 3D culture of various
BC cell lines, including MCF7, SK-BR-3, and MDA-MB-231. Fibrinogen-based hydrogels
ease the 3D culture of BC cells and analysis of various cellular behavior in response to
different characteristics of the matrix. Hence, polymeric hydrogel-based cancer models can
theoretically be employed in cancer biology and anti-cancer drug-testing applications [105].
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Positively charged NPs can cause systemic toxicity due to hemolysis and platelet ag-
gregation. However, NPs are rapidly discarded by the mononuclear phagocyte system [98].
Neutral and negatively charged NPs have the longest half-life in circulation. Transform-
ing the surface chemistry of NPs may change hydrodynamic properties, including size,
surface charge, and binding capacity. Although full clearance is expected when the action
is accomplished, the NPs must circumvent rapid clearance to attain the ideal targeting
efficacy. Hence, the half-life of NPs in circulation should be extended to permit them to
flow near the lesion many times, resulting in a higher chance of NPs being deposited at the
lesion [96].

Therapeutic NPs directly pass into the circulatory system, diffusing through the
vascular walls into the target lesion and discharging the payload. Owing to their huge
size, NPs cannot diffuse into endothelial cells. However, intracellular vessels in the tumor
site cover leaky walls, permitting NPs with the precise sizes to diffuse effectively [106].
Due to the absence or dysfunction of the lymphatic system at the tumor site, inadequate
drainage generally eases the deposition of NPs in the BC tissue [107]. This phenomenon
is usually achieved through EPR in passive tumor targeting. Based on this effect, both
macromolecular drugs and NPs can target BC more powerfully as compared to small-
molecule drugs [88,89]. The clearance of the drug with NPs normally occurs through
various organs such as the liver, kidneys, lungs, spleen, as well as the complement and
immune systems. This is a natural mechanism that aids in detoxifying and regulating the
body. A minor quantity of intravenously administered NPs can be discarded by the blood
within few minutes to hours as the force of the clearance is strong (Figure 4).
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Figure 4. Biodistribution and clearance of NPs. NP uptake in the breast usually occurs with NP sizes of 30–200 nm;
smaller-sized NPs can be diffused quicker within the targeted tumor site. The clearance of NPs is ensured through the
splenic infiltration, hepatobiliary, mononuclear phagocyte, and renal systems. The solid arrows indicate direct relationships,
while dashed arrows specify possible relationships. Intravenously administered NPs reach the targeted breast tumor
through the systemic circulation. If the size of the NPs is smaller than 8 nm, they can be rapidly cleared within hours to days
by the renal system. Large-sized non-degradable NPs are possibly taken up and recollected by the mononuclear phagocyte
systems. If mononuclear phagocyte systems degrade the NPs, then they may escape sequestration and reappear in the
portal circulation for renal or hepatobiliary clearance.
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This clearance is quick with either active or passive mechanisms, resulting in a ran-
dom supply between the tumor site and adjacent organs [96]. Furthermore, they can be
dynamically targeted by the immune system through antibodies. Studies have shown that
about one-quarter of patients with BC generate anti-PEG antibodies after treatment with
PEGylated NPs [29,108,109]. The rapid clearance can be histrionically balanced with an
anticipated targeting effect; however, this clearance is a noteworthy issue for the advance-
ment of nano-drug therapy [97]. As most therapeutic BC drugs are highly noxious, they
are primarily employed in the tumor region and then purged within a short time span to
reduce side effects. In NP-based treatment, increased targeting efficacy and clearance of
the NP carriers and an improved delivery profile of the payloads will result in in good
biodistribution and pharmacokinetics. Optimal biodistribution and pharmacokinetics can
be analyzed using the concentration of NPs distributed to the tumor region within a unit
of time. While strategies have been achieved to enhance or reduce the deposition of NPs,
there are still issues in deposition or clearance at the tumor sites [94,110,111].

Recent clinical investigations have demonstrated that age, sex, body composition, and
occurrence/nonexistence of a cancer site in the breast can change the pharmacokinetics of
PEGylated liposomal agents [22,55,112]. A pilot study connecting PEGylated liposomal
doxorubicin and PEGylated liposomal CKD-602 (topoisomerase I inhibitor) showed that
the clearance of drugs was poorer in female patients with BC aged over 60 years, possibly
confirming a reduced clearance of drugs encapsulated in PEGylated liposomes [113].
Population-based pharmacokinetic studies further suggested that patients with metastatic
BC have a higher clearance rate during treatment with S-CKD602 [114].

Another important subject in nanomedicine is the biodegradation of NPs in targeted
tissues. NPs are normally fragmented into minor compounds and release the payload. To
this end, biodegradable NPs have been established using many natural polymers such
as chitosan, poly (lactic acid), poly (glycolic acid), poly (lactic-co-glycolic acid), gelatin,
poly (alkyl cyanoacrylates), and poly (ε-caprolactone) [115,116]. Numerous therapeutic BC
drugs, including paclitaxel, cisplatin, docetaxel, epirubicin, raloxifene, 9-nitrocamptothecin,
tamoxifen, cyclophosphamide, triptorelin, and doxorubicin have been encapsulated with
biodegradable NPs [20,33,117,118]. To confirm biodegradability and the therapeutic devel-
opment of functional drug release, various experiments have been conducted both in vitro
and in vivo [119]. These small molecules undergo catabolism in the body [99]. While they
have biodegradable fragments, these NPs still exhibit certain toxic effects due to their
nonspecific deposition and toxic payloads to healthy tissues [120]. Since the conception
of NP therapy was conceived in 1955, various classes of nanocarrier systems have been
established. Most of the NPs remain constrained to benchtop studies, and some drugs are
either on the market or are presently in different phases of clinical pilot studies (Table 3).

Table 3. NP-based therapeutics in clinical use and under clinical investigation.

Therapeutic BC Drug Nanocarriers Dose and Duration Phase of
Development BC Types References

Paclitaxel Albumin-bound NPs 300 mg/m2 for 3 weeks Phase II Metastatic BC [121]

Paclitaxel Albumin-bound NPs 100 or 125 mg/m2 for
1 week

Phase II Metastatic BC [122]

Paclitaxel Albumin-bound NPs 260 mg/m2 for 3 weeks Phase III Metastatic BC [117]

Paclitaxel Albumin-bound NPs
300 mg/m2 for 3 weeks
or 100–150 mg/m2 for

1 week
Phase IIb Metastatic BC [31]

Docetaxel Albumin-bound NPs 100 mg/m2 for 1 week Phase IIb Metastatic BC [31]
Paclitaxel with

cyclophosphamide
and trastuzumab

Albumin-bound NPs 100 mg/m2 for 1, 8, and
15 days

Phase II HER2-positive BC [23]

Paclitaxel with gemcitabine,
and trastuzumab Albumin-bound NPs 100 mg/m2 for 1 and 8,

every 3 weeks for 6 cycles
Phase II HER2-positive BC [38]

Paclitaxel withpegfilgrastim Albumin-bound NPs 260 mg/m2 for 3 weeks Phase I Metastatic BC [39]
Paclitaxel with bevacizumab

and gemcitabine Albumin-bound NPs 150 mg/m2 on days 1
and 15 of a 28-day cycle

Phase II HER2-negative
metastatic BC [40]

Paclitaxel with or
without trastuzumab Albumin-bound NPs 125 mg/m2 infusion

weekly for 3 of 4 weeks
Phase II HER2-positive

metastatic BC [41]
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Table 3. Cont.

Therapeutic BC Drug Nanocarriers Dose and Duration Phase of
Development BC Types References

Paclitaxel with doxorubicin
and atezolizumab Albumin-bound NPs 125 mg/m2 for 12 weeks Phase I TNBC [27]

Paclitaxel with durvalumab Albumin-bound NPs 125 mg/m2 for 4 weeks Phase II TNBC [123]
Paclitaxel with ipatasertib Albumin-bound NPs 80 mg/m2 for 12 weeks Phase II TNBC [124]

Paclitaxel with bevacizumab Albumin-bound NPs 100 mg/m2 for 28 days Phase II TNBC [20]
Paclitaxel with carboplatin

and bevacizumab Albumin-bound NPs 100 mg/m2 for 28 days Phase III TNBC [20]

Paclitaxel with
bevacizumab, erlotinib Albumin-bound NPs 150 mg/m2 for 21 days Phase II TNBC [20]

Paclitaxel with capecitabine Albumin-bound NPs 260 mg/m2 for 28 days Phase II Locally advanced BC [20]
Paclitaxel with

grastuzumab, vinorelbine Albumin-bound NPs 80 mg/m2 for 4 weeks Phase II Locally advanced,
HER2-positive BC [20]

Paclitaxel with carboplatin,
bevacizumab, doxorubicin,

cyclophosphamide
Albumin-bound NPs 150 mg/m2 for 4 weeks Phase II Locally advanced,

HER2-negative BC [20]

Paclitaxel with trastuzumab Albumin-bound NPs 100 mg/m2 for 4 weeks Phase II Locally advanced,
low HER2 BC [20]

Paclitaxel with bevacizumab,
doxorubicin, and

cyclophosphamide
Albumin-bound NPs 80 mg/m2 for 4 weeks Phase II

HER2-negative
locally advanced BC
or inflammatory BC

[24]

Doxorubicin with
cyclophosphamide

and mangiferin
Gold NPs 60 mg/m2 for 4 weeks Phase III Metastatic BC [11]

Paclitaxel Liposome 75 mg/m2 for 21 days Phase III Metastatic BC [125]
Paclitaxel with

cyclophosphamade Liposome 60 mg/m2 for 21 days Phase III Metastatic BC [126]

Doxorubicin with
cyclophosphamide, paclitaxel,

and bevacizumab
Liposome 30 mg/m2 for 28 days Phase II TNBC and

ER/PR + BC [3]

Paclitaxel Micellar NPs 150 mg/m2 for 21 days Phase II Metastatic BC [127]

Paclitaxel Micellar NPs or
albumin-bound NPs 260 mg/m2 for 3 weeks Phase II Metastatic BC [128]

Doxorubicin with carboplatin Non-PEGylated liposome 20 mg/mg/m2 infusion
twice weekly for 3 weeks

Phase III
TNBC,

HER2-positive,
luminal B subtypes

[129]

Doxorubicin with cisplatin,
5-fluorouracil and

trastuzumab
Non-PEGylated liposome 60 mg/m2 for 21 days Phase II ER-positive and

HER2-positive BC [33]

Doxorubicin with
cyclophosphamide, docetaxel,

and trastuzumab
Non-PEGylated liposome 60 mg/m2 for or 28 days Phase II ER-positive and

HER2-positive BC [25]

Cytocidal cyclin G1 construct Pathotropic NPs 80 mg/m2 for 4 weeks Phase I/II Metastatic BC [130]
Doxorubicin PEGylated liposome 50 mg/m2 for 4 weeks Approved Metastatic BC [18]
Doxorubicin PEGylated liposome 25 mg/m2 for 28 days Phase II Metastatic BC [131]

Doxorubicin with vinorelbine PEGylated liposome 40 mg/m2 for 28 days Phase II Metastatic BC [29]
Doxorubicin

with gemcitabine PEGylated liposome 25 mg/m2 for 3 weeks Phase III Metastatic BC [132]

Doxorubicin
with capecitabine PEGylated liposome 45 mg/m2 for 4 weeks Phase II Metastatic BC [133]

Doxorubicin
with bevacizumab PEGylated liposome 50 mg/m2 for 3 weeks Phase I Metastatic TNBC [42]

Doxorubicin PEGylated liposome 50 mg/m2 for 4 weeks Phase II Metastatic TNBC [112]
Doxorubicin PEGylated liposome 25 mg/m2 for 21 days Phase I-III Metastatic TNBC [134]
Doxorubicin PEGylated liposome 25 mg/m2 for 28 days Phase I-III HER2-positive BC [135]

Paclitaxel with doxorubicin PEGylated liposome 30 mg/m2 for 21 days Phase III Metastatic BC [109]

Doxorubicin
with trastuzumab PEGylated liposome 40 mg/m2 for 28 days Phase II

metastatic BC
patients with
HER2/neu

over-expressing BC

[118]

Paclitaxel Polymeric micellar NPs 300 mg/m2 for 4 weeks Phase II Metastatic BC [136]

Paclitaxel Polymeric micellar NPs 135–390 mg/m2 for 3
weeks

Phase I Metastatic BC [137]

Docetaxel Polymeric NPs 20–75 mg/m2 for 21 days Phase I Metastatic BC [32]
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Antibody–drug conjugates are an evolving class of therapeutic agents that are chang-
ing the setting of targeted chemotherapy in BC. These conjugates combine the target speci-
ficity of monoclonal antibodies with the anti-cancer activity of small-molecule treatment.
Numerous antibody–drug conjugates have been recently approved for the BC therapy,
including brentuximab vedotin (Adcetris®), gemtuzumab ozogamicin (Mylotarg®), ino-
tuzumab ozogamicin (Besponsa®), and trastuzumab emtansine (Kadcyla®) [138,139]. Shah
and his team developed and validated a pharmacokinetic or pharmacodynamic model of
antibody–drug conjugates using brentuximab vedotin, which is a model for understanding
and envisaging the pre-clinical to clinical translation of antibody–drug conjugate effec-
tiveness [140,141]. Several researchers have validated the pharmacokinetic model using
in vitro and in vivo studies for antibody–drug conjugates and unconjugated drugs based
on drug concentrations, preclinical tumor growth inhibition data, drug pharmacokinetics in
patients, and the prediction of clinical responses [142–144]. Similarly, Li and his colleagues
gathered the outcomes of eight clinical investigations to evaluate the ethnic sensitivity of
trastuzumab emtansine and the clinically suggested dose of 3.6 mg/kg [145]. They em-
ployed different strategies to investigate the data based on comparative pharmacokinetics,
non-compartmental analysis, and population-pharmacokinetic analysis of trastuzumab
emtansine in Japanese patients as compared to the global population [145].

Furthermore, a retrospective analysis of inotuzumab ozogamicin was also developed
and correlated preclinical and clinical pharmacokinetic or pharmacodynamic data [146].
Based on the findings, outcomes suggested that improved pharmacokinetic or pharmacody-
namic models connected with therapeutic can predict drug release, exposure, and efficacy,
and avert toxic or unsuccessful antibody–drug conjugates from entering or remaining on
the market.

4. Designing of Engineered NP Carriers

Nanomedicine has the potential to evade various issues in the treatment of traditional
formulations. Noteworthy strides have been made towards the application of engineered
NPs for BC therapy with high sensitivity, specificity, and efficiency. The engineering of
NPs primarily requires various classes of chemicals with extensive structures, sizes, and
compositions [147,148]. In recent years, many techniques in nanotechnology have been
developed using novel biomaterials and ligands to achieve treatments with little or no
toxicity. For instance, physicochemical properties of NPs such as size, geometry or shape,
composition, physical and chemical structure, charges on the surface, ligand binding, and
mechanical effects can be engineered to advance their performance in vivo [101]. One
fascinating example was established through the use of PEGylation, conjugation, and
NP-loaded liposomes for BC diagnostics and therapeutics [149]. These techniques are
feasible for reducing their deposition and toxicity in major organs to a satisfactory level by
elevating their half-life in the circulation [108].

4.1. Organic/Inorganic Nanocarriers

Based on chemical requirements, NPs are classified as organic or inorganic. Organic
NPs (macromolecular and lipid-based nanocarriers) are characterized by higher biocom-
patibility and biodegradability, with manifold activation and function of the drug on their
surface. Inorganic nanoparticles (carbon, silica, quantum dots, and metallic NPs) exhibit
high stability, with intrinsic and visual properties appropriate for theranostics. The most
investigated types are metallic NPs (gold, silver, and iron oxide) that show distinctive
properties (optical and electronic), and aid in cancer imaging [150]. Based on the stability
pattern, therapeutic BC drugs are mostly conjugated on their surface. They can be degraded
and exchange dynamics rapidly in vivo. Hybrid NPs occupy both organic and inorganic
classes, improving the biocompatibility, biodegradability, and stability of the NPs (Figure 5).
The application of inorganic NPs in therapy is inadequate due to their low biodegradability.
Mesoporous inorganic NPs are typically biodegradable, and silica-based NPs enable us to
preserve drugs within a porous morphology with physicochemical properties [151].
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The large organic subfamily comprises macromolecular nanocarriers, both synthetic
(polylactate derivatives, dendrimers, fluorescent organic NPs) and natural (protein, nucleic
acid, ferritin, and polysaccharide-based NPs), with greater stability and several free func-
tional groups, resulting in greater drug-loading capability [147]. Due to these functional
characteristics, increasing attention is being paid to nanocarriers in BC therapy. Lipid-
based NPs are also an important class in clinical investigation due to their noteworthy
biocompatibility [152]. Lipid-based NPs comprise monolayer (micelles) or bilayer (lipo-
somes) nanocarriers that can carry a wide range of materials with diverse physicochemical
functions. The lipid bilayer of liposomes can be implanted with hydrophobic drugs, while
hydrophilic drugs can be captured either in the aqueous core of liposomes or are exhibited
on the surface [153]. Nevertheless, lipid-based NPs still have numerous issues, including
instability and poor loading capacity, which lead to drug leakage. Novel hybrid NPs
have been established to conjugate with subclasses. Examples include solid–lipid, hybrid
polymer–lipid, and hybrid organic–inorganic NPs [154,155].

4.2. Natural/Synthetic Nanocarriers

Natural products are often attractive due to their abundance and higher biocompat-
ibility, as well as the capacity adapt through biochemical mechanisms [156]. Naturally
occurring substances offer many benefits over their synthetic counterparts. Natural bioac-
tive compounds encapsulated in nanocarriers can result in increased in vivo stability and
water solubility, a longer circulation time of the natural product in the blood, improved
biodistribution and targeting of BC cells, and controlled and sustained drug release. They
are considered potent antioxidants with closer proximity and positive effects on cancer-
specific pathways, with reduced side effects [157]. Natural therapeutic drugs accumulate
more appropriately for longer at the tumor site through active or passive targeting of the
breast tumor tissue [158]. Several in vitro and in vivo BC model studies were established
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and validated the antitumor functions of nano-encapsulated phytochemicals (Table 4).
Furthermore, experimental studies were established using liposomes, polymers, magnetic
NPs, lipid-based NPs, and protein-based NPs, confirming the potential effects of plant-
based natural products for BC therapy. The association of NPs with recognized plant-based
antitumor compounds has been considered a promising method to reduce tumor growth
and their adverse effects [159].

Natural materials can be rapidly metabolized and removed by the body system
through hydrolytic or enzymatic degradation [158]. The most common issue with natural
products is that of the immune response, which can readily occur upon administration
into the body. This issue is due to the protein-derived materials; however, the response is
often less severe with the administration of polysaccharide (chitosan)-derived NPs [160].
This immunogenic effect can be minimized by either chemical alteration or purification to
eliminate the immunogenic constituents [161].

Presently, drug delivery takes place using NP-based-synthetic substances, as they
allow an appropriate control over the physicochemical nature of the nanoproducts. NP-
based synthetic substances are stable, safe, biologically inert, and are in circulation for
a longer time, improving the distribution of therapeutic BC drugs to the tumor sites.
The NPs can stimulate the generation of a corona of plasma proteins near the surface.
Thus, extremely charged NPs are engulfed more rapidly by the mononuclear phagocyte
system than neutrally charged NPs [162,163]. Hence, using synthetic nanocarriers, the
hydrophobicity and surface charges of NPs can be suitably adjusted, improving their
half-life in the circulation. Furthermore, their surface functions can be quickly engineered
to improve their conjugation to the targeted receptors.

Table 4. Anti-BC effects of natural product-based nano-formulations.

Drug Nanocarriers Natural
Compound Size The Outcome of the Study BC

Types References

Doxorubicin
Poly-glycerol-malic
acid-dodecanedioic

acid
Curcumin ~110–218 nm

Significantly increased cytotoxicity,
apoptotic cell death, and cellular

intake compared to free drug in MCF-7
and MDA-MB-231

Luminal
BC and
TNBC

[164]

Doxorubicin Silver NPs Andrographolide ~450 nm

Significantly increased cytotoxicity,
apoptotic cell death, and cellular
intake compared to free drug in

MDA-MB-453

TNBC [158]

Adriamycin Silver NPs Camellia
sinensis ~220 nm

Significantly increased cytotoxicity,
apoptotic cell death, and cellular

intake compared to free drug in MCF-7

Luminal
BC [165]

Doxorubicin Folate and chitosan Ursolic acid ~420 nm Anticancer effects in an MCF-7
xenograft mouse model

Luminal
BC [160]

Doxorubicin

Lipid carriers
(precirol® ATO 5,

vitamin E,
poloxamer 188,

Tween 80)

Sulforaphane/
Isothio-
cyanate

145 nm Anticancer effects in an MCF-7
xenograft mouse model

Luminal
BC [159]

Doxorubicin

Hydrophobically
modified glycol
chitosan with 5

beta-cholanic acid

Camptothecin 280–330 nm Anticancer effects in an MDA-MB-231
xenograft mousemodel TNBC [166]

Doxorubicin Phytosome Quercetin ~85 nm Anticancer effects in an MCF-7
xenograft mouse model

Luminal
BC [161]

Doxorubicin PEGylated
liposome

Gambogic
acid ~107 nm

Anticancer effects in an
MDA-MB-231 orthotopic
xenograft mouse model

TNBC [167]
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4.3. Geometric Morphometry

Nanomedicine, as a discipline that involves the fields of chemistry, engineering, and
material science, utilizes the unique features of NPs to design improved therapeutic BC
interventions. Size, shape, density, and consistency are the key factors to be considered
for not only DDSs but also for the engineering of NPs, as these factors regulate in vivo
drug loading, stability, circulation, targeting capability, drug release, biodegradability, and
toxicity [168]. For instance, particles that are smaller in size have a higher likelihood of
accumulation during incubation and storage in vitro, and characteristically have a longer
half-life in circulation in vivo [169]. Several investigations have confirmed that NPs display
more benefits over micrometer-sized fragments in the range of 0.1–100 µm for DDSs [170].
The biodegradation of polymer NPs can be potentially affected by their size due to rapid
degradation products.

The shape of NPs is also equally significant in the use of DDSs. Spherical NPs are
generally a worthy candidate for DDSs. In addition, the morphology of anisotropy can also
offer greater productivity due to their higher ratios between surface area and volume. They
permit the nanocarrier to assume an encouraging shape for attachment to the cell through
sharp ends and corners. Through these mechanisms NPs can cross cell membranes, and
have been subjected to a wide range of investigations [171,172].

4.4. Surface Properties

The surface of the NPs represents another key factor determining the drug-loading
efficacy, release profile, half-life in circulation, tumor targeting, and drug clearance. In fact,
NPs generally have a hydrophilic surface to prevent protein adsorption and hence avoid
uptake by the immune system [173]. This mechanism is generally achieved by coating the
surface of NPs with a hydrophilic polymer (PEG), impacting toxicity, immunogenicity, and
biodistribution [174].

The surface charge of NPs is often employed based on the zeta potential. It is de-
termined according to the electrostatic potential of NPs, composition, and the medium
used. Charged NPs with a zeta potential greater than 30 mV are indicated to be stable in
suspensions, and these surface charges can generally avert the particles from aggregation.
Furthermore, the surfaces of cells and blood vessels include several negatively charged
ions, which resist negatively charged NPs. When the surface charge of NPs is higher, they
can be hunted by the immune system, resulting in a higher clearance of NPs. Thus, the
surface charge has a crucial role in minimizing the generic interactions between NPs and
the immune system, averting NP loss in undesired settings. Surface hydrophilic PEG chains
capsulated with NPs are frequently used to minimize generic interactions. PEGylation is
considered to shield NPs such as liposomes, polymer NPs, and micelles from premature
clearance during circulation. Various studies have suggested that PEGylated liposomal
doxorubicin shows a prolonged half-life in the circulation and elevated stability, which is
suggested to be linked to improved BC treatment efficacy [42,112,131–133].

Polysaccharides represent another natural surface polymer and are frequently used
with NPs. They have been extensively employed in several DDSs and in tissue engi-
neering due to their improved biocompatibility and accessibility, as well as their simple
changeability. Dextran, chitosan, hyaluronic acid, fucoidan, and heparin have been em-
ployed as standard stealth-coating materials in NPs for BC therapy [86,175]. NPs coated
with polysaccharides have more competent cellular uptake than other NPs due to their
specific attachment with various receptors on the surface of the BC cells [176]. Hence,
polysaccharides have received much attention in the field of nanomedicine.

4.5. Ligands

Several methods and tools are presently accessible to shield NPs for the active target-
ing of BC cells. Previously, monoclonal antibodies were employed to target epitopes on the
cell surface; however, the widespread screening of peptide and aptamer archives has sig-
nificantly extended the number of ligands available for targeted BC therapy [177]. Various
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ligands are presently employed, viz., antibodies, peptides, aptamers, oligosaccharides, and
small molecules, and can precisely identify and attach to an overexpressed target on the
surface of the cell [76,175,176,178]. This novel targeting mode involves a type of molecular
recognition that initiates the binding of the ligand receptor. This conjugation allows the NPs
to fix to the surface of the tumor cell selectively. Earlier studies have also confirmed this po-
tential binding and validated these NPs as being effective in vitro and in vivo [80–84]. For
instance, when attaching to a targeting ligand, the NPs generally demonstrate advanced
internalization and are subjected to receptor-mediated endocytosis [16,43]. Based on strong
conjugation with ligand, the binding affinity increases and thus promotes more effective
receptor-mediated endocytosis.

Monoclonal antibodies are extensively employed as targeting ligands due to their high
attaching affinity and specificity for targeting BC cells, as well as their easy accessibility.
Numerous investigations have been performed using monoclonal antibodies that conjugate
with all families of NPs, such as superparamagnetic iron oxide nanoparticles [179], quantum
dots [180], liposomes [3], and silver nanocages [158], to contribute BC-specific targeting
capacity. Using bioengineering, the monoclonal antibodies edit the redundant parts of the
single-chain variable fragments, reducing the size with respect to the original antibody
as well as the immunogenicity [181]. This chimeric antigen receptor-engineered T-cell
is a promising tool and has extended to the treatment of other cancers, including B-cell
leukemia and lymphoma [181].

Other noteworthy ligands are aptamers and peptides, which are characterized by
feasible targeting methods with numerous advantages. The use of peptides shows nu-
merous advantages, including lower molecular weight, tissue diffusion potential, loss
of immunogenicity, ease of construction, and relative flexibility in chemical conjugation
methods [182]. Similarly, aptamers are synthetic nucleic acid oligomers that can provide
multifaceted three-dimensional structures that firmly bind to surface markers with high
specificity [183]. Recently, a double aptamer–NP conjugate-based complex and adenosine
triphosphate aptamer-conjugated CdTe quantum dots showed high potency for the efficient
detection, monitoring, and treatment of BC [183].

Ligands such as folic acid, epidermal growth factor, and transferrin are presently
more attractive for BC targeting due to their better attachment to their respective receptors
with greater affinity and less immunogenicity [184–186]. Targeting ligands are nowadays
receiving great attention due to their accessibility, assortment, high affinity, ease of attach-
ment, and cost-effectiveness. Several ligands have been reported to conjugate with various
receptors and NP families, as described in Table 5.

4.6. Polymeric Nanocarriers

Earlier, NPs carriers were developed and examined using a variety of materials, in-
cluding monosaccharides, polysaccharides, proteins, synthetic polymers, metals, lipids,
and organic/inorganic compounds. As the main prerequisite for designing NP carriers,
the size, shape, composition, surface properties, and biodegradability are characteristics
which must be accurately engineered and improved to achieve site-specific drug discharge
with therapeutically dose-dependent optimum effects [96]. Engineered NPs activated with
precise ligands can target BC cells using an appropriate method and can transport encapsu-
lated payloads efficiently. Furthermore, advanced drug loading, enhanced half-life in the
circulation, organized release, and selective delivery of NPs can also achieved by adapting
the size, structure, composition, and surface properties. In the design of the engineered
NPs, polymers (proteins, lipids, liposomes, dendrimers, hydrogels, organic/inorganic
materials) and ligands (nucleic acids, peptides, oligosaccharides, small molecules, and
antibody fragments) have been included on the surface of NPs to improve their targeting
efficacy (Figure 6).
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Table 5. Targeting ligands employed for BC therapy.

Type of Nps Therapeutic BC
Drug

Size of the
Nps Ligands Used for Engineering The Outcome of the Study BC Types Reference

Albumin-bound
NPs

2-methoxy-
estradiol ~240 nm Bovine serum albumin

Significantly enhanced cytotoxicity and cellular uptake when compared with
the free drug examined in the SK-BR-3 and MCF-7 cell lines and

tumor-bearing mice
HER2 + BC [182]

Chitosan Doxorubicin ~50 nm
Anti-HER2 peptide (5–10%) and O-succinyl chitosan graft

Pluronic® F127
Significantly enhanced cytotoxicity and cellular uptake when compared with

the free drug in the MCF-7 cell line HER2 + BC [187]

Iron oxide siRNA 130 nm Caffeic acid, calcium phosphate, iron oxide, PEG-polyanion
block copolymer

Significantly enhanced cytotoxicity and cellular uptake when compared with
free drug on HCC1954. mRNA expression was decreased by 38% when

compared with naked siRNA
HER2 + BC [188]

Iron oxide Baicalein 100 nm PEG-coated iron oxide magnetic NPs Significantly increased anti-apoptotic activity TNBC [189]

Liposome Doxorubicin ~80 nm
1,2-Distearoyl-sn-glycero-3-phosphorylethanolamine,

Distearoylphosphatidylcholine, HER2pep-K3-palmitic acid
conjugate, mPEG2000

Significantly enhanced cytotoxicity and cellular uptake and reduced systemic
toxicity when compared with the free drug in BT-474, SK-BR-3, and MCF-7

cell lines.
HER2 + BC [178]

Liposome Anti-IL6R antibody,
doxorubicin ~100 nm 1,2-dioleoyl-sn-glycero-3-phosphocholine,

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine, cholesterol
Significantly increased tumor-targeting efficacy with anti-tumor metastasis

effects in BALB/c mice bearing 4T1 cells Luminal BC [190]

Liposome Doxorubicin 194 nm
1,2-distearoyl-sn-glycero-3-phosphoryl ethanolamine, estrone

conjugated dipalmitoyl phosphatidylcholine-
PEG2000-NH2 liposomes

Significantly increased uptake in MCF-7 BC cell lines and decreased uptake in
MDA-MB-231 BC cell lines Luminal BC [191]

PolymericNPs Curcumin ~10 nm Chitosan NPs with an apoptosis-inducing ligand (TRAIL) Significantly reduced tumor volume when compared to control when tested in
BALB/c mice TNBC [192]

Polymeric NPs Trastuzumab ~125 nm Antigen-binding fragments cut from trastuzumab)-modified
NPs (Fab’-NPs) with curcumin

Significantly increased cytotoxicity and cellular uptake when compared with
the free drug in the MDA-MB-453 cell lines and a xenograft mice model. HER2 + BC [193]

Polymeric NPs Paclitaxel ~225 nm Poly(lactic-co-glycolic acid) NP coated with hyaluronic acid Significantly increased cytotoxicity and cellular uptake when compared with
the free drug in MDA-MB-231. TNBC [194]

Polymeric NPs Paclitaxel 131.7 nm
Hyaluronic acid-coated

polyethylenimine-poly(d,l-lactide-co-glycolide) NPs
with miR-542-3p

Significantly increased cytotoxicity and cellular uptake when compared with
the free drug in MDA-MB-231. TNBC [195]

Polymeric NPs Gambogic acid 121.5 nm
Hyaluronic acid-coated

polyethylenimine-poly(d,l-lactide-co-glycolide) NPs with RAIL
plasmid (pTRAIL) and gambogic acid

Significantly increased cytotoxicity, apoptotic cell death, and cellular uptake
when compared with the free drug in MDA-MB-231. TNBC [196]

Polymeric NPs Thymoquinone ~22 nm Pluronic® F127 NPs, hyaluronic acid-conjugated Pluronic® P123. Significantly reduced cell growth and migration of MDA-MB-231 cell lines and
xenograft Balb/c mice TNBC [197]

Solid–lipid NPs Di-allyl-disulfide ~116 nm
Pluronic F-68, solid–lipid NPs engineered with palmitic acid
and soya lecithin and surface-modified with glycation end

product antibodies

Significantly enhanced cytotoxicity and cellular uptake, augmented activity at
the tumor site, and reduced systemic toxicity when compared with the free

drug in MDA-MB231
TNBC [198]
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4.6.1. Conjugation with Polymeric Protein

Successful DDSs are based on the attachment of the therapeutic BC drug to proteins
for targeted drug delivery. These nanocarriers are directed to the BC through conjugation
with the so-called antibody-conjugated NPs. These systems can protect the chemical
structure of therapeutic drugs and deliver them to the BC site using a well-controlled
method. Upon stimulation, the attachment of antibody to the drug is readily degradable,
reducing toxicity [64]. Therapeutic choices may be limited for certain BC subtypes, and
hence nanomedicine offers hope for patients with difficult-to-treat BC [199].

A major benefit arises from the smaller size (<10 nm) of such conjugates, which leads
to a comparatively longer half-life in the circulation, and makes their extravasation into the
BC region more successful when compared to NPs of greater sizes [46,53]. Studies have
indicated that protease-cleavable conjugates are more stable than disulfides, although all
of them can be engineered.

Standard chemotherapy shows low response rates and short progression-free sur-
vival among patients with pretreated metastatic TNBC. However, recent clinical studies
showed that sacituzumab govitecan (an antibody–drug conjugate) is well engineered. This
conjugate was heavily pre-administered to patients with metastatic TNBC. The outcomes
showed improved primary endpoints with fewer complications. The secondary endpoints
were progression-free and overall survival, which were found to be improved [200,201].

4.6.2. Liposomes

Liposomes are spherical vesicles (ranging from 50 to 500 nm in size) with a lipid
bilayer, and are generated while the lipid connects with the aqueous solution. The most
commonly employed lipids are phosphatidylcholine-enriched phospholipids, which pro-
duce liposomes. They can be potentially stabilized by strengthening the bilayer with
an amphiphilic, long-chain polymer holding PEG at one end, which can simultaneously
decrease opsonization and lengthen the circulation time in the blood [191]. Polymeric
compounds with appropriate end groups for attachments with antibodies or ligands can
also be implanted into the liposome bilayer; therefore, construction-targeted delivery is
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conceivable. As liposomes bilayers likely mimic those of cells, they can rapidly merge
with the plasma membrane [190]. When they are internalized by cells through endocyto-
sis or passive diffusion, the lipid bilayer undergoes rapid degradation due to the acidic
environment generated by the endosomes and lysosomes [178].

As shown in the illustration in Figure 2, several engineered polymeric liposomes
loaded with therapeutic drugs have used for BC [29,112,135]. Passive tissue targeting
is achieved by the extravasation of NPs due to the increased vascular permeability of
the BC [109]. Active cellular targeting can also be achieved using the engineered lipo-
somes of NPs with ligands that promote cell-specific recognition and binding. Based
on cellular penetration, NPs can release their contents close to the BC cells [42]. Cyclic
octapeptide LXY (Cys-Asp-Gly-Phe (3,5-DiF)-Gly-Hyp-Asn-Cys)-attached liposomes carry-
ing the therapeutic drugs doxorubicin and rapamycin targeted over-expressing integrin-α3
in a TNBC-bearing mouse model [202]. These outcomes strongly indicate that targeted
combinational therapy can provide a rational approach to improve the therapeutic out-
comes of TNBC. Similarly, increased antitumor activity in a TNBC xenograft mouse model
has also been revealed with doxorubicin and sorafenib-loaded liposomes [203]. Taken
together, research on engineered polymeric liposomes suggests the potential efficacy of the
drug-loaded polymer-link liposomes platform in BC therapy.

4.6.3. Lipid–Hybrid Polymer

Polymer NPs are perhaps the most widely studied carrier systems targeting drug
delivery. Various synthetic polymers have been employed and investigated based on
the potential effects of their hydrophobic and biodegradable nature. Furthermore, many
natural polymers (such as chitosan, poly (lactic acid), poly (glycolic acid), poly (lactic-co-
glycolic acid), gelatin, poly (alkyl cyanoacrylates), and poly (ε-caprolactone)) have also been
employed for drug delivery in BC treatment [115,116]. When liposomes and polymeric
NPs were developed, a new class of lipid-hybrid NPs providing the characteristics of both
systems was also established. These lipid-hybrid NP incorporate high drug-encapsulation
materials and show precise drug release, with outstanding targeting capabilities. Non-
targeted drug delivery of platinum–mitaplatin using poly-D, L-lactic-co-glycolic-acid–
block-PEG NPs resulted a higher degree of tumor inhibition in the TNBC xenograft mouse
model [204].

Recently, anastrozole-loaded PEGylated polymer–lipid hybrid NPs showed high
entrapment efficacy (80%), size consistency, and relatively low zeta-potential values
(−0.50 to 6.01), and were found to induce apoptosis in ER-positive BC cells [205]. Simi-
larly, another study showed that nanocarriers of a polymer–lipid hybrid encapsulating
psoralen optimized its hydrophilic nature and bioavailability, which improved systemic de-
livery [206]. Li et al. [207] developed salinomycin-loaded polymer–lipid hybrid anti-HER2
NPs and investigated the anti-tumor activity. The outcome showed that the polymer–lipid
hybrid was a promising candidate targeting both HER2 + breast CSCs and BC cells.

4.6.4. Dendrimers

Dendrimers are another important type of synthetic nanocarrier (with size ranges
from 10 nm to 100 nm) generated by branched monomers of divergent or convergent
synthesis. They appear as liposomes, showing a cavity-enriched spherical shape with a
hydrophobic core and hydrophilic periphery, and are a distinctive carrier for the delivery of
siRNA [208]. Wang et al. [209] established an antisense oligo attached to poly (amidoamine)
dendrimers with links to the receptors of vascular endothelial growth factor, and showed a
significant decrease in tumor vascularization in the TNBC xenograft mouse model. Another
study reported the novel dendrimer G4PAMAM conjugated with GdDOTA and DL680,
administered in TNBC xenograft mice as a model for tumor imaging and drug delivery.
The outcome of MRI scan and infra-red fluorescence imaging showed the emission of NPs
and a significant fluorescence signal in the tumor, demonstrating the selective delivery of a
small-sized (GdDOTA)42-G4-DL680 dendrimeric agent to TNBC tumors that circumvented
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other adjacent primary organs [210]. Hence, the dendrimer is a potential nanocarrier and
targeted diagnostic and therapeutic agent in the TNBC tumor mouse model.

5. Engineered NPs Increases the Circulation Half-Life

In principle, an NP-based delivery system should integrate high drug loading capa-
bility, a long circulation half-life, effective targeting capacity, discharge programmability,
stimuli receptiveness, and diagnostic features. Negatively or neutrally charged NPs gener-
ally have a longer blood half-life than positively charged NPs. Using synthetic materials,
the surface charges and hydrophobicity of NPs can be suitably tuned to elevate their blood
half-life. Based on a longer circulation half-life, NPs can pass the lesion multiple times,
with a greater chance of accruing on the lesion site [211,212]. NPs larger than 200 nm are
favorably excreted by the spleen. Hence, by selecting a suitable size, surface modifica-
tions in the form of PEGylation or the use of rigid NPs will result in the longest blood
half-life (2–100 folds), allowing accrual in the spleen with a high percentage and thus
the improvement of overall pharmacokinetic parameters [59]. For instance, PEGylated
liposomal doxorubicin exhibited a prolonged circulation half-life, which is alleged to be
associated with enhanced therapeutic efficacy in BC. Studies revealed that about 50% of
polystyrene NPs with the size of 250 nm and coated with poloxamine 908 accrued in the
spleen almost 24 h after injection [213]. To avoid clearance by the spleen or MPS, the surface
of NPs should to be cautiously engineered to avoid or at least alleviate opsonization [214].

6. Toxicity of NPs

NP-based drug delivery systems have reported to provide several benefits in BC
treatment, including good pharmacokinetics, a precise targeting of tumor cells, reduced
side effects, and MDR. Although an extensive range of NPs with diverse ions and surface
alterations has been created and preclinically verified, only a limited number of drugs
have gained authorization for clinical trials. Recurrent doses may cause systemic side
effects, including nausea, argyria, irritation, stomach pain, allergic reactions, inflammation,
and dyskinesia [215]. NP toxicity is mainly based on their base materials, size, shape,
and the functional groups decorating their surface. Smaller NPs can easily diffuse into
the healthy cell and interact with cellular components, including nucleic acid, proteins,
and polysaccharides. Oxidative stress and ROS generation are common side effects of
metal NPs, which attack all healthy cellular components and lead to cell death [216,217].
Moreover, Al2O3, CuO, Fe3O4, NiO, TiO2, and ZnO NPs can cause cell cycle arrest and
induce apoptosis. Furthermore, NPs with positive charges have higher cytotoxicity than
negatively charged NPs [218]. The shape of NPs is also largely involved in cytotoxicity
in healthy cells. For instance, rod-shaped Fe2O3 NPs have greater cytotoxic effects than
spherical-shaped ones [219]. Although numerous investigators have confirmed the toxicity
of diverse NPs, the cause of the toxicity is largely unidentified. The short- and long-term
toxicities of NPs as well as pharmacokinetic and pharmacodynamic results should be
assessed prior to clinical approval.

7. Future Prospective

Although spherical NPs have conventionally been used for tumor targeting due to
their relative ease of construction, many current studies report that non-spherical NPs
such as rods, discs, hemispheres, and ellipsoids may target BC more effectively. To reach
a definitive decision on the best NP shape, more detailed studies involving reticuloen-
dothelial system clearance and cell attachment must also be performed. We must conduct
investigations with ligands and receptors of relevance to BC in systems that provide an
exact model of in vivo geometry, structure, and rheology. By considering the shape of NPs
along with their size and material, they can be easily engineered in a manner that allows
them to enter and treat BC more effectively.

Artificial intelligence (AI) is revolutionizing every area of science, medicine, and
nanotechnology, including advanced BC diagnosis and treatment. This area mainly focuses
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on clinical images and therapies in relation to tumor size, shape, intensity, and texture,
collectively leading to more comprehensive tumor characterization [220]. NP-modified
drugs and imaging agents have generated improved treatment outcomes and dissimilar-
ity efficiency. Hence, the Cancer Research UK Imperial center and the NHS foundation
trust recently teamed up to improve BC diagnosis using AI [221]. The combination of
image-specific findings regarding NP treatment and knowledge of the underlying genomic,
pathologic, and clinical features are of great value in BC. In recent times, nanomedicine
platforms have been engaged in the clinic, with authorization for Abraxane® and other com-
mercial products being bestowed. However, as with traditional/unchanged combination
therapies, NP-based drug delivery is frequently explored using fixed doses.

A consistent approach for all forms of drug treatment is the use of drug combinations,
which are dependent on time and dose and are patient-specific. To overcome this challenge,
the evolution towards the NP-mediated co-delivery of multiple treatments has led to the
potential for interfacing AI with nanomedicine for optimization in synergistic nanotherapy.
AI-directed nano-robots can precisely identify the drug action at the target site of the breast
through the tracking sensor. In the near future, nano-medicine research may be supported
by AI, not only to diagnose the stage of cancer but also to determine potential cancer
treatments [222]. Although great success has already been achieved with nanomedicine
in oncological research, the use of AI in nanomedicine will be a promising solution in
the future.

8. Conclusions

BC is the second most common cancer in females worldwide. The treatment regime
for BC includes surgery, radiotherapy, and chemotherapy, which are often unsuccessful
due to their various side effects. Nanomedicine has been revolutionized by allowing
the exploration of new avenues for diagnosis, prevention, and therapy in BC. Therapeu-
tic drugs or natural bioactive compounds engineered with NPs can provide ideal sizes,
shapes, and charges to enhance solubility, circulatory half-life, biodistribution, and im-
munogenicity. Nanocarriers are engineered using organic, inorganic, natural, and synthetic
approaches, involving geometric morphometrics, surface properties, ligands (peptides,
antibodies, aptamers, and folic acid), and polymeric nanocarriers (protein, liposomes,
lipid-hybrid, dendrimers, hydrogels). They are potentially active and target-specific, exe-
cuting their role in abolishing tumor cells in the breast. Therapeutic BC drugs loaded with
engineered nanocarriers enter chemoresistant cancer cells through different mechanisms,
viz., endocytosis, passive diffusion, and plasma membrane transporters. The application of
nanoformulations improves drug-specific targeting, cell interactions, and direct uptake into
BC cells, increasing treatment efficacy. Nanomedicine-based drug delivery with engineered
NPs can advance diagnostic and therapeutic outcomes, thereby contributing to increased
overall survival and patient well-being.
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5fu 5-Fluorouracil
AI Artificial intelligence
AIDS Acquired immunodeficiency syndrome
BC Breast cancer
DDS Drug delivery system
DNA Deoxyribonucleic acids
EPR Effect enhanced retention andpermeability effect
FDA Food and drug administration
HER2 Human epidermal growth factor receptor 2
MCF7 cells Michigan cancer foundation-7 breastcancer cells
MDR Multidrug resistance
miRNA Micro ribonucleic acids
NPS Nanoparticles
PEG Polyethylene glycol
siRNA Small interfering ribonucleic acids
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