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Abstract

Neisseria meningitis remains a leading cause of sepsis and meningitis, and vaccines are required to prevent infections by this
important human pathogen. Factor H binding protein (fHbp) is a key antigen that elicits protective immunity against the
meningococcus and recruits the host complement regulator, fH. As the high affinity interaction between fHbp and fH could
impair immune responses, we sought to identify non-functional fHbps that could act as effective immunogens. This was
achieved by alanine substitution of fHbps from all three variant groups (V1, V2 and V3 fHbp) of the protein; while some
residues affected fH binding in each variant group, the distribution of key amino underlying the interaction with fH differed
between the V1, V2 and V3 proteins. The atomic structure of V3 fHbp in complex with fH and of the C-terminal barrel of V2
fHbp provide explanations to the differences in the precise nature of their interactions with fH, and the instability of the V2
protein. To develop transgenic models to assess the efficacy of non-functional fHbps, we determined the structural basis of
the low level of interaction between fHbp and murine fH; in addition to changes in amino acids in the fHbp binding site,
murine fH has a distinct conformation compared with the human protein that would sterically inhibit binding to fHbp. Non-
functional V1 fHbps were further characterised by binding and structural studies, and shown in non-transgenic and
transgenic mice (expressing chimeric fH that binds fHbp and precisely regulates complement system) to retain their
immunogenicity. Our findings provide a catalogue of non-functional fHbps from all variant groups that can be included in
new generation meningococcal vaccines, and establish proof-in-principle for clinical studies to compare their efficacy with
wild-type fHbps.
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Introduction

Neisseria meningitidis is a human specific pathogen that is a leading

cause of bacteraemia and sepsis in children and young adults [1].

The initial symptoms of meningococcal disease are non-specific, so

the diagnosis is often missed in its early stages; infection can then

progress rapidly over only a few hours in severe cases [2].

Mortality rates remain high despite optimal medical therapy, with

septicaemia associated with a 10% case fatality [3]. These features

mean that prophylactic vaccination remains the best approach to

protect individuals from this important human pathogen [4].

Considerable progress has been made in the development of

conjugate capsular polysaccharide vaccines against certain sero-

groups of N. meningitidis (namely A, C, Y and W135), while outer

membrane vesicle (OMV) vaccines have been successfully

employed to combat epidemic disease caused by a single clones

of the bacterium [5]. However, these strategies cannot be

employed to prevent endemic serogroup B infection, which is

the commonest form of disease in countries across Europe and

North America [1,6]. This is because of the structural identity of

the a2–8 linked polysialic acid serogroup B capsule with a

modification on human N-CAM1, preventing its use as an

immunogen because of fears of autoimmunity [7]. Furthermore

the phenotypic diversity of serogroup B strains limits the potential

efficacy of OMV vaccines [5].

As a consequence, there have been considerable efforts to

identify sub-capsular antigens as vaccine candidates that elicit

appropriate immune responses. Pioneering studies with serogroup
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C strains have demonstrated that the serum bactericidal antibodies

(SBA), that develop either naturally (following carriage of bacteria)

or through immunisation, are sufficient to provide protection

against meningococcal disease [8,9].

Factor H binding protein (fHbp) is a 27 kDa surface lipoprotein

consisting of two b-barrels [10] that promotes resistance against

complement mediated lysis [11] and is a key meningococcal

antigen that elicits SBAs [12,13]. It is a component of two

serogroup B vaccines undergoing Phase III clinical trials; one

vaccine contains fHbp alone, while the other consists of a single

fHbp in combination with other protein antigens as well as an

OMV [5]. fHbp can be divided into three variant groups, V1, V2,

and V3 [13], or two sub-families [14] based on its predicted amino

acid sequence. fHbps belonging to the same variant group share

over 85% amino acid identity, and only 60–70% similarity

between variant groups. Furthermore immunisation with a protein

belonging to one variant family generates responses with some

immunological cross-reactivity within, but not between, variant

groups [12,13].

fHbp binds the complement regulatory molecule factor H (fH)

at high affinity, with a dissociation constant (KD) in the nanomolar

range [10], tighter than for any other known fH ligand. fH is the

major regulator of the alternative pathway (AP) of complement

activation; this pathway is critical to complement homeostasis as it

serves to amplify activation initiated by the recognition of foreign

antigens by antibodies or lectins [15]. fH consists of 20

complement control protein domains (CCP), each of approxi-

mately 60 amino acids, and joined by short linker sequences.

Different CCPs possess distinct functions and interact with cognate

partners [16], precisely modulating their activity to mediate the

diverse regulatory roles of fH (as a co-factor for fI mediated

cleavage of C3b and a decay accelerating factor) [16,17]. Although

structure:function studies have been performed to characterise V1

proteins and their interaction with fH [10,18], little is known about

V2 and V3 fHbps. We have shown previously that fH CCP 6 and

7 (fH67) are necessary for high affinity interactions with V1 fHbp,

and that these two CCPs are sufficient to inhibit binding of full

length fH to fHbp [10]. As fHbp binds human (hfH) but not

murine fH (mfH), novel models are required to assess the efficacy

of fHbp-based vaccines. However, it is not sufficient to simply

introduce a gene encoding hfH into rodents, as it is not known

how this molecule will bind and regulate murine complement

factors [19].

Binding of fH to fHbp could affect its efficacy as a vaccine given

the high affinity of the interaction, serum levels of fH (the second

most abundant complement component in the circulation), and

the large surface area of fHbp occupied in the interaction

(2,8606177 Å) [10] which could mask immunogenic epitopes.

Recruitment of fH by fHbp to sites where antibody responses are

initiated could also reduce immunogenicity due to down

regulation of complement activation [20] or lead to anti-fH

responses and autoimmune phenomena [21]. Furthermore, it has

been suggested that sequestration of fH by pathogens (or indeed by

vaccines) could co-opt this regulator from endothelial surfaces and

render them susceptible to complement mediated damage [21].

Therefore the overall aim of this work was to define fHbps which

are significantly impaired in their ability to bind fH (i.e. non-

functional fHbps). Our approach was to perform detailed structure:-

function analyses, and to assess their immunogenicity in a relevant

model. Our work identifies novel residues in fHbp from each

variant family that substantially affect the interaction with fH. For

those fHbps examined as vaccine candidates, we demonstrated

that the lack of fH binding did not simply result from a change in

their structure. Of note, the distribution of amino acids in fHbp

that contribute to fH binding are distinct for proteins from each

variant family, despite conservation in the overall atomic structure

of the proteins and affinity of their interaction with fH. The V1,

V2 and V3 fHbps exhibited similar nanomolar dissociation

constants with fH even though we found single amino acid

substitutions that significantly enhance binding; this suggests there

is selective pressure to maintain a specific strength of fH:fHbp

interaction. We also demonstrate that impaired binding of the

murine fH to fHbp is not solely due to amino acid differences at

the binding site; structural analyses revealed a different orientation

of CCPs 6 with 7 in the human and murine molecules that would

sterically inhibit interactions with mfH. As a consequence we

analysed the immune responses of non-functional fHbps in mice

expressing a single chimeric fH consisting of both human (to allow

binding to fHbp) and murine (to allow complement regulation)

domains. We found that non-functional fHbp retained their

immunogenicity and elicited protective immune responses in both

transgenic and wild-type mice, supporting the need to evaluate

their efficacy in clinical trials.

Results

Characterisation of amino acids in fHbp contributing fH
interactions and immunogenicity of modified fHbps

We have shown previously that Ala substitution of two Glu

residues (Glu283 and Glu304) in V1 fHbp (V1.p1, variant group

and peptide number, www.neisseria.org), resulting in fHbpDM,

impairs interactions with fH [10], with data using full length fH

(Fig. S1) consistent with results obtained with the binding domain,

fH67. To determine whether these modifications affect the overall

structure of fHbp and thence fH binding, we determined the

atomic structure of fHbpDM in complex with fH67. The only

detectable changes in the fHbpDM structure are loss of the side

chains of Glu283 and Glu304 compared with V1 fHbp (Fig. 1 A,

Table S1), even though the dissociation constant (KD) of fHbpDM

with fH67 is three orders of magnitude higher than with the wild-

type protein assessed by surface plasmon resonance (SPR, Fig. 1B,

KD for fHbp and fHbpDM, 2 nM60.4 and 3,330 nM640,

respectively). Although substitution of Glu283 or Glu304 individu-

ally (fHbpE283A and fHbpE304A, respectively) results in a loss of

detectable fH binding by far Western (Fig. 1C), neither residue

alone accounts for the profound reduction in affinity observed with

fHbpDM (Fig. 1B and Table 1), probably because both residues

Author Summary

Vaccines are currently available against several serogroups
of Neisseria meningitidis. However broadly effective sero-
group B vaccines are still required as capsule-based
approaches cannot be implemented with this serogroup
because of the risks of auto-immunity. As a result, vaccines
based on proteins in the bacterial outer membrane are
being developed. Factor H binding protein (fHbp) is an
important meningococcal immunogen which is able to
bind the human complement regulator factor H (fH) at
high affinity; this interaction could impair the efficacy of
fHbp-based vaccines. Here we perform structure:function
analyses to define non-functional fHbps and to explain the
basis for the host specificity of the fHbp:fH interaction. The
vaccine candidacy of non-functional fHbps was compared
with wild-type proteins in a relevant transgenic model.
These findings should allow the design and evaluation of
future fHbp vaccines against this important human
pathogen.

Non-functional fHbp Vaccines
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Figure 1. Structure and immunogenicity of V1 fHbps with impaired fH binding. (A) Structures of V1 fHbp mutants with reduced binding.
Top left shows overlay of cartoon representation of fHbp structures from V1 fHbp (grey), fHbpDM (gold), and fHbpR106A (teal). Zoom boxes show
close-ups of modified residues with different densities (FO-FC) contoured at 4 sigma. Inset panels show typical equilibrium fits for binding to fH67, and
average KD and quality of fit indicators based on four repeats. Binding of V1 fHbp and modified fHbps to fH67 by SPR (B), and by Coomassie straining
(blue bands) or far Western analysis with fH (black bands) to these proteins and lysates from N. meningitidis strain MC58 and MC58DfHbp, the fHbp
mutant (C). (D) Antibody titres against V1 fHbps elicited by immunisation with fHbps.
doi:10.1371/journal.ppat.1002981.g001
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form independent salt bridges with fH and are therefore both

critical for binding. Distinct from Glu304 in V1 fHbps, V2 and V3

proteins have Thr in position 304; however this residue cannot

substitute for Glu304 in V1 fHbp as fHbpE304T also exhibits

significantly increased KD with fH67 (297 nM617) in comparison

with the wild-type protein (Table 1). Furthermore both Glu283 and

Thr304 make independent contributions to the binding to fH of V2

and V3 fhbps albeit to different extents (Table 1).

To determine whether these modified fHbps retain their

immunogenicity, wild-type mice were immunised with the

recombinant proteins and immune sera assayed for the titres of

anti-V1 fHbp antibodies; non-transgenic mice have been used

previously to determine the immunogenicity of fHbp [12,13].

Specific antibody levels were not significantly different from those

obtained following immunisation with modified fHbps compared

with wild-type V1 fHbp (Fig. 1D); V1 fHbp and the modified

proteins all elicited antibody titres in excess of a 1:32,000 serum

dilution. Consistent with this, modified fHbps elicited SBA

responses at levels that were not significantly different from the

functional, wild-type fHbp. The average SBA titres from at least

two independent immunisation experiments (each using pooled

sera from at least eight mice) against N. meningitidis strain MC58

(which expresses V1.p1 fHbp) were as follows: with sera raised

against V1 fHbp, 340; against fHbpE283A, 180 (unpaired t test vs.

V1 fHbp, p = 0.17) and fHbpE304A, 384 (p = 0.913); fHbpE304T,

192 (p = 0.302); and fHbpDM 170 (p = 0.148). Taken together, our

results show modification of V1 fHbp at Glu283 and/or Glu304

does not affect the structure or immunogenicity of the protein,

even though these residues contribute significantly to interactions

with fH67 (Fig. 1B).

Identification of key amino acids in fHbps from different
variant families necessary for high affinity fH interactions

To date, only Glu283 and Glu304 (Fig. 1) and Arg106 [22] in V1

fHbp have been shown to influence interactions with fH; while no

data are available for V3 family proteins, a recent report describes

three amino acids in V2 fHbp that contribute to the interaction

[23] although binding was analysed by ELISA and the affinity of

the interaction was not measured. There is relatively low sequence

conservation between the fHbp variants in residues buried in the

V1 fHbp:fH interface, and of the two Glu residues in V1 fHbp

required for fH binding, only Glu283 (using V1 numbering, [10]) is

conserved in V2 and V3 fHbps. We therefore constructed single

and double mutants in the V2 and V3 proteins replacing the

equivalents of Glu283 and Glu304 with Ala, or Glu in the case of

position 304. We then determined the effect of these mutations on

binding of fH by SPR (Table 1). All modified proteins had reduced

capacity to bind fH, but the effect of the mutations at each position

differed between the variant families, demonstrating that it is not

possible to extrapolate findings from one fHbp variant to others.

Therefore to identify critical amino acids involved in fHbp:fH

interactions, we undertook extensive mutagenesis of V1 (V1.p1),

V2 (V2.p21) and V3 (V3.p28) fHbps of amino acids that lie in or

around the interface of fH in complex with V1 fHbp [10]. In total,

46, 46, and 48 amino acids were individually replaced with Ala in

V1, V2, and V3 fHbp respectively, or with the equivalent V1

residue if they were an Ala in the V2 or V3 proteins. We targeted

residues at the interface between V1 fHbp and fH67 (or equivalent

amino acids in V2 and V3 proteins), together with neighbouring

amino acids, as well control mutations involving two amino acids,

fHbpK92A and fHbpH248A, on a region of fHbp opposite to the fH

binding site, as well as Leu171, a residue buried between the fHbp

barrels to probe the effect of a structural alteration. The affinity of

the modified fHbps with fH67 was determined by SPR with

corresponding wild-type fHbps and V1 fHbpDM as controls.

The affinity of parental fHbps for fH67 demonstrates that they

recognise fH with similar affinities (KD for V1 2.260.4 nM, V2

1.960.2 nM, and V3 2.860.0 nM, and Table S2) implying some

selection for a specific affinity. The similar affinities of all three

variant families for fH is striking as several of our mutations to Ala

actually increase the affinity with which fH is bound (Fig. 2A, B

and C, and Tables S3, S4 and S5). For instance in V2 fHbp,

mutation to Ala at position 157 increases binding by approxi-

mately five-fold, whilst mutation at position 106 increases the

strength of binding by ,100-fold in V3 fHbp.

The mutagenesis studies show that the mode of fH binding is

conserved between the three families with the same surface of fHbp

involved in each variant (Fig. 2A, B and C), with all amino acids in

V1, V2 and V3 fHbps that have a substantial contribution to fH

binding (i.e. Ala substitution causing a ten-fold or greater increase in

KD) located at the interface of V1 fHbp with fH in the crystal

structure [10]. In line with this, modifications at several positions (i.e.

195, V1Arg, V2/V3Leu; 272, Val; 283, Glu; 313, V1His, V2/V3Glu)

reduce binding by at least five-fold in all three families; these

residues form an extended surface on both b barrels of fHbp.

However there are evident differences, with mutation at certain

residues having profound effects in the context of a particular

variant family, but with little or no effect in others. For instance, in

V1 fHbp a key point of contact with fH is seen to be a packing of

Arg106, Arg145, Leu156, Glu157, Arg195 against Tyr368 in fH6 [10].

This same patch of residues is of some importance in V3, but

mutation of only some of these residues affects V2 fHbp binding.

For instance, Ala substitution of Arg106 or the corresponding

residue (i.e. Pro106 in V3 fHbp) reduces, does not affect, or

increases interactions of fH with V1, V2 and V3 proteins

respectively (Fig. 2A, B and C and Table S4); our results with

V2 fHbp are consistent with others showing no effect of this

residue albeit by ELISA [23]. Overall, comparing the amino acids

in V1, V2 and V3 fHbps that reduce affinity to fH by over 90%

(Fig. 2A, B and C), V2 fHbp is more dependent on contacts within

the C-terminal barrel and less susceptible to alteration by mutation

within the N-terminal barrel than V1 and V3, where residues

critical for high affinity fH binding are spread across the surface of

both barrels. This implies that, whilst the overall affinity and mode

of interaction are conserved, there is significant variation in which

precise fHbp amino acids are critical, indicating a degree of

plasticity in the mode of fH binding.

In addition to examining the effect of fHbp sequences on fH

binding we also investigated whether the common Tyr402His

polymorphism in fH7 [24] has any significant effect on the

interaction with V2 or V3 fHbp. Our previous work showed no

Table 1. Effect of mutations at positions equivalent to fHbp
V1 residues 283 and 304 (i.e. Thr304 in V2 and V3 fHbp) on the
KD for binding to fH67, shown relative to the wild-type
proteins.

Glu283Ala Glu/Thr304Ala DM 304

fHbp V1 7 fold 150 fold 1000 fold 100 fold
(GluRThr)

fHbp V2 40 fold 10 fold ND 200 fold
(ThrRGlu)

fHbp V3 40 fold 30 fold 70 fold ND

DM indicates double Ala substitution; ND, not determined.
doi:10.1371/journal.ppat.1002981.t001

Non-functional fHbp Vaccines
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Figure 2. Key residues in fHbp necessary for high affinity interactions with fH. Amino acids of V1, V2 and V3 fHbps (A, B and C respectively,
fill representations) superimposed on the structure of V1 fHbp with fH (black sticks) demonstrating the impact of residues on the KD as a percentage
of results with the corresponding wild-type protein. Substitution of residues coloured yellow increases binding by . fivefold, while amino acids
labelled in orange have a significant effect on binding proteins from all three variant groups.
doi:10.1371/journal.ppat.1002981.g002
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significant effect on binding of V1 fHbp and we confirmed that

this polymorphism also has no impact on binding of fH67 to V2 or

V3 proteins (not shown). This suggests that susceptibility to N.

meningitidis does not contribute to the maintenance of this

polymorphism in human populations.

Structural analysis of V2 and V3 fHbps
To further characterise V2 and V3 fHbps, attempts were made

to obtain the atomic structure of these proteins either alone or in

complex with fH67. The structure of V3 fHbp with fH was solved

to a 2.3 Å resolution (Fig. 3A, Table S1). Despite sharing only

approximately 60% amino acid identity, the structures of the

fHbps are well conserved (Root Mean Square Deviation in all

atom positions (RMSD) 0.65 Å) and so is the structure of the

complex with fH67 (RMSD 0.91 Å) as predicted on the basis of the

similarities in distribution of amino acids critical for binding to fH

revealed by mutagenesis (Fig. 2). To further understand the

contribution of Pro106 to V3 fHbp:fH interactions (which

markedly increases binding when changed to Ala), we also

determined the structure of V3 fHbpP106A; with the exception of

the change of the side chain, there was no significant alteration in

the structure of V3 fHbpP106A compared with the wild-type

protein (Fig. 3B), suggesting that the difference is due to a kinetic

effect of the conformation in the loop containing this amino acid.

Direct comparison of the fHbp V1 and V3 structures in this region

did reveal a difference. The presence of an Arg106 in V1 fHbp

pushes the loop away from fH in order to accommodate the long

amino acid side chain. The presence of a Pro in V3 fHbp brings

the loop closer to fH and allows the side chain of Gln107 in this

variant to hydrogen-bond with the fH, consistent with mutation of

this residue in V3 reducing binding by 25-fold (Fig. 2C).

Attempts to grow crystals of a complex of V2 with fH67 were

unsuccessful. Although crystals grown from a mixture of these

proteins did diffract, these were found to contain only the C-

terminal barrel of the V2 fHbp. This agreed with the observation

that V2 fHbp is prone to cleavage to a smaller fragment consistent

with the C-terminal barrel alone (not shown). The structure of the

V2 fHbp C-terminal barrel is highly conserved with respect to

both V1 and V3 fHbp even though it shares under 65% sequence

identity with the V1 protein (Fig. 3C). To further examine the

apparent instability of the N-terminal b barrel of V2 fHbp,

differential scanning calorimetry (DSC) was performed on all three

variant fHbps (Fig. 3D). The DSC profiles show independent

unfolding of the two barrels with the peak representing unfolding

of the C-terminal barrel melting at temperatures above 80uC in all

three variants. (86.8, 84.9 and 84.5uC for V1, 2 and 3,

respectively). In contrast, the N-terminal barrel exhibits highly

variable melting at 69.5uC in V1, 60.6uC in V3 and at 36.6uC in

V2 fHbp. The much reduced melting point in V2 fHbp suggests

that the tendency of this barrel to be cleaved is due to unfolding of

the N-terminal barrel, giving access to protease recognition sites

within the N-terminal portion.

Structural basis for the host specificity of fHbp
interaction with fH

While fHbp binds human fH67 with high affinity, murine fH

(mfH) interacts but with a KD.10,000 fold higher than hfH (Fig.

S2), meaning there is no significant interaction at serum fH

concentrations (150–500 mg/ml, i.e. ,5 mM). Therefore to devel-

op a physiologically relevant model to test non-functional fHbp

vaccines, we sought to define the basis of the binding of fHbp to

hfH but not mfH. Alignment of the amino acid sequences of hfH

and mfH revealed multiple residues located at the site of

interaction with fHbp that differ between the two species

(Fig. 4A). Initially, to evaluate the contribution of these residues to

interactions with fHbp, we generated two hfH67 mutants, each with

two amino acids replaced with the equivalent residues from mfH,

resulting in hfHH337Y/R341L and hfHK351R/Y352K; both modified

proteins had significantly reduced affinity for fHbp regardless of

variant family (Fig. 4B, for example KD for hfHH337Y/R341L and

hfHK351R/Y352K with V1 fHbp 761 and 2.860.5 mM, respectively),

demonstrating that amino acid modification of fH can influence

binding to fHbp. Therefore, we next humanised 13 residues in mfH

that span the region corresponding to the interaction site of hfH

with fHbp (Fig. 4A). However this extensive replacement of residues

was not sufficient to enable mfH to bind fHbp at appreciable levels

as demonstrated by far Western analysis (Fig. 4C); PPX, the

meningococcal exo-polyphosphatase was used as a control on blots

[25]. To further understand the basis of the lack of interaction, we

determined the crystal structure of mfH67 (Fig. 4D). The overall

CCP folds are conserved despite many sequence differences

between the two species throughout the two structures, including

the surface where hfH interacts with fHbp. Additionally the

arrangement of CCPs 6 and 7 in mfH with respect to each other

is distinct from hfH (Fig. 4D), distorting the entire shape of the

potential interface with fHbp. This would sterically hinder

engagement of mfH with fHbp, providing an explanation for the

high KD of the fHbp:mfH interaction, and why replacement of

multiple amino acids with the human equivalents in mfH did not

confer binding.

Assessment of fHbp-based vaccines in a transgenic
model

Therefore to examine the impact of the interaction with fH on the

immunogenicity of fHbps, we took advantage of mice lacking

endogenous mfH [26], and expressing a transgene encoding a

chimeric fH molecule [27]. The chimeric fH consists of mfH CCPs

1–5 and 9–20 (enabling interaction with murine C3b and other

complement components), flanking hfH CCPs 6–8 (allowing binding

to fHbp, Fig. S3A). The chimeric fH is under the control of the apoE

promoter to facilitate expression in the liver, the site of endogenous

fH synthesis [27]. The chimeric fH effectively regulates the murine

complement system; mice have normal C3 levels and do not develop

renal disease (Fig. S3B and not shown). Therefore this transgenic

model provides a physiologically relevant system to examine the pre-

clinical vaccine candidacy of fHbp and its derivatives.

These mice were used to evaluate the vaccine candidacy of non-

functional V1 fHbps compared with V1 fHbp. Further work

focussed on the other non-functional mutants, fHbpR106A and

fHbpI311A; modification of Arg106 has been described previously,

while Ala substitution of Ile311 has the one of the most marked effects

on fH67 interactions of single amino acid substitutions as demon-

strated by SPR (fHbpI311A KD with fH67, 1.360.5 mM). The

structure of the co-complex of fHbpR106A with fH67 (Fig. 1A)

confirmed that there was no significant change in its overall

structure. Immunisation of transgenic mice with the non-functional

proteins, fHbpDM, fHbpI311A, and fHbpR106A elicited similar levels

of anti-V1 fHbp antibodies as determined by ELISA (Fig. 5A),

demonstrating that the non-functional fHbps retain their antigenic-

ity. The non-functional proteins also elicited SBA titres (measured

using human complement), that were similar as raised against the

wild-type V1 fHbp (Fig. 5B). Therefore non-functional fHbps retain

their immunogenicity and elicit protective immune responses.

Discussion

fHbp is an important virulence factor and a key component of

vaccines designed for the prevention of serogroup B N. meningitidis

Non-functional fHbp Vaccines
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infection. Furthermore, fHbp-based vaccines could provide coverage

irrespective of serogroup by either combining it with other antigens

or using proteins from different variant families [4]. The antigen has

been delivered as a recombinant protein in vaccines undergoing

Phase II and III clinical trials, but can also be overexpressed in OMV

vaccines by genetic modification of strains used for vaccine

production [28]. Here we characterised members of the three

variant families by identifying amino acids that are critical for fH

binding and through structural analysis, to inform future vaccine

design and to understand the basis of the interaction of fHbp with fH.

The three variant family fHbps we examined all exhibited nM

KDs with fH67, which is lower than for any human ligand of this

Figure 3. Structures and stability of V2 and V3 fHbps. (A) Overlay of V1 and V3 fHbp:fH67 complexes shown in a cartoon representation with
the V1 complex shown in light grey, and V3 fHbp (rainbow coloured blue at the N-terminus to red at the C-terminus) with fH67 from the V3 complex
shown in black. (B) Overlay of V3 fHbp (stick representation) in the region of residue 106 (magenta) and V3 fHbpP106A (carbon-green, oxygen-red,
nitrogen-blue). (C) Overlay of V3 fHbp (rainbow coloured blue to red, N- to C-terminus) with the C terminal barrel of V2 fHbp (grey); pictures drawn
by PyMol. (D) DSC of V1 (red line), V2 (blue line) and V3 (green line) fHbp showing unfolding of the C-terminal barrel at around 80uC for all variants,
and the N-terminal barrel at lower temperatures.
doi:10.1371/journal.ppat.1002981.g003
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Figure 4. Structural basis for the reduced affinity of mfH with fHbp. (A) Cartoon of hfH67 viewed from through V1 fHbp (solid line) with
amino acids changed in hfH with murine residues (outlined by yellow dashes), and those replaced in mfH with human residues (outlined by light blue
dashes). (B) SPR analysis of binding of two hfH67 mutants each containing two amino acid changes (shown) with fHbps from each variant family. (C)
Far western analysis of V1 fHbp and a control protein, PPX; blots were overlaid with 5 mg/ml of the recombinant proteins mfH, modified mfH (with 14
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important complement regulator. Although fHbps have been

found in clinical isolates with reduced affinity for fH [29], none

have displayed increased binding. Despite this, we were able to

identify several single amino acid substitutions that led to a

substantial increase in affinity with fH67, suggesting that selection

may not favour tighter binding, indicating that there could be

circumstances when uncoupling of fHbp from fH is beneficial for

the bacterium. It is possible that fHbp has other functions [30]

which are impaired by the presence of fH. Alternatively

disengagement from fH could promote colonisation of different

sites in the human host, similar to the way modification of pili

facilitates disaggregation of bacteria on the surface of cells [31].

Characterisation of the two Glu residues in V1 fHbp that form

salt bridges with fH, and their equivalent residues in V2 and V3

proteins (i.e. Thr304) indicated that these residues make indepen-

dent contributions to high affinity fH binding and that different

variant family proteins engage fH in distinct ways. To identify

residues that are necessary for high affinity fH interactions, we

performed extensive Ala substitution mutagenesis to produce a

catalogue of amino acids in each variant family that contribute to

binding to fH, and could be modified in vaccine design. This adds

to the three residues already described for V1 fHbp and for V2

fHbp which are required for high affinity binding, although the

affinity of the modified V2 proteins for fH was not reported [23].

Our findings illustrate differences in the precise mechanisms by

which fH engages fHbp from different families, even though the

same face of fHbp is involved. This is emphasised by the finding

that Ala substitution of amino acids at the same position (i.e. V1

and V2 Arg106, and V3 Pro106) have profoundly different effects,

markedly reducing, not affecting, or increasing fH affinity for V1,

V2 and V3 fHbps, respectively. This demonstrates that it is not

possible to extrapolate data from one variant family protein to

others. The dramatic increase in tightness of binding on mutating

Pro to Ala at this position in V3 probably results from a kinetic

effect, suggesting that in the unbound fHbp the loop containing

this residue adopts a different conformation which must be

refolded into the conformation seen in the complex. It may be that

the Pro converts less readily to the structure required for binding

than the loop bearing an Ala at this position Despite these

distinctions, all amino acids from V1, V2, and V3 fHbps necessary

for high affinity binding are located at the interface previously

identified in the V1 fHbp:fH co-complex [10].

We determined the first structures of the entire V3 fHbp and the

C-terminal b barrel of V2 fHbp. There is a striking conservation in

the overall structure of the V1 and V3 proteins despite their

relatively low level of sequence identity. Although amino acids that

contribute to high affinity interactions are grouped in the same

regions of these proteins, the precise interactions required to

achieve the same affinity and overall interaction with fH differ.

Such plasticity could permit the bacterium to alter the fH

recognition site for immune evasion whilst retaining the same

biological function.

The instability of V2 fHbp and its susceptibility to proteolysis

are not desirable in a vaccine antigen, and might explain why it

has not been included in any vaccines in clinical trials to date [5].

Such instability is less likely to present an issue in the context of the

protein on the exterior of bacteria where interactions with

surrounding molecules are likely to stabilise the structure,

rendering it competent for binding fH; however it might explain

why more C-terminal residues appear to be critical for fH binding

humanised amino acids) or hfH, or with human serum (1 in 2000 dilution) as indicated; the sizes of the mol. wt. marker are shown. (D) Structure of
mfH67 (blue ribbon) superimposed on V1 fHbp (white ribbon) and hfH (green ribbon). While fH6 from both species are superimposable, the
orientation of fH7 differs significantly between mfH and hfH (indicated in red dashed circle).
doi:10.1371/journal.ppat.1002981.g004

Figure 5. Non-functional fHbps retain their immunogenicity in transgenic mice. (A) ELISAs assaying anti-V1 titres elicited in pooled sera
following immunisation of transgenic mice with the wild-type protein and non-functional V1 fHbps. (B) SBA titres of sera from individual mice
immunisation with fHbps.
doi:10.1371/journal.ppat.1002981.g005

Non-functional fHbp Vaccines

PLOS Pathogens | www.plospathogens.org 9 October 2012 | Volume 8 | Issue 10 | e1002981



compared with fHbp from other variant families. Further work is

on-going to define the basis of the instability of V2 fHbp, as there

is no obvious explanation for this by molecular modelling using the

V1 and V3 structures (not shown).

The use of transgenic mice to study human pathogens has been

an important advance in infectious diseases research and

prevention. For instance, introducing single amino acid changes

into murine molecules [32] or transgenes encoding complete

cellular receptors or nutritional sources [33,34] have allowed the

study of human-specific pathogens in rodents. However care must

be taken when modifying regulatory factors that govern the

activity of complex pathways such as the complement system. We

attempted to make minimal changes to mfH within the region that

mediates high affinity interactions with fHbp, which would allow

binding to the antigen without compromising the important

regulatory functions of the molecule. Initial efforts to achieve this

by introducing multiple amino acid changes in mfH proved

unsuccessful, most likely due to the orientation of CCP 6 with 7 in

mfH which would sterically inhibit interactions with fHbp.

Therefore, we used a chimeric fH which was humanised through

substitution of the CCPs involved in interactions with fHbp

together with hfH8 in case it induced unforeseen structural

changes in fH7 [35]. This model provides a physiological assay to

evaluate non-functional fHbps, rather than simply introducing an

intact human transgene, and was employed to examine the

immunogenicity of functional and non-functional fHbps.

Overall there were no substantial differences in the immune

responses in transgenic and wild-type mice vaccinated with the

same protein; both generated similar levels of IgG and SBA

responses against the antigen and relevant strain. Previous work

suggests that the immunogenicity of fHbpDM is impaired

compared with V1 fHbp [36]. However we found that the

structure of this protein is unchanged except for the loss of the side

chains of Glu283/304, and that it retained its immunogenicity in

both transgenic and non-transgenic mice. We also examined the

immunogenicity of fHbpI311A which we predict reduces the affinity

due to the loss of interactions with the bulkier Ile side chain in the

Ala mutant. Previous work indicated that V1 fHbpR106S exhibits a

degree of enhanced immunogenicity compared with wild-type

fHbp in mice possessing extra copies of hfH as well as endogenous

mfH [37]. SBA activity was increased by only a single dilution in

mice immunised with the non-functional fHbp compared with the

wild-type protein, and the effect was only seen in mice with hfH

levels above a certain threshold. However we were unable to

replicate this finding either with the corresponding protein, V1

fHbpR106A, or with two other non-functional fHbps, fHbpDM and

fHbpI311A, and did not observe a relationship between fH levels

and SBA titres in individual mice (Fig. S4). This is unlikely to result

from the hydroxyl side chain in Ser in fHbpR106S compared with

fHbpR106A (used here). Potential explanations for these discrep-

ancies in immunogenicity include differences in antigen and

adjuvant preparation, immunisation schedules, and the age of

mice and their genetic background (C57/Bl6 here vs. BALB/c).

Furthermore the effects on immunogenicity of the presence of

both murine and human fH in a single animal, or an antigen

binding hfH (which might not function efficiently in a heterologous

environment) are not known.

Any rodent model of immunogenicity has inherent limitations.

For instance, both we and others [37] immunised mice with 20 mg

of fHbp on each occasion. This is relatively a much higher dose

than given to infants in current formulations (50 mg) [5], so the

proportion of antigen bound by fH might be significantly lower in

rodent than in humans. Additionally the route of immunisation

(intraperitoneal in rodent models, subcutaneous in clinical trials)

will affect delivery to and the site of immune induction, while

results from inbred rodent lines will not be directly applicable to

human populations. Despite these reservations, ours and other’s

findings demonstrate that a series of non-functional, structurally

defined fHbps elicit at least equivalent responses to V1 fHbp, and

provides proof in principle that these antigens merit evaluation in

clinical trials which would provide the only definitive evidence of

whether they offer advantages as a vaccine compared with wild-

type proteins in terms of safety and immunogenicity.

The efficacy of vaccine antigens can be substantially enhanced

by structure based studies to generate non-toxic derivatives of

bacterial molecules or antigens with increased efficacy [38]. Here

we show that even though V1, 2 and V3 fHbps exhibit remarkably

conserved atomic structures, differences in key amino acids

necessary for interactions with fH are only revealed by functional

studies. Our findings both provide a catalogue of proteins that

could be included in the rational development of the next

generation of vaccines containing non-functional fHbps, and could

be informative about the basis of the diversity in fHbp sequences

seen among clinical isolates, and the genetic susceptibility of

individuals to meningococcal disease [28].

Materials and Methods

Bacterial growth and Western analysis
N. meningitidis was grown in 5% CO2 on Brain Heart Infusion

(BHI) agar plates with Levanthal’s supplement, and Escherichia coli

propagated in LB liquid medium with shaking at 200 r.p.m. or on

LB agar plates (1.5% agar wt/vol). Whole cell lysates were

prepared of N. meningitidis grown overnight on solid media then re-

suspended in PBS. The concentration of bacteria was determined

by measuring the optical density at 260 nm of bacterial lysates in

1% SDS/0.1 M NaOH [39] and adjusted to 16109 CFU/ml, and

re-suspended with an equal volume of 26 SDS-PAGE loading

buffer (100 mM Tris-HCl pH 6.8, 20 mM b-mercaptoethanol, 4%

SDS, 0.2% bromophenol blue, 20% glycerol), and boiled for

10 minutes; polyacrylamide gels which were either stained with

Coomassie blue or proteins were transferred to nitrocellulose

membranes in a Mini Trans-Blot Cell. Membranes were

incubated with primary then secondary antibodies diluted in

PBS-T and 1% skimmed milk (PBS-TM), which were detected

using Amersham ECL Western blot detection method (GE

Healthcare). To detect fH binding, blots were incubated in either

normal human serum (NHS 1:100), purified (5 mg/ml) or

recombinant fH diluted in PBS-TM for two hours, washed then

incubated with goat anti-fH pAb (Quidel, 1 in 2,000); membranes

were then incubated with murine anti-goat HRP-conjugated IgG

(Sigma, 1 in 10,000).

Generation of sera and immunologic studies
Female six to eight-week-old BALB/c mice (Charles Rivers,

Margate) were immunised with antigens (20 mg) with aluminium

hydroxide adsorbed by spinning the mixture for one hour at room

temperature. Immunogens were given intraperitoneally (transgen-

ic mice) on days 0, 21 and 35; sera were collected on day 49. In

immunisation studies with C57Bl/6 transgenic mice, antigens

were given intraperitoneally to twelve to sixteen-weeks-old mice on

days 0, 21 and 35, and whole blood collected by terminal

anaesthesia and cardiac puncture from the mice on day 49. All

procedures were conducted in accordance with Home Office

guidelines.

Wells of ELISA plates (Nunc) were coated with V1 fHbp

(100 ng) overnight at 4uC, washed, blocked for one hour with 3%

normal goat serum diluted in PBS-T, then sera added at a range of
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dilutions. Binding was detected using goat anti-mouse HRP-

conjugated IgG (Dako, 1 in 1, 000) and incubated for one hour at

room temperature. The substrate (ONPG, Sigma) was added to

wells, the reaction was stopped with 3N HCl, and the A492 read

with a Multiskan photometer (Thermo Scientific).

For serum bactericidal assays, N. meningitidis MC58 was re-

suspended in SBA assay buffer (0.1% glucose in PBS) to a final

concentration of 56104 CFU/ml and mixed with an equal volume

of human complement. Control wells were also prepared

containing bacteria without serum or without complement. Sera

was pooled from groups of non-transgenic mice (n.8), and

immunisations repeated on two or three occasions for each

antigen; for transgenic mice, sera was tested from individual

animals. Following incubation, 10 ml from each well was plated

onto solid media, and the number of surviving bacteria was

determined after overnight growth. The bactericidal activity was

expressed as the reciprocal of the highest dilution of sera required

to kill more than 50% of bacteria.

Modification of fHbp and fH
Point mutations in fHbp were introduced by site directed PCR

mutagenesis with Roche Expand High Fidelity enzyme or using

the QuikChange Site-Directed Mutagenesis Kit (Agilent Technol-

ogies) following the manufacturer’s protocols, and primers shown

in Table S6. His-tagged proteins were expressed in E. coli B834

(DE3) cells and isolated using Ni-NTA Magnetic Agarose Beads

(Qiagen) following the manufacturer’s protocols and dialysed

against 50 mM Sodium acetate, pH 4.5. A comparison of the

numbering of fHbp amino acids here and by others is shown in

Table S7. mfH67 was cloned from the full-length Mus musculus fH

gene into pET-15b expression vector (Novagen) using the

following primers. MFH67-For 59-GGAGATATACCATGG-

CCTTGAAACCATGTGAATTTCC-39, and MFH67-Rev 59-

AGCCGGATCCTCGAGTCAGATGCATTTGGGAGGAGG-

39. mfH67 was expressed and purified using the method described

previously [40]. Crystals were grown from a 11.9 mg/ml solution

in a 50% dilution of 0.2 M Ammonium chloride, 0.1 M MES,

pH 6.0, 2% PEG 6000 and then cryo-protected in 20% glycerol.

To humanise recombinant mfH, point mutations were intro-

duced in the mouse fH cDNA by site-directed mutagenesis using

the QuikChange Multi Site-Directed Mutagenesis kit (Stratagene)

according to manufacturer’s instructions. Primers used can be

found in Table S8. The eukaryote expression vector pCI-Neo

(Promega) containing the cDNA of wild-type mfH, humanised

mfH or hfH, was used for transient transfection in COS7 cells by

using lipofectamine (Invitrogen). Cell supernatants containing the

recombinant proteins were collected [41].

C3 and fH levels were measured by ELISA. In brief, C3 levels

were quantified using goat anti-mouse C3 and HRP-conjugated

goat anti-mouse C3 antibodies (both from MP Biomedicals) as

capture and primary antibodies, respectively. The results were

quantified by reference to a standard curve generated from acute-

phase sera containing a known amount of C3 (Calbiochem). fH

levels were measured using goat anti-human fH antibody

(ABIN113017, www.antibodies-online.com) and the biotinylated

version of the same antibody as capture and primary antibodies,

respectively. The results are presented as O.D. values as no

reference is available to use as a standard curve for the chimeric

protein.

Large scale protein expression, purification and binding
studies

E. coli BL21 (DE3) cells with relevant plasmids were grown in

liquid medium to an OD A600 of 0.4–0.8 then IPTG was added to

a final concentration of 1 mM. After four hours, bacteria were

harvested and recombinant proteins purified by affinity chroma-

tography with a HisTrap column (GE Healthcare). Proteins were

purified with an AKTApurifier (GE Healthcare) by elution with

200 mM imidazole. Further purification was performed by size

exclusion chromatography (Superdex S-200). Protein concentra-

tions were estimated by the Bradford assay.

Surface Plasmon Resonance was performed using a Biacore

3000 (GE Healthcare) or ProteOn XPR36 (BioRad). fHbp was

immobilized on a CM5 or ProteOn GLM sensor chip and

increasing concentrations of fH67 were injected over the flow

channels at 40 ml/min and allowed to dissociate for 300 seconds.

BIAevaluation 3.2 or ProteOn manager software was used to

calculate the KD.

DSC analysis
DSC experiments were carried out using a VP Capillary DSC

(GEHealthcare) using a heating rate of 1uC/min from 30 to

110uC. The V2 sample was repeated from 10 to 110uC when its

lower melting event was identified at around 35uC to ensure that

this transition was flanked by sufficient baseline to allow analysis.

Samples contained 20 uM of each variant in 25 mM Tris pH7.5,

150 mM Na Cl. Samples and buffer were degassed by stirring

under vacuum before running. Data analysis was done with the

software supplied with the instrument by the manufacturers

(Origin version 7.0) with buffer reference subtracted from the

sample data and baseline correction.

Protein structures
The crystals were grown using the sitting drop vapour diffusion

method from 400 nl drops prepared using an Oryx Nano robot

(Douglas Instruments, UK). V1 fHbp crystals were grown and

cryo-protected as described previously (8). V2 crystals were grown

from a 1:1 mixture of fH67 and V2.p21 at 10 mg/ml in 30%

PEG2KMME, 0.1 M Sodium Acetate pH 4.6, 0.2 M Ammonium

sulphate, and cryo-protected with 10% PEG 400. The dataset was

collected on beamline ID29 at ESRF. For V3 crystals, concen-

trations of 13.6 and 15.2 mg/ml were used for V3 fHbp and

fHbpP106A. Both grew in 0.2 M imidazole pH 6, 20% PEG 4000,

and were cryo-protected with 15% ethylene glycol and 85%

mother liquor. Data were obtained on I04 (for fHbpP106A) at

Diamond Light Source (Harwell, England) and ID29 at ESRF

(Grenoble, France, for V2 and V3 fHbp). Diffraction data were

processed with XDS and SCALA [42] from within the xia2 data-

processing suite [43]. Structures were solved by molecular

replacement with CCP4 [44] and Phaser [45], built using

CCP4-Buccaneer [46] and refined and rebuilt iteratively using

autoBUSTER [47] and Coot [48].
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