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Abstract

In this paper, we propose a simple and elegant method to extract the thickness and the opti-

cal constants of various films from the reflectance and transmittance spectra in the wave-

length range of 350 − 1000 nm. The underlying inverse problem is posed here as an

optimization problem. To find unique solutions to this problem, we adopt an evolutionary

optimization approach that drives a population of candidate solutions towards the global

optimum. An ensemble of Tauc-Lorentz Oscillators (TLOs) and an ensemble of Gaussian

Oscillators (GOs), are leveraged to compute the reflectance and transmittance spectra for

different candidate thickness values and refractive index profiles. This model-based optimi-

zation is solved using two efficient evolutionary algorithms (EAs), namely genetic algorithm

(GA) and covariance matrix adaptation evolution strategy (CMAES), such that the resulting

spectra simultaneously fit all the given data points in the admissible wavelength range.

Numerical results validate the effectiveness of the proposed approach in estimating the opti-

cal parameters of interest.

Introduction

The determination of a thin-film’s thickness and complex refractive index over a broad spec-

tral range is carried out using either ellipsometric or spectrophotometric analysis [1, 2].
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Ellipsometrymeasures how the polarization of a light beam changes on reflection from a sur-

face, whereas Spectrophotometrymeasures reflectance and/or transmittance of light through

thin-films and substrates as function(s) of wavelength. The spectral information, reflectance

and/or transmittance data, are fed to a numerical solver for extracting thickness and refractive

index and/or extinction coefficient [3, 4]. The information on film thickness and optical con-

stants play a major role in selecting suitable materials or processes for different applications

such as solar cells, sensors, displays and window coatings. For example, the optical characteri-

zation of perovskite thin-films is a key requirement in photovoltaic device design [5, 6]. To

determine the complex refractive indices of CsPbBr3 thin-films [5], researchers have used vari-

able-angle spectroscopic ellipsometry measurements and described the associated bulk planar

CsPbBr3 layer with Tauc-Lorentz and Gaussian oscillator models for VASE fitting technique.

For optical analysis of semitransparent and opaque solar cells, the complex refractive indices

of CH3NH3PbI3 films can be determined by using a combination of variable-angle spectro-

scopic ellipsometry and spectrophotometry data [6]. Film thickness influences micro-scale

physics of electron mobility in thin-film transistors [7] to macro-scale physics of operating

characteristics of solar cells [5]. Thickness variations by adjusting the catalyst concentration or

by changing the heat-treatment process can be leveraged to shift the reflection band of a film

from narrow to broad wavelength region, which benefits in fabricating dielectric reflectors for

solar cells and bandpass filters for optical instruments [8]. Moreover, complex refractive index

profiles and film thickness are crucial in designing appropriate polymers to produce effective

lenses and ultraviolet (UV)-absorbing coatings [9, 10].

Computationally, it is not trivial to achieve accurate estimates of all the optical parameters

together [11, 12], since the inverse problem of retrieving the optical characteristics of a film

from spectral information is highly non-linear and often ill-conditioned. Accurate measure-

ment of thickness using experimental methods is a time-consuming process in practice [13,

14]. Usually, the most accurate thickness is attained while compromising accuracy of the esti-

mated refractive index [15, 16]. Moreover, different methods perform well in different spectral

ranges [16, 17]. Two inherent difficulties in an inverse photometric problem are: (a)missing
information induced by the experimental uncertainty or film imperfections [12], and (b)

multi-solution predicament due to the fact that the measured intensities might be compatible

with other plausible combinations of optical constants [18]. To dissolve the ambiguity in the

parameter extraction process, previous researchers [16] exploited reflectance and transmit-

tance spectral measurements at two distinct incident angles of light. In [19], researchers estab-

lished that multiple incidence angles are not necessary for the optical analysis of a single layer,

though it is crucial in analyzing multi-layer stacks with a global optimization algorithm. Thus,

there emerges a need of developing efficient methods for rapid and accurate determination of

the thickness and the optical constants of thin-films.

Several commercial packages of thin-film optical software, such as TFCalc, Filmwizard,

Optilayer, and Essential McLeod, provide advanced modelling for optical dispersion laws and

use fitting methods to determine the thickness and complex refractive index [15]. However,

these packages cannot always find satisfactory solutions, especially when the initial candidate

is far away from the desired solution. Due to this fact, previous researchers found the accuracy

of estimates concerning in case of a strongly absorbing material like silicon in the visible range

[15]. In order to extract the complex dielectric functions of different types of samples like thin-

films and anisotropic crystals from optical spectra, RefFIT [20] offers a variational Kramers-

Kronig constrained fitting approach that fits all the measured spectral data points simulta-

neously, which requires minimal readaptation in different experimental situations. A recent

development, RefDex [4, 21] provided an interactive fitting procedure to extract the complex

refractive index of a film with known thickness from reflectance and transmittance data. This
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inverse problem is not unique and there exist multiple solutions that minimize the same loss

function [4], which mandates imposing physical constraints to determine meaningful solu-

tions. The major concern is that the above-mentioned software-packages do not offer much

flexibility on the choice of parameters, such as the number of oscillators and the bounds on

model coefficients, involved in their respective optimization procedures. For instance, Opti-

Char allows an user to set lower and upper limits on the thickness, the refractive index, and the

extinction coefficient, and it offers a variety of models like normal, anomal or arbitrary disper-

sion, and Sellmeier [15]; however, the number of variables and the optimization algorithm

used in the estimation process remain unknown to an user [15].

The refractive index and extinction coefficient profiles can be substantially different for var-

ious materials [22, 23]. For instance, consider some of the metal-oxides; the complex refractive

indices of the iron-oxides, Hematite and Magnetite, exhibit more peaks and valleys (optical

transitions) than that of the copper oxides [24]. Due to this fact, it is difficult for a supervised

learning based estimation approach to adapt to a variety of materials [25]. Recently, a machine

learning model has been developed to predict the correlation between spectral data and thick-

ness; however, this approach was suitable for thickness characterization of dielectric materials

but not materials with high extinction coefficients (like titanium nitride: TiN) [26]. To attain

generality, there arises a need for supervised learning along with knowledge transfer tech-

niques. On the contrary, an evolutionary optimization approach has potential to offer flexible

solutions through swarm-based efficient search space exploration [27], while circumventing

intense data curation and training requirements involved in traditional supervised learning

techniques [26]. Hence, in the present work, we pose the underlying inverse problem as an

optimization problem and solve it with evolutionary algorithms [27].

Earlier studies explored optimization-based fitting procedures to extract optical constants

using spectrophotometric data. Woollam et al. [28, 29] developed a solver that allowed sequen-

tial addition of various optical models to minimize fitting errors for extracting refractive index

and thickness. A local optimizer, Levenberg-Marquardt (LM) algorithm [30], was utilized in

their approach, which gradually improved the solution accuracy. The optimizer starts from an

initial guess and moves it to a feasible local minimum until another model addition becomes

necessary for further reduction in the fitting error. Swarm-based evolutionary algorithms

(EAs) are robust and good at finding the global optimum even for high-dimensional problems

[31–33], whereas single point based gradient descent variant algorithms face challenges due to

local entrapment and require good initial guesses to reach the global optimum [30, 34]. More-

over, multiple local search procedures from different starting points had been utilized in the

Clustering Global Optimization (CGO) algorithm to estimate film thickness and optical con-

stants from spectrophotometric data [15, 35]. The estimation accuracy of CGO was good for

SiO2 and Ta2O5 films, although it’s efficiency depends on a balanced choice of the starting

intervals [35]. EAs have also been exploited to determine the optical parameters of interest

[36]. Genetic algorithm (GA) and simulated annealing (SA) have been exploited in the ellipso-

metric evaluations, where the traditional gradient-based LM method faces difficulty in tackling

the related hilly error surfaces [37]. Gao et al. [15] applied GA and SA on an ensemble of

Tauc-Lorentz oscillators to extract the real and imaginary parts of complex refractive index of

a film with known thickness from reflectance and transmittance spectra. However, their

approach required a large population to determine the desired inverse solutions. In EAs, a

large population size enhances the search space exploration and helps in avoiding local optima

at the cost of computational overhead.

The present work aims to determine various thin-films’ complex refractive indices and

thickness values with the help of EAs, such as GA and CMAES. Recently, covariance matrix

adaptation evolution strategy (CMAES) has proved to be reliable in solving deterministic and
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stochastic global optimization problems even with a small population size due to the attributes

like step-size adaptation, noise effect reduction, and invariance under coordinate systems [27].

Moreover, CMAES exhibited efficient performance on high-dimensional and ill-conditioned

optimization problems by utilizing an isotropic (rotation-invariant) evolution path [38]. Fur-

ther, the performance of the proposed method is validated on metal-oxide and perovskite

films, and its computational effectiveness is justified in comparison with the existing methods.

The related optical dispersion models and the proposed optimization procedure to solve the

addressed inverse problem are described in Physics to Mathematics section. The different types

of data used in the present study are illustrated in Data Curation section. The achieved inverse

solutions, thickness values and optical constants, of different films are presented in the Results
section along with analysis and discussion. Finally, the benefits of the proposed approach are

summarized in the Conclusion.

Physics to mathematics

In our spectrophotometric analysis, the optical parameters to be extracted are: thickness (d),

refractive index (n), and extinction coefficient (k), and the measured data are: reflectance (R)

and transmittance (T) spectra. The film thickness (d) is a scalar quantity, and the complex

refractive index (n + ik) is composed of real and imaginary constituents as functions of wave-

lengths. The real part of a complex refractive index (n) describes the propagation velocity of

the incident light within the film material, and the imaginary part of it (k) concerns about how

much of the light gets absorbed in the medium. This study aims to solve the inverse problem

of determining {d, n, k} from {R, T}. In the following, we first explain the use of optical oscilla-

tor models to emulate complex refractive index and then dive into the problem formulation.

Forward calculations via oscillator models

The complex dielectric function, �(ω) = �1(ω) + i �2(ω), is analytic in the upper half of the com-

plex ω plane [23, 39], where o ¼ c
l

denotes the frequency of the incident light with λ being its

wavelength and c being the speed of light in the air. The associated photon energy is repre-

sented by E = hω; h is Planck’s constant. The analytic behavior of �(ω) stems from the principle

of causality [23, 40]. Consequently, the imaginary and real parts of it are interconnected by the

Kramers-Kronig relation [40, 41]. Using this relation [39], one can determine �1 from �2 as fol-

lows.

�1ðoÞ ¼ �1ð1Þ þ
2

p
P
Z1

0

O�2ðOÞ

O
2
� o2

dO ; ð1Þ

where P denotes Cauchy’s principle value integral [23]. The complex dielectric function and

complex refractive index are related by: �1 + i�2 = (n + ik)2, which leads to

�1ðoÞ ¼ n2ðoÞ � k2ðoÞ & �2ðoÞ ¼ 2nðoÞ � kðoÞ : ð2Þ

Substituting Eq (2) into Eq (1), unfolds the dispersion relation [23, 42] between the real (n)

and imaginary (k) parts of a complex refractive index as

nðoÞ ¼ nð1Þ þ
2

p
P
Z1

0

kðOÞ
O

2
� o2

dO : ð3Þ

To accurately evaluate n(ω) from k(ω), the above integration (3) requires to be solved for all

frequencies ranging from zero to infinity [23, 40]. However, from an experimental perspective,
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it is only feasible to address a finite range of frequencies. A numerical integration with such a

limited spectral range gives erroneous results [42]. Instead, if the functional form of k(ω) is

known for all frequencies, then the functional form of n(ω) can be determined elegantly [23].

Therefore, oscillator models are utilized to generate tractable continuous function approxima-

tions. In this research, Tauc-Lorentz and Gaussian oscillator models are taken into account, as

described below.

Ensemble of Tauc-Lorentz Oscillators: Consider a material with the complex dielectric

function: � = �1 + i�2. According to an ensemble of N Tauc-Lorentz (TL) oscillators [15], the

imaginary part of the complex dielectric function can be expressed as

�2ðE ¼ hoÞ ¼

XN

i¼1

AiE0iCiðE � EgÞ
2

ðE2 � E2
gÞ

2
þ C2

i E2

1

E
¼
XN

i¼1

Aio0iCiðo � ogÞ
2

ðo2 � o2
gÞ

2
þ C2

io
2

1

o
for E > Eg

0 for E � Eg ;

8
>><

>>:

ð4Þ

where E0i, Eg, Ci, Ai represent the peak transition energy, the band gap energy, the broadening

parameter, and the factor involving optical transition matrix elements for the i’th TL oscillator,

respectively; ωg and ω0i are the respective frequencies corresponding to the energies Eg and E0i.

To calculate �1 from �2, let us now recall the Kramers-Kronig relation (1). In practice, the

lower limit of the integral in Eq (1) is chosen as ωg instead of 0 because the Tauc-Lorentz

model requires �2 to be zero for photon energies below the band gap [39]. Note that �1(1)>1

is a high frequency dielectric constant to prevent �1! 0 when E< Eg.
The formulation of these optical functions was first proposed by Forouhi and Bloomer for

amorphous semiconductors and insulators [23], and later, extended for crystalline semicon-

ductors and metals [40]. According to the seminal work by Jellison and Modine [39], �1(ω) can

be derived from Eq (1) by exploiting the continuous approximation (4) of �2(ω). These �1 and

�2 are then used to solve Eq (2) for all ω, so that n and k can be deduced as a function of (3N
+ 3) parameters, where 3N parameters come from (E0i, Ci, Ai) for i 2 [1, N] and the rest three

parameters are: d, ωg, and �1(1). The number of decision variables involved in optimizing an

TL ensemble model are: (3N + 3).

Ensemble of Gaussian Oscillators: The imaginary r-index profile according to an ensem-

ble of Gaussian oscillators, is given by

kðoÞ ¼
XN

i¼1

Aiexp
� ðw� miÞ

2

2s2
i ¼

XN

i¼1

AiGsðWiÞ ; ð5Þ

where GsðWiÞ ¼ exp� W2
i ; Wi ¼

ðw� miÞffiffi
2
p

si
stands for the ithGaussian component with mean μi and

variance σi, and Ai is the corresponding coefficient for all i = 1, 2, . . ., N [43]. Next, n(ω) is

determined by applying the Kramers-Kronig integration (3) to the continuous approximation

(5) of k(ω), which takes shape as

nðoÞ ¼ nð1Þ þ
2
ffiffiffi
p
p
XN

i¼1

Aiexp
� W2

i

Z� Wi

0

expx2dx ; ð6Þ

or; nðoÞ ¼ nð1Þ þ
XN

i¼1

AiGsðWiÞ � Erfið� WiÞ ; ð7Þ

where Erfið� WiÞ ¼
2ffiffi
p
p

R � Wi
0

expx2dx represents the ithimaginary error function [44]; n(1) = 1
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refers to k(1) = 0 and n(1)>1 refers to k(1)6¼0 [40, 43]. Here, the Gaussian distributions

are utilized to retrieve n and k directly instead of deriving them from �1 and �2. An ensemble of

Gaussian oscillators (GO) composed of NGaussian distributions, deals with 3N parameters as

Ai, μi, σi for i 2 [1, N] and two more parameters as n and d. Thus, the total number of decision

variables involved in optimizing an GO ensemble model are: (3N + 2).

Note that the above optical constants, n(ω) and k(ω), are expressed as n(λ) and k(λ), respec-

tively, during the numerical implementation. Since o ¼ c
l
, the order of (n, k) sequences gets

reversed when the independent variable is changed from ω to λ. The forward calculation of

{Rcalc(λ), Tcalc(λ)} for a tuple {d, k(λ), n(λ)} is carried out by the transfer-matrix method [17].

The transfer-matrix method is used to calculate the forward and backward propagating electric

fields in smooth homogeneous films, which relies on the superposition of the induced electric

fields. The overall transfer matrix is obtained by multiplying a matrix that quantifies the

change in field due to the light waves propagating through an interface (air-to-film) with

another matrix that quantifies the change in field due to the same waves propagating within a

layer (film).

Inverse problem formulation

We now explain how the underlying inverse problem is posed as an optimization problem. An

overview of the associated forward and inverse processes is depicted in Fig 1.

Optimization problem. The optimization problem is defined as

min
d;kðlÞ;nðlÞ

L ¼
Xlub

l¼llb

fRmeasðlÞ � RcalcðlÞg
2
þ fTmeasðlÞ � TcalcðlÞg

2
: ð8Þ

Fig 1. A flow diagram of the forward and inverse processes: (a) The forward process (yellow panel) involves an

UV-Vis-NIR Spectrometer to measure the reflectance & transmittance {R(λ), T(λ)} resulting from a film of thickness d
nm and complex refractive index: n(λ) + ik(λ), (b) The inverse problem (green panel) is to find the desired optical

parameters {d, n(λ), k(λ)} from the measured data {R(λ), T(λ)}.

https://doi.org/10.1371/journal.pone.0276555.g001
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In Eq (8), L is the total loss containing differences in the experimentally measured reflec-

tance and transmittance data {Rmeas, Tmeas} from their theoretically calculated values {Rcalc,
Tcalc}, for all wavelengths. The admissible range of the wavelength, i.e. {λlb, λub}, depends on

the experimental infrastructure. The decision variables associated with the optimization prob-

lem, are: thickness d, real r-index profile n(λ), and imaginary r-index profile k(λ). Thickness

candidates are directly passed to the solver, whereas n and k candidates are passed in terms of

the oscillator model parameters. The evaluation of {Rcalc(λ), Tcalc(λ)} for a candidate solution

{d, n(λ), k(λ)} has been discussed in the preceding section.

In order to make the optimization process computationally efficient, we generate candidate

solutions within a search space restricted by an intrinsic correlation [23, 42] between the opti-

cal parameters of interest. The thickness candidates are chosen from a reasonable range of sca-

lars. The imaginary and real refractive index candidate profiles are provided by the adopted

oscillator models. A formulation over a range of wavelengths is computationally more tracta-

ble than a formulation at distinct wavelengths. In a discrete approach, the search space

increases with the number of wavelengths and it is cumbersome to determine a physically

meaningful refractive index (and/or extinction coefficient) profile out of every solution point

at each wavelength, while satisfying the associated constraints. However, our proposed optimi-

zation approach generates the candidate solutions from a search space restricted by the Kra-

mers-Kronig relation and fits all the given spectral data points simultaneously.

Data curation

The proposed methodology is implemented on a diverse data set for two kinds of film materi-

als: (A) metal-oxide, and (B) perovskite (MAPbI3). Different types of data used in the present

study are summarized in Table 1, and the details are described below.

Fully-synthetic dataset: There involves two steps in preparing the fully-synthetic data: (i)

emulate refractive indices n and k by using a single Tauc-Lorentz oscillator (commonly used

for metal oxide materials), and (ii) obtain the reflectance R and transmittance T by using the

transfer-matrix method with the (n, k) profiles obtained in step (i) and the user-specified d val-

ues, where the wavelength range selected in the UV-Vis-NIR is 350–1000 nm. For this dataset,

1, 116 (n, k) profiles were simulated with a python implementation of the one-oscillator Tauc-

Lorentz model in step (i), and 10 random thickness values within a range 20 − 2000 nm were

used in step (ii) for obtaining (R, T) spectra.

Semi-synthetic dataset: There involves two steps in preparing the semi-synthetic data: (i)

obtain refractive indices n and k from the literature [1] (for perovskite materials); (ii) obtain

the reflectance R and transmittance T by using the transfer-matrix method with the (n, k) pro-

files obtained in step (i) and the user-specified d values, where the wavelength range selected

in the UV-Vis-NIR is 350–1000 nm. For this dataset, a set of 18 distinct (n, k) profiles were

selected from the literature in step (i), and 15, 640 (R, T) spectra were simulated with a python

Table 1. Obtaining reflectance and transmittance spectra for different data types. The film thickness in experimental data are measured using combinations of the pro-

cess variables (M, rpm). Further details are available in the Data Curation section.

Type Optical Constants (n, k) Thickness (d) Spectra (R, T)

Fully-synthetic

Data

1116 varieties of (n, k) profiles simulated random values within a range: 10 − 2010 nm calculation method: transfer-

matrix

Semi-synthetic

Data

18 varieties of (n, k) profiles from literature

[1]

incremental values within a range: 10 − 2010 nm calculation method: transfer-

matrix

Experimental Data metal-oxides: ITO, NiO perovskite: MAPbI3 concentration (M): 0.5, 1.25, 1.5 coating speed (rpm): 3000,

6000

spectrophotometric measurements

https://doi.org/10.1371/journal.pone.0276555.t001
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implementation of the transfer-matrix method by assigning thickness values d in a range 10

− 2010 nm with an increment of 1 nm. Unlike the fully-synthetic dataset, the semi-synthetic

dataset only requires one-step simulation, i.e., the simulation of (R, T) spectra using the trans-

fer-matrix method.

Experimental dataset: The metal-oxide films, ITO and NiO, are sputtered via physical vapor

deposition (PVD) on a glass substrate using an FHR SV-540 in-line sputtering tool. The

MAPbI3 perovskite film is deposited on a glass substrate with two process variables affecting

thickness, which are the concentration of the perovskite precursor solution (PbI2 and MAI

with molar ratio of 1:1) and the spin coating speed. We conduct two characterizations: (1)

spectrophotometry (UV-Vis) with an Agilent Cary 7000 UV-Vis-NIR Spectrophotometer [45],

to obtain the optical reflection and transmission, and (2) profilometry with an KLA Tencor P-
16 + Plus Stylus Profiler, to obtain the thickness of the deposited films.

The extinction coefficient of a material is its characteristic/intrinsic property. In the present

study, we have considered a variety of materials, including hypothetical and realistic metal-

oxides and MAPbI3 perovskites. Each material’s extinction coefficient has a specific maximum

and minimum. Considering various material samples used in the current data sets (fully-syn-

thetic, semi-synthetic and experimental), the maximum and the minimum of all the extinction

coefficients are 2.0 and 0.00, respectively. Note that the extinction coefficients in the semi-syn-

thetic and experimental data sets are more realistic than that of the fully-synthetic data set,

which never go beyond the peak value of 1.5.

Results

Implementation Aspects:During the implementation for extracting different films’ thickness

and optical constants, wavelength (λ) is considered as the independent variable. The reflec-

tance and transmittance spectra are measured for a wavelength range of 350 to 1000 nm. The

inverse problem of determining d, n(λ), k(λ) from R, T is not unique. So, there is a risk that an

optimization algorithm unravels solutions that do not make sense physically. To mitigate this

issue, we pose bounds on the decision variables involved in TLO and GO models such that

negative n and k are always discouraged during the optimization process. The decision vari-

ables associated with the TLO ensemble model, i.e. Ai, E0i, Ci, Eg, �1, d, are selected from a

bounded search space: {0, 100}, {0, 10}, {0, 10}, {0, 5}, {0, 2}, {20, 2000}. In TL ensemble model,

2, 3 and 4, 5 oscillator components are chosen for type A and B materials, which gives rise to 9,

12 and 15, 18 variables to be optimized, respectively. For each TLO oscillator, two parameter

constraints: |E0i|> Eg and jE0ij > Ci=
ffiffiffi
2
p

, are maintained during optimization via penalizing

the objective function value. The decision variables associated with the GO model, i.e. Ai, μi, σi,
�n, d, are selected from a bounded space: {0, 5}, {3, 9}, {0.2, 1.1}, {0, 5}, {20, 2000}. In the GO

ensemble model, 2, 3 and 4, 5 oscillator components are chosen for type A and B materials,

giving rise to 8, 11 and 14, 17 variables to be optimized, respectively. To save function evalua-

tions, a small population size is selected as per CMAES’s default parameter setting [31] that

suggests a population of 10 candidates to tackle 8, 9 decision variables, a population of 11 can-

didates to tackle 11, 12, 14 decision variables and a population of 12 candidates to tackle 15, 17

decision variables in the objective function.

Algorithm Selection:We apply two EAs, namely Genetic Algorithm (GA) and Covariance

Matrix Adaptation Evolution Strategy (CMAES), for optimizing the parameters associated

with the adopted optical dispersion models: TLO ensemble and GO ensemble. To validate the

performance of CMAES and GA on TLO as well as GO ensembles, 20 samples are drawn ran-

domly from the fully-synthetic data set. For each sample, three runs are considered with a

maximum of 200 iterations and the best result is stored. Table 2 presents a performance
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comparison between the employed local and global optimization algorithms, i.e. LM vs. GA vs.

CMAES. The average loss is drastically higher in case of the local optimization algorithm than

the global optimization algorithms because the former drives only a single point that may eas-

ily get trapped by local optima whereas the latter drives a population of candidates to efficiently

explore the search space while avoiding local traps. Therefore, the performance of LM very

much depends on the initial condition; a better starting point leads to a lower loss value. On

the contrary, the performance of EAs like GA or CMAES is less sensitive to the initial popula-

tion. Table 2 shows that the average loss achieved by CMAES is the lowest. This study bolsters

the use of CMAES over GA in the underlying inverse problem. Upon selecting CMAES, it is

applied onto the fully-synthetic, the semi-synthetic and the experimental data.

Performance on synthetic data

For each sample, five runs are considered with a maximum of 1500 iterations and the best

result is stored. We cut the run if CMAES reaches a loss value below 0.05 (stopping

criteria). A loss value of 0.05 in Eq (8), refers to a mean square error of 0.05/651 = 7.68e − 5 for

(1000 − 350) + 1 = 651 wavelengths in the given range. A successful occasion is counted if the

thickness estimation error is below 10% along with a minimum loss of� 0.17 (saving criteria).

Results using fully-synthetic data: CMAES is applied onto 100 samples randomly drawn

from the entire synthetic dataset, and a detailed performance evaluation is presented in

Table 3. Overall, the performance metrics, EEd,mEEn andmEEk, suggest less variance in the

estimated thickness values and more variance in the estimated refractive indices. The model-

based optimization prove to be effective with TLO-2 and GO-3. The thickness estimates of var-

ious samples for the successful occasions, are shown in Fig 2. For three different inverse solu-

tions, the estimated refractive index (n) and extinction coefficient (k) are shown in Fig 3,

which are in conformity with their references. In Table 3, we mention the mediansmEEn and

mEEk as the associated R2-score sequences contain outliers that might skew the average of

scores. An outlier refers to an inverse solution where the real or imaginary refractive index

estimates have high variances with respect to their reference profiles, although the correspond-

ing thickness estimate is satisfactory.

Table 2. Performance evaluation of local and global optimization algorithms.

Algorithm

Model

LM GA CMAES

TLO 61.6164 3.0407 1.3828

GO 90.5451 2.5997 2.4713

https://doi.org/10.1371/journal.pone.0276555.t002

Table 3. Estimation performance of the adopted oscillator ensemble models applied on 100 samples of type A films, picked randomly from the fully-synthetic data

set. EEd: R2-score between original and estimated thickness values,mEEn: median of R2-scores between original and estimated n(λ) arrays;mEEk: median of R2-scores

between original and estimated k(λ) arrays;mEER: mean of R2-scores between original and estimated R(λ) arrays;mEET: mean of R2-scores between original and estimated

T(λ) arrays; SR: success rate = number of successful occasions (nss)/ total occasions (ns); andmFE: average number of function evaluations: ð1=nssÞ �
Pnss

i¼1
FEi; andmFE

denotes the average number of function evaluations (iterations × population size).

Thin Film Optical Model Scores

EEd mEEn mEEk mEER mEET SR mFE

type A TLO -2 0.99502 0.90654 0.99779 0.93573 0.98083 0.62 228.32

TLO -3 0.99500 0.94185 0.99637 0.96052 0.98018 0.57 266.59

GO -2 0.99884 -1.41127 0.76782 0.94592 0.87954 0.23 294.87

GO -3 0.99627 0.25544 0.95294 0.96604 0.99185 0.27 558.15

https://doi.org/10.1371/journal.pone.0276555.t003
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Results using semi-synthetic data: CMAES is applied onto 100 samples randomly drawn

from the semi-synthetic dataset, and a detailed performance evaluation is presented in Table 4.

Overall, EEd is quite good althoughmEEn andmEEk are slightly worse. The model-based opti-

mization prove to be effective with TLO-4 and GO-5. The thickness estimates of various sam-

ples for the successful occasions are shown in Fig 2. For three different inverse solutions, the

estimated refractive index (n) and extinction coefficient (k) in Fig 4 exhibit a good agreement

with the original profiles.

To verify the robustness of the proposed method against measurement uncertainty, we

inject normally distributed random disturbances into the reflectance and transmittance data of

a d = 1350 nm thick perovskite film and run the optimizer to determine the respective inverse

solutions. A performance comparison with different levels of measurement noise, i.e. noisem,

is shown in Fig 5. As per Fig 5(a), the number of iterations required by the optimizer increases

as the noise level increases from 5% to 10% of the (R, T) data. Without any noise, the optimizer

takes 238 iterations to reach the global minimum with an estimation error<0.05. With 5%

noisem, the optimizer is able to minimize the estimation error below the threshold 0.05 in 367

iterations, however, with 10% noisem, the error is 0.201 after 1500 iterations. The retrieved

thickness estimates are: 1352.63, 1350.33, 1352.26 with 0%, 5%, 10% noisem, respectively. Due

to the presence of noisem, Fig 5(c) indicates a downward shift in the estimated refractive index

and an upward shift in the estimated extinction coefficient for wavelengths below 520 nm.

Thus, the proposed method is robust against measurement noise up to certain extent.

Performance on experimental data

Moreover, the model-based optimization with evolutionary algorithms, GA and CMAES, is

used to extract the thickness and the optical constants of a 91 nm thick ITO film and a 99 nm
thick MAPbI3 film from the experimentally measured spectra. For each method, the respective

optimizers are run ten times and the best results are recorded. The maximum number of

allowed iterations is 1000, however, we cut the run if the estimation error goes below 0.05. For

two different films, the resulting thickness estimates and the related optimization details are

presented in Table 5. The evolution of estimation errors during the optimization process are

shown in Fig 6. Even with a small population of 12 candidates, CMAES gives an estimation

error of order 10−2 in 500 iterations and it reduces faster than that of GA, as supported by Fig

6. For the second film in Table 5, the fitting performance and estimated complex refractive

index are shown in Fig 7. In Fig 7(a), TLO fits the spectra better than GO throughout the

Fig 2. Visual representation of the actual vs. estimated thickness values for the successful occasions reported in Tables

3 and 4: (a) thickness estimates of type A films, (b) thickness estimates of type B films.

https://doi.org/10.1371/journal.pone.0276555.g002
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wavelength range of 350 − 1000 nm. Fig 7(c) help visualizing that GO fits the spectra better

than TLO in the wavelength range of 350 − 500 nm, with an appropriate broadening [46].

These results justify that the model-based optimization with CMAES can produce accurate d,

n(λ), k(λ) estimates using real data with experimental uncertainty.

Fig 3. Inverse solutions obtained using the synthetic spectral data of metal-oxide films: (a) Actual and estimated

spectra with optimized TLO ensemble; total estimation loss = 0.0260, (b) Actual and estimated optical constants with

TLO; actual and estimated thickness = 60.0, 60.26 nm, (c) Actual and estimated spectra with optimized GO ensemble;

total estimation loss = 0.1011, (d) Actual and estimated optical constants with GO; actual and estimated

thickness = 477, 479.71 nm, (e) Actual and estimated spectra with optimized TLO ensemble; total estimation

loss = 0.0493, (f) Actual and estimated optical constants with TLO; actual and estimated thickness = 1230, 1233.54 nm.

https://doi.org/10.1371/journal.pone.0276555.g003
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Point-wise vs. Simultaneous Optimization: Earlier research [47] introduced a point-wise

unconstrained minimization algorithm (PUMA) that considers finite number of points in a

range of wavelengths and makes use of repeated calls to solve the underlying estimation prob-

lem. For instance, to extract the thickness and the optical constants of a thin-film from the

experimental data, reported in Table 5, the following PUMA calls are made recursively.

>puma singl0099b 4 2 10 B 100 0370 0970 3000 1e+100 0 0010
2000 50 0400 950 50 3 5 1 3 5 1 0.10 0.10 0.05
>puma singl0099b 4 2 10 B 100 0370 0970 5000 1.633587e-01 9

0050 0150 01 0400 0700 50
>puma singl0099b 4 2 10 B 100 0370 0970 50000 2.935665e-02 9

0090 0110 01 0450 0650 10
In this case, a quadratic error of 2.9356e − 2 with respect to 100 distinct wavelengths

(points) in 350 − 1000 nm, is attained by PUMA. The estimated thickness (99 nm) is accurate

with reference to the original thickness value (99 nm), though the estimated optical constants

in Fig 7(d) do not capture fine transitions and they are not in good agreement with the index

profiles found by our proposed method. Moreover, there is a lack of instruction on how to

select a range for inflection points in PUMA calls and how many calls are sufficient to solve an

inverse problem.

Comparison with Existing Package: Furthermore, the proposed method is applied on a liter-

ature data (R, T) to extract the optical constants and the thickness of a Si film [15]. In this case,

a population of 50 candidates is leveraged and a minimum loss of 0.02 is selected as the stop-

ping criteria for the CMAES algorithm. The optimal solution is presented in Table 6 and the

estimated optical constants are shown in Fig 8. The benefits of the proposed method over the

existing Optichar Software (OS) and Clustering Global Optimization (CGO) algorithm, are as

follows: (i) In OS, a user has many options (normal, arbitrary dispersion, Sellmeier) for a

model-based iterative optimization procedure, however, there are no information available on

the decision variables and the optimization algorithm. The proposed method offers clarity on

the optimization algorithm and the associated variables; (ii) The effectiveness of CGO depends

on the choice of initial intervals of the associated decision variables [35]. It is difficult to

explore all the minima with a small initial interval, and on the other hand, a broad initial inter-

val might leave a sharp minimum undetected. Unlike CGO, the CMAES algorithm’s perfor-

mance is not so sensitive to its parameter bounds and the choice of bounds can be made

without requiring much domain knowledge, as shown in Table 6; (iii) Also, CMAES performs

faster than CGO and OS as it minimizes the error function with less evaluations (FE), as

reported in Table 6.

Table 4. Estimation performance of the adopted oscillator ensemble models applied on 100 samples of type B films, picked randomly from the semi-synthetic data-

set. Note that the spectral data are in consistent with linear spectrophotometric measurements.

Thin Film Optical Model Scores

EEd mEEn mEEk mEER mEET SR mFE

type B TLO -3 0.99528 0.79032 0.93447 0.98572 0.99968 0.53 719.43

TLO -4 0.99672 0.87354 0.95219 0.98533 0.99968 0.63 755.65

TLO -5 0.99750 0.79227 0.94078 0.98655 0.99969 0.48 747.08

GO -3 0.99988 -0.17827 0.79189 0.97610 0.99896 0.10 719.7

GO -4 0.99996 0.30902 0.79027 0.98416 0.99895 0.36 1161.11

GO -5 0.99997 0.44936 0.87493 0.98771 0.99921 0.43 1321.56

https://doi.org/10.1371/journal.pone.0276555.t004
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Fig 4. Inverse solutions obtained using the semi-synthetic spectral data of MAPbI3 films: (a) Actual and estimated

spectra with optimized GO ensemble; total estimation loss = 0.0530, (b) Actual and estimated optical constants with

GO; actual and estimated thickness = 62.0, 59.44 nm, (c) Actual and estimated spectra with optimized GO ensemble;

total estimation loss = 0.0454, (d) Actual and estimated optical constants with GO; actual and estimated

thickness = 169.0, 166.53 nm, (e) Actual and estimated spectra with optimized TLO ensemble; total estimation

loss = 0.0335, (f) Actual and estimated optical constants with TLO; actual and estimated thickness = 1350.0, 1359.86

nm.

https://doi.org/10.1371/journal.pone.0276555.g004
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Analysis and discussion

In Fig 2(a) and 2(b), the optimized TLO ensemble model finds more number of accurate thick-

ness estimates (within 10% of the original values) than the optimized GO ensemble model,

which is also supported by Table 3. The thickness estimates are slightly dispersed around their

original values for films with d> 1.5 μm. At higher film thickness, the optical constants exhibit

a nonlinear dependence commonly observed in earlier research findings [49]. In Fig 3(b), n
and k estimates exactly match with the original profiles throughout, however, in Figs 3(d), 4(b)

and 4(d), there exist slight differences between the original and estimated n, k profiles espe-

cially in the low-wavelength regime partially including ultraviolet-visible spectral range. To

Fig 5. Effect of measurement noise in estimation performance: (a) The top rowpresents noisy spectral data references

and estimates, and the bottom row presents the evolution of estimation errors with iterations; the reference and the

estimated reflectance and transmittance are in good agreement with each other. The noise level increases from left to

right column-wise as 0%, 5%, 10% noisem, respectively (b) Estimated spectra vs. wavelength, (c) Estimated optical

constants vs. wavelength.

https://doi.org/10.1371/journal.pone.0276555.g005
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further inspect this quantitatively, we split the entire wavelength range into two sectors and

highlight the estimation performance of the well fitted models as per Tables 3 and 4.

• TLO-2 for type A films: For a wavelength range of 350 − 500 nm, the estimation metrics are

mEEn = 0.41617,mEEk = 0.98999; and for a wavelength range of 500 − 1000 nm, the estima-

tion metrics aremEEn = 0.83078,mEEk = 0.99870.

• TLO-4 for type B films: For a wavelength range of 350 − 500 nm, the estimation metrics are

mEEn = −0.47954,mEEk = 0.72331; and for a wavelength range of 500 − 1000 nm, the estima-

tion metrics aremEEn = 0.97758,mEEk = 0.95517.

The above reported results reveal that the fitting error in k(λ) gets amplified into n(λ) as it

propagates through the Kramers-Kronig integration. In the low-wavelength regime,mEEn and

mEEk deteriorate for perovskite materials, which could be due to the interaction between mul-

tiple inter-band optical transitions [50] or film inhomogeneity [4].

The error metrics reported in Tables 3 and 4 reveal the challenge in achieving a good accu-

racy of n(λ), k(λ) estimates simultaneously with d. The achieved results justify that the inter-

band transitions for metal-oxide and perovskite materials are well captured by Tauc-Lorentz

oscillators. Moreover, the model-based optimization with CMAES can handle measurement

uncertainty and extract optical parameters from experimental data, as supported by Table 5

and Fig 7. It is worth noting that a local search algorithm, such as sequential least square

Table 5. Estimation performance of various methods on experimental data. In the present spectrophotometry, light beams fall straight (normally) on the films.

Film Method

Outcome

TLO+CMA GO+CMA TLO+GA GO+GA

#1 metal-oxide d (nm) 201.19 91.76 89.33 89.04

L 0.0611 0.5399 0.2648 0.4363

iteration 1000 1000 1000 1000

nFE 10000 11000 10000 11000

#2 perovskite d (nm) 99.05 99.33 33.05 98.76

L 0.0499 0.0499 0.2369 0.2417

iteration 600 556 1000 1000

nFE 7200 6672 12000 12000

https://doi.org/10.1371/journal.pone.0276555.t005

Fig 6. Evolution of estimation errors during model-based optimization with CMAES: (a) Error evolution for film 1,

(b) Error evolution for film 2 in Table 5.

https://doi.org/10.1371/journal.pone.0276555.g006
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programming (SLSQP from ‘scipy.optimize’), can be applied to the estimates found by an EA

to further improve the solution accuracy if needed.

Inverse problems involve one-to-many mappings and often they are ill-posed [38, 51],

therefore, finding exact solutions to such problems is challenging. Further, the difficulty level

rises when the inverse solutions are extracted from noisy measurements. The present work

demonstrates that the proposed model-based optimization with CMAES does a reasonably

good job in extracting accurate inverse solutions. The nature of complex refractive index pro-

files varies across diverse materials, such as inorganic, organic, and other miscellaneous mate-

rials. Thus, the number of oscillator components to be used in an optical ensemble model

depends on the type of the concerned material(s), and it is difficult to come up with an univer-

sal rule of selecting the same. The current choice is subjective to two types of film materials:

metal-oxide and perovskite. To tackle multiple optical transitions in case of MAPbI3 perovskite

films, the number of oscillator components is selected as higher than that of metal-oxides

films. In general, our solver application can be extended to a variety of materials by adjusting

the number of composition elements in the optical dispersion models. The proposed evolu-

tionary optimization approach does not require any prior learning or memory-based mapping.

The successful runs take only about a few minutes to find an inverse solution with an i7-

4600M CPU@2.90 GHz processor. The present approach utilizes the spectral data at just one

Fig 7. Estimated optical constants from the experimentally measured spectra of two different films: (a) Measured vs.

estimated spectra for ITO film, (b) Estimated refractive index and extinction coefficient estimates of ITO film. (c)

Measured vs. estimated spectra for MAPbI3 film, (d) Estimated refractive index and extinction coefficient estimates of

MAPbI3 film.

https://doi.org/10.1371/journal.pone.0276555.g007
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Table 6. Performance comparison between the proposed method and the existing methods based on OptiChar software and CGO algorithm. Here, the estimation

error is defined according to the reference [15]. Note that the § error is calculated with reference to the spectral data [15] generated using a plot digitizer [48], while consid-

ering 651 points in the wavelength range of 400 − 900 nm.

Method Bounds Solution Error [15] n k FE

OS × 667.1 0.647 4.427 at 500 nm 0.395 at 500 nm ×
3.809 at 700 nm 0.040 at 700 nm

CGO A1: 70 − 76 73.364 0.378 4.487 at 500 nm 0.581 at 500 nm 105

A2: 6.5 − 12.5 9.406 3.789 at 700 nm 0.040 at 700 nm

A3: 0.4 − 1.4 0.832

E01: 3.36 − 3.96eV 3.664

E02: −2.24 − 1.64eV −1.933

E03: −2.74 − 2.14eV −2.425

C1: 1.7 − 2.3 1.986

C2: 1.15 − 1.75 1.448

C3: 0.15 − 0.75 0.429

Eg: 0.7 − 0.9eV 0.842

�1: 2.28 − 2.88 2.562

d: 660 − 680nm 670.5

Proposed A1: 0 − 100 13.729 §0.004 4.423 at 500 nm 0.665 at 500 nm 551 × 50 = 27550

A2: 0 − 100 96.837 3.829 at 700 nm 0.039 at 700 nm

A3: 0 − 100 31.035

E01: −5 − 5eV −1.953

E02: −5 − 5eV 3.810

E03: −5 − 5eV 4.714

C1: 0 − 10 1.549

C2: 0 − 10 2.418

C3: 0 − 10 2.504

Eg: 0 − 5eV 0.960

�1: 0 − 5 1.526

d: 20 − 2000nm 664.4

https://doi.org/10.1371/journal.pone.0276555.t006

Fig 8. Performance comparison between estimation techniques: (a) Measured vs.estimated spectra, (b) Estimated

optical constants.

https://doi.org/10.1371/journal.pone.0276555.g008
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incident angle of light, however, in future, additional spectral information (at multiple

incident angles) can be considered to alleviate the effect of uncertainty in the experimental

measurements.

Conclusion

The proposed model-based optimization with covariance matrix adaptation evolution strategy

(CMAES) succeeds in extracting the thickness and the optical constants of metal-oxide and

perovskite films from spectrophotometric data using tangible parameters. The employed evo-

lutionary algorithm, CMAES, proves to be efficient in finding globally optimal solutions with-

out spending much function evaluations, and it is robust against measurement uncertainties as

well. Overall, the proposed method finds accurate thickness estimates and it can estimate com-

plex refractive indices with multiple transitions.
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