Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[diaqua $\left[\mu_{6}-4,4^{\prime}\right.$-(1,4-phenylene)-bis(2,6-dimethylpyridine-3,5-dicarboxylato)]dilead(II)]

Yi Zhu, Ming-Xing Zhang, Shan-Shan Yang, Feng Xiao, Xiao-Ping Zhang, Yuan-Yuan Gao, Bing-Jie Li and Kun-Lin Huang*

College of Life Science, and College of Chemistry, Chongqing Normal University, Chongqing 400047, People's Republic of China
Correspondence e-mail: kunlin@jlu.edu.cn

Received 18 February 2013; accepted 20 March 2013
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$; R factor $=0.022 ; w R$ factor $=0.055$; data-to-parameter ratio $=12.2$.

The asymmetric unit of the title Pb -based coordination polymer, $\left[\mathrm{Pb}_{2}\left(\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{8}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, consists of one $\mathrm{Pb}^{\text {II }}$ cation, half of a 4,4'-(1,4-phenylene)bis(2,6-dimethyl-pyridine-3,5-dicarboxylate (L^{4-}) ligand and one coordinating water molecule. The centers of the benzene ring of the ligand and the four-membered $\mathrm{Pb} / \mathrm{O} / \mathrm{Pb} / \mathrm{O}$ ring are located on centers of inversion. The $\mathrm{Pb}^{\mathrm{II}}$ ion is coordinated in form of a distorted polyhedron by seven O atoms from four separate L^{4-} ligands and by one water O atom. The PbO_{7} polyhedra share O atoms, forming infinite zigzag $\left[\mathrm{PbO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$ chains along [100] that are bridged by L^{4-} ligands, forming a two-dimensional coordination network parallel to (001). $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the water molecule are observed.

Related literature

For background to metal-organic frameworks, see: Long \& Yaghi (2009); Zhao et al. (2003). For related structures, see: Liu et al. (2002); O’Keeffe et al. (2008); Zhang et al. (2011). For lead complexes, see: Harrowfield et al. (2004); Yang et al. (2007). For typical $\mathrm{Pb}-\mathrm{O}$ distances, see: Chen et al. (2012); Wei et al. (2005). For the photoluminescent mechanism of ligand-metal charge transfer, see: Hu et al. (2010); Zhang et al. (2012).

Experimental

Crystal data
$\left[\mathrm{Pb}_{2}\left(\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{8}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$\gamma=85.494(3)^{\circ}$
$M_{r}=910.80$
Triclinic, $P \overline{1}$
$a=7.2182$ (12) \AA
$b=9.0635$ (14) A
$=607.43$ (17) \AA^{3}
$Z=1$
Mo $K \alpha$ radiation
$\mu=13.90 \mathrm{~mm}^{-1}$
$c=9.9589$ (15) \AA
$T=298 \mathrm{~K}$
$\alpha=79.202(2)^{\circ}$
$0.25 \times 0.23 \times 0.23 \mathrm{~mm}$
$\beta=71.683(2)^{\circ}$

3168 measured reflections 2119 independent reflections 1932 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.015$

Data collection

Bruker SMART APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.129, T_{\text {max }}=0.142$

174 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=1.15 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-1.16 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5-\mathrm{H} 2 \cdots \mathrm{O} 4^{\text {i }}$	0.85	2.04	2.834 (6)	155
$\mathrm{O} 5-\mathrm{H} 1 \cdots \mathrm{O}^{\text {ii }}$	0.85	2.05	2.879 (5)	165

Symmetry codes: (i) $-x,-y,-z+1$; (ii) $-x+1,-y,-z+1$.

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINTPlus (Bruker, 2008); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

This work was supported by the Science and Technology Projects of Chongqing Municipal Education Commission (grant No. KJ120632) and Chongqing Normal University Scientific Research Foundation Project (grant No. 2011XLS30).

[^0]
metal-organic compounds

References

Bruker (2008). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA
Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, X., Zhang, M. X. \& Huang, K. L. (2012). Chin. J. Struct. Chem. 31, 16011607.

Harrowfield, J. M., Maghaminia, S. \& Soudi, A. A. (2004). Inorg. Chem. 43, 1810-1812.
Hu, J. S., Shang, Y. J., Yao, X. Q., Qin, L., Li, Y. Z., Guo, Z. J., Zheng, H. G. \& Xue, Z. L. (2010). Cryst. Growth Des. 10, 4135-4142.
Liu, Y. H., Lu, Y. L., Wu, H. C., Wang, J. C. \& Lu, K. L. (2002). Inorg. Chem. 41, 2592-2597.
Long, J. R. \& Yaghi, O. M. (2009). Chem. Soc. Rev. 38, 1213-1214.
O’Keeffe, M., Peskov, M. A., Ramsden, S. J. \& Yaghi, O. M. (2008). Acc. Chem. Res. 41, 1782-1789.

Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Wei, Y. L., Hou, H. W., Li, L. K., Fan, Y. T. \& Zhu, Y. (2005). Cryst. Growth Des. 5, 1405-1413.
Yang, J., Li, G. D., Cao, J. J., Yue, Q., Li, G. H. \& Chen, J. S. (2007). Chem. Eur. J. 13, 3248-3261.

Zhang, M.-X., Chen, X., Huang, K.-L., Zhu, Y. \& Yang, S.-S. (2012). Acta Cryst. C68, m90-m93.
Zhang, M.-X., Jiao, X.-Y., Chen, X. \& Huang, K.-L. (2011). Acta Cryst. C67, m324-m326.
Zhao, B., Cheng, P., Dai, Y., Cheng, C., Liao, D. Z., Yan, S. P., Jiang, Z. H. \& Wang, G. L. (2003). Angew. Chem. Int. Ed. 42, 934-936.

supplementary materials

Poly[diaqua[$\mu_{6}-4,4$ '-(1,4-phenylene)bis(2,6-dimethylpyridine-3,5-dicarboxylato)]dilead(II)]

Yi Zhu, Ming-Xing Zhang, Shan-Shan Yang, Feng Xiao, Xiao-Ping Zhang, Yuan-Yuan Gao, BingJie Li and Kun-Lin Huang

Comment

In recent years, the chemistry of novel metal-organic hybrid coordination polymers has been the subject of intensive research, due to their interesting molecular structures and their potential as a new class of solid-state materials applied in catalysis, molecular recognition, gas storage, drug delivery, and so on (Liu et al., 2002; O'Keeffe et al., 2008). Generally speaking, the diversity of potential applications in the framework structures of such materials greatly depends on the selection of the metal centers and organic spacers. Recently, carboxylate groups are frequently exploited in the design, syntheses, and crystallization of coordination frameworks, because they exhibit diverse coordination modes, which can enhance the robustness of the architectures. Furthermore, the flexibility of carboxylate groups is always efficient to form fascinating structures. In this paper, we choose a new flexible and multidentate carboxylate ligand, 4,4'-(1,4-phenyl-ene)bis(2,6-dimethylpyridine-3,5-dicarboxylic acid) $\left(\mathrm{H}_{4} \mathrm{~L}\right)$.
Up to date, research on coordination polymers has focused on transition metal ions as coordination centers, while less concentration has been given to heavy p-block metal ion, e.g. lead(II). In contrast to transiton metal ions, lead(II), with its large radius, flexible coordination environment, and variable stereochemical activity, provides unique opportunities for the formation of unusual structures with interesting properties (Harrowfield et al.., 2004; Yang et al.., 2007). In addition, the intrinsic features of lead(II), the presence of a $6 \mathrm{~s}^{2}$ outer electron configuration, inspire chemists extensive interest in coordination chemistry, photophysics, and photochemistry. Herein, we report a new photoluminescent complex $[\mathrm{Pb}(L)$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{\mathrm{n}}(1)$ from the flexible 4,4'-(1,4-phenylene)bis(2,6-dimethylpyridine-3,5-dicarboxylic acid) $\left(\mathrm{H}_{4} \mathrm{~L}\right)$ and lead salt.
X-ray diffraction analyses reveal that each asymmetric unit of 1 contains half deprotonated L^{4-} ligand, one $\mathrm{H}_{2} \mathrm{O}$ molecule and one crystallographically independent $\mathrm{Pb}^{\mathrm{II}}$ center(Fig 1). Pb 1 center is coordinated with seven O atoms: six $\left(\mathrm{O}^{\# 1}, \mathrm{O1}^{\# 2}, \mathrm{O}_{2}{ }^{\# 2}, \mathrm{O}^{\# 3}, \mathrm{O} 3, \mathrm{O} 4\right)$ from four $\mathrm{H}_{4} \mathrm{~L}$ ligands and one $(\mathrm{O} 5)$ from the $\mathrm{H}_{2} \mathrm{O}$ molecule. Of particular interest is the weak coordinative bond that exists between Pb 1 and $\mathrm{O}^{\# 3}, ~ \mathrm{~Pb} 1, \mathrm{O1}^{\# 1}, \mathrm{O1}^{\# 2}, \mathrm{O}^{\# 2}, \mathrm{O} 2^{\# 3}, \mathrm{O} 3, \mathrm{O} 4, \mathrm{O} 5$ furnish a polyhydral coordination environment $\left(\mathrm{PbO}_{7}\right)$ with the $\mathrm{Pb}-\mathrm{O}$ bond lengths are in agreement with those reported in other Pb (II) complexes of O-chelating ligands (Wei et al., 2005; Chen et al., 2012).
As shown in Fig.1, each $\mathrm{H}_{4} \mathrm{~L}$ ligand connects six crystallographically equivalent Pb atoms. The carboxylato group with O 1 and O 2 coordinates three lead atoms producing two $\mathrm{Pb}_{2} \mathrm{O}_{2}$ rings that share one common lead atom. The other carboxylate moiety with donor atoms O 3 and O 4 coordinates one lead atom in a chelating mode. Notably, the resulting PbO_{7} polyhedra share the $\mathrm{O1}^{\# 4}, \mathrm{O1}^{\# 5}, \mathrm{O}^{\# 2}, \mathrm{O}^{\# 3}$ atoms to form infinite zigzag chains composed of $\left[\mathrm{PbO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{\mathrm{n}}$ in which adjacent Pb atoms are coplanar and $\mathrm{Pb} \cdots \mathrm{Pb}$ distances are $4.077 \AA$ and $4.161 \AA$ respectively (Fig. 2). Another interesting structural feature of complex 1 is that the zigzag $\left[\mathrm{PbO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$ chains are bridged by $\mathrm{H}_{4} \mathrm{~L}$ ligands to form a twodimensional (2-D) coordination network (Fig. 3).

The photoluminescence spectrum of compound 1 was measured in the solid state at room temperature, as shown in Fig. 4. At room temperature the photoluminescent emission maximum of free $\mathrm{H}_{4} \mathrm{~L}$ was observed at 426 nm (upon $\lambda_{\mathrm{Ex}, \max }=208$ nm). For compound 1, excitation at 380 nm leads to strong photoluminescence with an emission maximum at $\lambda=465 \mathrm{~nm}$. The emission peak of complex 1 is red-shifted by about 40 nm compared to that of the pure $\mathrm{H}_{4} \mathrm{~L}$ ligand, which can be assigned to the ligand-metal charge transfer (LMCT) (Hu et al., 2010; Zhang et al., 2011; Zhang et al., 2012).

Experimental

A mixture of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \times 6 \mathrm{H}_{2} \mathrm{O}(66 \mathrm{mg}), \mathrm{H}_{4} \mathrm{~L}(40 \mathrm{mg})$ and DMF $(6 \mathrm{ml})$ was sealed in a 25 ml Teflon-lined stainless steel reactor. The mixture was heated to 373 K for 3 days and then cooled to room temperature. The crystal samples were washed with methanol to yield 18 mg of compound 1.

Refinement

Methyl H atoms were constrained to an ideal geometry $(\mathrm{C}-\mathrm{H}=0.96 \AA)$, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$, but were allowed to rotate freely. Other H atoms attached to C atoms were refined using a riding model $\left[\mathrm{C}-\mathrm{H}=0.93 \AA(\mathrm{CH})\right.$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (parent atom)].

Computing details

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figure 1
Part of crystal structure of the L^{4-} ligand and $\mathrm{Pb}^{\text {II }}$ centres in $\mathbf{1}$. All H atoms have been omitted for clarity. [symmetry code: (\#1) $-x, y+1,-z+1$; (\#2) $x, y-1, z$; (\#3) $-x+1,-y+1,-z+1$; (\#4) $x+1, y-1, z ;(\# 5)-x+1,-y+1,-z+1$.]

Figure 2
Sectional crystal structure of zigzag chain $\left[\mathrm{PbO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{\mathrm{n}}$. Pb , green; O , red; H , white

Figure 3
View along c axis of two-dimensional coordination polymer from Pb ions and L^{4-} ligands. PbO_{7}, polyhedron: green; O : red; N: blue; C: grey.

Figure 4
Photoluminescent spectra of $\mathbf{1}\left(\lambda_{\mathrm{em}}\right.$ at 465 nm , upon $\lambda_{\text {ex }}$ at 380 nm$)$. $\mathrm{I}=$ relative intensity, em $=$ emission, and ex $=$ excitation.

Poly[diaqua $\left[\mu_{6}-4,4{ }^{\prime}\right.$-(1,4-phenylene)bis(2,6-dimethylpyridine-3,5-dicarboxylato)]dilead(II)]

Crystal data

$\left[\mathrm{Pb}_{2}\left(\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{8}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$Z=1$
$M_{r}=910.80$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=7.2182(12) \AA$
$b=9.0635$ (14) \AA
$c=9.9589(15) \AA$
$\alpha=79.202(2)^{\circ}$
$\beta=71.683$ (2) ${ }^{\circ}$
$\gamma=85.494(3)^{\circ}$
$V=607.43(17) \AA^{3}$
$F(000)=422$
$D_{\mathrm{x}}=2.490 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1580 reflections
$\theta=2.7-23.1^{\circ}$
$\mu=13.90 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Block, colorless
$0.25 \times 0.23 \times 0.23 \mathrm{~mm}$

Data collection

Bruker SMART APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\min }=0.129, T_{\text {max }}=0.142$

> 3168 measured reflections
> 2119 independent reflections
> 1932 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.015$
> $\theta_{\max }=25.0^{\circ}, \theta_{\min }=2.2^{\circ}$
> $h=-8 \rightarrow 8$
> $k=-10 \rightarrow 10$
> $l=-10 \rightarrow 11$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.055$
$S=1.01$
2119 reflections
174 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from
neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0347 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=1.15 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.16 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iss}} * / U_{\mathrm{eq}}$
Pb1	$0.24557(3)$	$0.11141(2)$	$0.47717(2)$	$0.02892(9)$
O1	$0.0452(5)$	$0.9117(4)$	$0.6086(4)$	$0.0281(8)$
O2	$0.3224(5)$	$0.8538(4)$	$0.6568(5)$	$0.0365(9)$
O3	$0.2253(5)$	$0.1995(4)$	$0.7194(4)$	$0.0343(9)$

O4	$-0.0248(6)$	$0.2448(5)$	$0.6332(5)$	$0.0382(10)$
O5	$0.3782(6)$	$-0.0957(5)$	$0.3132(5)$	$0.0441(11)$
H1	0.4881	-0.1412	0.3019	0.066^{*}
H2	0.2924	-0.1629	0.3379	0.066^{*}
N1	$-0.2153(6)$	$0.5547(5)$	$0.9379(5)$	$0.0275(10)$
C1	$-0.1131(7)$	$0.6798(6)$	$0.8704(6)$	$0.0245(11)$
C2	$0.0591(7)$	$0.6774(5)$	$0.7553(5)$	$0.0220(11)$
C3	$0.1282(7)$	$0.5404(6)$	$0.7125(5)$	$0.0213(10)$
C4	$0.0148(7)$	$0.4140(6)$	$0.7758(5)$	$0.0233(11)$
C5	$-0.1579(7)$	$0.4255(6)$	$0.8888(6)$	$0.0271(12)$
C6	$-0.1922(8)$	$0.8214(6)$	$0.9291(6)$	$0.0341(13)$
H6A	-0.2907	0.8662	0.8872	0.051^{*}
H6B	-0.0882	0.8906	0.9060	0.051^{*}
H6C	-0.2481	0.7975	1.0315	0.051^{*}
C7	$0.1542(7)$	$0.8222(6)$	$0.6705(6)$	$0.0242(11)$
C8	$0.0752(7)$	$0.2736(6)$	$0.7103(6)$	$0.0243(11)$
C9	$-0.2867(8)$	$0.2946(7)$	$0.9630(7)$	$0.0379(14)$
H9A	-0.2869	0.2692	1.0611	0.057^{*}
H9B	-0.2388	0.2102	0.9154	0.057^{*}
H9C	-0.4172	0.3203	0.9603	0.057^{*}
C10	$0.3206(7)$	$0.5253(5)$	$0.5999(5)$	$0.0192(10)$
C11	$0.3313(7)$	$0.5098(6)$	$0.4608(5)$	$0.0249(11)$
H11	0.2177	0.5160	0.4347	0.030^{*}
C12	$0.5090(7)$	$0.4854(6)$	$0.3615(5)$	$0.0241(11)$
H12	0.5146	0.4761	0.2689	0.029^{*}

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pb 1	$0.02297(13)$	$0.02526(13)$	$0.03649(14)$	$-0.00185(8)$	$-0.00454(9)$	$-0.00765(9)$
O 1	$0.0269(19)$	$0.0225(19)$	$0.037(2)$	$-0.0014(15)$	$-0.0143(17)$	$-0.0010(16)$
O 2	$0.024(2)$	$0.029(2)$	$0.054(3)$	$-0.0052(16)$	$-0.0106(19)$	$-0.0020(18)$
O 3	$0.034(2)$	$0.029(2)$	$0.044(2)$	$0.0113(17)$	$-0.0165(19)$	$-0.0119(18)$
O 4	$0.030(2)$	$0.036(2)$	$0.056(3)$	$0.0017(17)$	$-0.017(2)$	$-0.022(2)$
O 5	$0.029(2)$	$0.048(3)$	$0.059(3)$	$0.0011(19)$	$-0.013(2)$	$-0.021(2)$
N 1	$0.021(2)$	$0.031(3)$	$0.026(2)$	$0.0005(19)$	$0.0000(19)$	$-0.008(2)$
C 1	$0.020(3)$	$0.027(3)$	$0.026(3)$	$0.002(2)$	$-0.006(2)$	$-0.008(2)$
C 2	$0.021(2)$	$0.018(3)$	$0.027(3)$	$0.002(2)$	$-0.009(2)$	$-0.004(2)$
C 3	$0.020(2)$	$0.026(3)$	$0.018(2)$	$0.002(2)$	$-0.006(2)$	$-0.005(2)$
C 4	$0.023(3)$	$0.022(3)$	$0.024(3)$	$0.001(2)$	$-0.007(2)$	$-0.005(2)$
C 5	$0.021(3)$	$0.033(3)$	$0.027(3)$	$-0.001(2)$	$-0.009(2)$	$-0.002(2)$
C 6	$0.031(3)$	$0.029(3)$	$0.037(3)$	$0.006(2)$	$0.000(3)$	$-0.014(2)$
C 7	$0.024(3)$	$0.019(3)$	$0.027(3)$	$0.001(2)$	$-0.001(2)$	$-0.007(2)$
C 8	$0.020(3)$	$0.021(3)$	$0.027(3)$	$0.002(2)$	$-0.002(2)$	$-0.003(2)$
C 9	$0.030(3)$	$0.034(3)$	$0.041(4)$	$-0.006(3)$	$0.001(3)$	$-0.003(3)$
C 10	$0.018(2)$	$0.017(2)$	$0.020(2)$	$0.0026(19)$	$-0.003(2)$	$-0.0028(19)$
C 11	$0.020(2)$	$0.028(3)$	$0.029(3)$	$0.001(2)$	$-0.011(2)$	$-0.005(2)$
C 12	$0.023(3)$	$0.030(3)$	$0.019(3)$	$0.001(2)$	$-0.005(2)$	$-0.004(2)$

Geometric parameters (A, ${ }^{\circ}$)

$\mathrm{Pb} 1-\mathrm{Ol}^{\text {i }}$	2.327 (4)	C2-C3	1.393 (7)
$\mathrm{Pb} 1-\mathrm{O} 4$	2.472 (4)	C2-C7	1.507 (7)
$\mathrm{Pb} 1-\mathrm{Ol}^{\text {ii }}$	2.538 (3)	C3-C4	1.390 (7)
$\mathrm{Pb} 1-\mathrm{O} 3$	2.638 (4)	C3-C10	1.501 (7)
$\mathrm{Pb} 1-\mathrm{O} 5$	2.644 (4)	C4-C5	1.405 (7)
O3-C8	1.248 (6)	C5-C9	1.494 (8)
O4-C8	1.277 (7)	C6-H6A	0.9600
C8-C4	1.510 (7)	C6-H6B	0.9600
O1-C7	1.294 (6)	C6-H6C	0.9600
$\mathrm{O} 1-\mathrm{Pb} 1^{\text {iii }}$	2.327 (4)	C9-H9A	0.9600
O1-Pb1 ${ }^{\text {ii }}$	2.538 (3)	C9-H9B	0.9600
N1-C5	1.338 (7)	C9-H9C	0.9600
N1-C1	1.348 (7)	C10-C12 ${ }^{\text {iv }}$	1.391 (7)
O2-C7	1.230 (6)	C10-C11	1.395 (7)
O5-H1	0.8500	C11-C12	1.383 (7)
O5-H2	0.8500	C11-H11	0.9300
C1-C2	1.403 (7)	C12-C10 ${ }^{\text {iv }}$	1.391 (7)
C1-C6	1.507 (7)	C12-H12	0.9300
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{O} 4$	79.28 (13)	C3-C4-C5	119.1 (5)
$\mathrm{Ol}^{\text {i }}-\mathrm{Pbl}-\mathrm{Ol}^{\text {ii }}$	66.21 (14)	C3-C4-C8	117.7 (4)
$\mathrm{O} 4-\mathrm{Pb} 1-\mathrm{Ol}^{\text {ii }}$	75.30 (12)	C5-C4-C8	122.9 (5)
$\mathrm{Ol}^{\mathbf{i}}-\mathrm{Pb} 1-\mathrm{O} 3$	89.30 (13)	N1-C5-C4	121.7 (5)
$\mathrm{O} 4-\mathrm{Pb} 1-\mathrm{O} 3$	51.16 (12)	N1-C5-C9	116.0 (5)
$\mathrm{O} 1{ }^{\text {ii- }} \mathrm{Pb} 1-\mathrm{O} 3$	124.84 (11)	C4-C5-C9	122.3 (5)
$\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{O} 5$	78.92 (13)	C1-C6-H6A	109.5
O4- $\mathrm{Pb} 1-\mathrm{O} 5$	151.48 (13)	C1-C6-H6B	109.5
$\mathrm{O} 1{ }^{\text {ii- }}$ - $\mathrm{Pb} 1-\mathrm{O} 5$	79.19 (12)	H6A-C6-H6B	109.5
$\mathrm{O} 3-\mathrm{Pb} 1-\mathrm{O} 5$	146.08 (13)	C1-C6-H6C	109.5
C8-O3-Pb1	87.8 (3)	H6A-C6-H6C	109.5
C8-O4-Pb1	94.7 (3)	H6B-C6-H6C	109.5
O3-C8-O4	122.3 (5)	$\mathrm{O} 2-\mathrm{C} 7-\mathrm{O} 1$	121.6 (5)
O3-C8-C4	121.6 (5)	O2-C7-C2	124.0 (5)
O4-C8-C4	115.8 (4)	O1-C7-C2	114.4 (4)
$\mathrm{C} 7-\mathrm{O} 1-\mathrm{Pb} 1^{\text {iii }}$	104.5 (3)	C5-C9-H9A	109.5
$\mathrm{C} 7-\mathrm{O} 1-\mathrm{Pb} 1^{1 i}$	136.9 (3)	C5-C9-H9B	109.5
$\mathrm{Pb} 1^{\text {iii- }}$ - $\mathrm{O} 1-\mathrm{Pb}^{\text {ii }}$	113.79 (14)	H9A-C9-H9B	109.5
C5-N1-C1	119.3 (4)	C5-C9-H9C	109.5
$\mathrm{Pb} 1-\mathrm{O} 5-\mathrm{H} 1$	125.1	H9A-C9-H9C	109.5
$\mathrm{Pb} 1-\mathrm{O}-\mathrm{H} 2$	107.8	H9B-C9-H9C	109.5
H1-O5-H2	106.8	$\mathrm{C} 12{ }^{\text {iv- }} \mathrm{C} 10-\mathrm{C} 11$	119.3 (4)
N1-C1-C2	122.0 (5)	$\mathrm{C} 12^{\text {iv }}-\mathrm{C} 10-\mathrm{C} 3$	118.9 (4)
N1-C1-C6	115.8 (5)	C11-C10-C3	121.6 (4)
C2-C1-C6	122.2 (5)	C12-C11-C10	120.7 (5)
C3-C2-C1	118.6 (5)	C12-C11-H11	119.7
C3-C2-C7	120.8 (5)	C10-C11-H11	119.7
C1-C2-C7	120.2 (4)	C11-C12-C10 ${ }^{\text {iv }}$	120.0 (5)
C4-C3-C2	118.8 (5)	C11-C12-H12	120.0

supplementary materials

$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 10$	$119.1(4)$	$\mathrm{C} 10^{\mathrm{iv}}-\mathrm{C} 12-\mathrm{H} 12$	120.0
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 10$	$122.1(5)$		

Symmetry codes: (i) $x, y-1, z$; (ii) $-x,-y+1,-z+1$; (iii) $x, y+1, z$; (iv) $-x+1,-y+1,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O5-H2 ${ }^{\text {O }} 4^{\vee}$	0.85	2.04	2.834 (6)	155
$\mathrm{O} 5-\mathrm{H} 1 \cdots{ }^{\text {a }}{ }^{\text {vi }}$	0.85	2.05	2.879 (5)	165

Symmetry codes: (v) $-x,-y,-z+1$; (vi) $-x+1,-y,-z+1$.

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2422).

