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Abstract Plasmodium parasites possess a protein with homology to Niemann-Pick Type C1

proteins (Niemann-Pick Type C1-Related protein, NCR1). We isolated parasites with resistance-

conferring mutations in Plasmodium falciparum NCR1 (PfNCR1) during selections with three diverse

small-molecule antimalarial compounds and show that the mutations are causative for compound

resistance. PfNCR1 protein knockdown results in severely attenuated growth and confers

hypersensitivity to the compounds. Compound treatment or protein knockdown leads to increased

sensitivity of the parasite plasma membrane (PPM) to the amphipathic glycoside saponin and

engenders digestive vacuoles (DVs) that are small and malformed. Immuno-electron microscopy

and split-GFP experiments localize PfNCR1 to the PPM. Our experiments show that PfNCR1

activity is critically important for the composition of the PPM and is required for DV biogenesis,

suggesting PfNCR1 as a novel antimalarial drug target.

Editorial note: This article has been through an editorial process in which the authors decide how

to respond to the issues raised during peer review. The Reviewing Editor’s assessment is that all

the issues have been addressed (see decision letter).

DOI: https://doi.org/10.7554/eLife.40529.001

Introduction
Several whole-parasite chemical library screens have identified thousands of compounds with potent

antimalarial activity (Guiguemde et al., 2010; Kato et al., 2016). To facilitate drug development, it

is important to identify targets of these compounds. Target identification can be extremely challeng-

ing, especially in organisms like Plasmodium that contain large numbers of proteins with unknown
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function. Evolution of compound-resistant malaria parasites can be helpful in the discovery of the

molecular mechanisms by which compounds kill the organism (Rathod et al., 1994;

Rottmann et al., 2010; Vaidya et al., 2014; Istvan et al., 2017).

In this study, we investigated a gene that acquired single nucleotide polymorphisms (SNPs) or

was amplified in selections with three diverse compounds. PF3D7_0107500 encodes a membrane

protein with sequence motifs found in Niemann-Pick C1 (NPC1) proteins. Human NPC1 (hNPC1) has

been the subject of numerous studies because of the protein’s importance in cholesterol egress

from late endosomes (Pentchev, 2004). Patients with mutations in hNPC1 suffer a fatal neurodegen-

erative lipid storage disorder characterized by the accumulation of lysosomal cholesterol, sphingo-

myelin, as well as other lipids (Gong et al., 2016). Niemann-Pick C1-Related (NCR1) proteins are

conserved in eukaryotic evolution and are most easily identified by their membrane domains

(Higaki et al., 2004). In humans, NPC1 accepts cholesterol from its partner protein, the high affinity

cholesterol-binding protein NPC2 (Li et al., 2016). NCR1 homologs are also present in organisms

that do not contain readily identifiable NPC2 proteins or internalize sterol by endocytosis. Based on

studies with yeast NCR1, Munkacsi et al. proposed that the primordial function of NCR1 is the regu-

lated transport of lipophilic substrates such as sphingolipids (Munkacsi et al., 2007).

Until now the function of PF3D7_0107500, which we call Plasmodium falciparum Niemann-Pick

Type C1-Related protein (PfNCR1), has been unclear. In this study, we prepared a genetic knock-

down (K/D) of pfncr1 and showed that K/D critically slows blood-stage parasite replication. Further-

more, pfncr1 K/D caused parasites to become abnormally sensitive to the pore-forming amphipathic

glycoside saponin. Treatment with any of the three compounds that we identified during resistance

selection phenocopied the gene K/D, suggesting that the compounds interfere with PfNCR1 func-

tion. Here we show that PfNCR1 is druggable and necessary for maintaining the proper membrane

lipid composition of blood-stage parasites.

Results

Mutations in PfNCR1 provide resistance to three diverse compounds
As part of a study aimed at analyzing the P. falciparum resistome (Corey et al., 2016), we isolated

parasites resistant to three structurally diverse compounds with similar, submicromolar potencies

against wild-type parasites (Figure 1A and Figure 1—source data 1). Resistant parasites contained

mutations in one common gene, PF3D7_0107500, which is predicted to encode a 1470 amino acid

membrane protein. Sequence similarity searches indicated homology to a protein previously studied

in the related apicomplexan parasite Toxoplasma gondii called Niemann-Pick Type C1-Related Pro-

tein (TgNCR1). Lige et al. identified sequence elements conserved between TgNCR1 and hNPC1, a

lysosomal integral membrane protein (Lige et al., 2011). The same sequence elements are also pres-

ent in PfNCR1. Cryo-EM and crystal structures of hNPC1 reveal a 13-helix transmembrane region

containing a sterol-sensing domain (SSD) (orange) and a conserved C-terminal transmembrane

domain (C-TM) (magenta) (Figure 1B) (Gong et al., 2016; Li et al., 2016). The C-terminal targeting

sequence that extends past the C-TM in hNCR1 and localizes this protein to the lysosome, is not

present in PfNCR1. Lumen-exposed domains (grey and blue in Figure 1B) complete the hNPC1

structure. Sequence similarity between hNPC1 and PfNCR1 is restricted to portions of the trans-

membrane region (orange and magenta) and to approximately 45 amino acids N-terminal to the

SSD (red). Based on this limited sequence similarity, we generated a cartoon model of PfNCR1

(Figure 1C). We observed five mutations in our compound-resistant parasites: A1108T came from

selections with MMV009108; M398I and A1208E from selections with MMV028038; and S490L and

F1436I from selections with MMV019662. The model suggests that three of the mutations are proxi-

mal to the membrane domain, while the other two localize to the hydrophilic domains. We used sin-

gle-crossover allelic exchange to introduce one mutation from each resistance selection into a clean

genetic background (Figure 1—figure supplements 1–2). With this strategy, PfNCR1 is expressed

from its native promoter and contains a C-terminal green-fluorescent protein (GFP) tag in addition

to the mutation. We also generated non-mutated allelic exchange control parasites containing the

GFP tag. Inclusion of the C-terminal GFP did not alter the sensitivity to MMV009108 (Figure 1D),

while parasites with single mutations in PfNCR1 were resistant to the compounds with which they

were selected (Figure 1D–F, Figure 1—source data 2).
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Figure 1. Mutations in PfNCR1 confer resistance to three antimalarial compounds. (A) Structures of the three structurally diverse compounds that

yielded mutations in PfNCR1. The lower-case numbers next the compound IDs are used in C) to match mutations with specific compounds. (B) Ribbon

model of the structure of hNCR1 solved by cryoEM (Gong et al., 2016). PDB coordinates: 3JD8. The SSD is shown in orange, the conserved C-terminal

membrane domain is shown in magenta, the domain that interacts with hNCR2 is in blue and an additional sequence stretch with similarity to PfNCR1

is in red. (C) Cartoon model of the possible domain arrangement in PfNCR1. Sequence similarity to hNCR1 is restricted to the red, orange and

magenta domains. Locations of resistance-conferring mutations are shown with arrows. Compound IDs matching with mutations are shown in lower

case numbers and match Figure 1A. The model was generated by visual examination of the hNCR1 structure, aided by the alignment of hNCR1 aa

580–794 and aa 1083–1253 with PfNCR1 aa 439–662 and aa 1304–1468, and aided by a partial model of C-terminal residues generated by Robetta

(Ovchinnikov et al., 2018). (D–F) Concentration response curves of blood-stage parasites (all in 0.1% DMSO) measured using a flow cytometry-based

assay. Each panel shows different compound and a different mutation. (D) MMV009108, (E) MMV028038, (F) MMV019662. Black = parental 3D7

parasites; red = two independent clones of parasites with mutant allelic exchange; blue = two independent clones of parasites with wild-type allelic

exchange (for part D only). The error bars (S.D.) for a representative experiment (technical triplicates) are shown and are very small. The experiment in

D) was done three times, (E) and (F) were done twice. For each one representative experiment is shown.

Figure 1 continued on next page
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We examined the effect of single mutations on the different compounds. A1108T or F1436I

mutant parasites were resistant to all three compounds, while A1208E mutant parasites were sensi-

tive to the two compounds that were not used in the A1208E selection (Figure 1D–F, Figure 1—fig-

ure supplement 3, Figure 1—source data 2). These findings suggest that amino acids modeled to

be proximal to the membrane domain (A1108 and F1436) may have some functional overlap, while

the putative soluble domain A1208 may have a different activity.

PfNCR1 is important for asexual parasite viability and is targeted by
antimalarial compounds
An attempt to disrupt the pfncr1 gene using a CRISPR/Cas9-targeting approach did not succeed,

suggesting an essential function during blood-stage malaria growth. Next, we created parasites in

which pfncr1 expression is regulated by anhydrotetracyline (aTc) using the previously described

TetR-DOZI/aptamer translational repression technology (Ganesan et al., 2016; Spillman et al.,

2017) (Figure 2—figure supplement 1A–C). When we removed aTc from highly synchronized,

young ring-stage parasites, PfNCR1 expression in trophozoites was reduced within the same cell

cycle and undetectable in the following cell cycles, as judged by western blots to detect a C-terminal

hemagglutinin (HA) sequence on the aptamer-tagged parasites (Figure 2A). While protein levels

after aTc withdrawal were affected almost immediately, parasite replication rates decreased only

after 3–4 days (Figure 2B, inset). After this slow onset of reduced growth, PfNCR1 K/D clearly

resulted in markedly less fit parasites. Essentiality of NCR1 in Plasmodium is further supported by a

mutagenesis study in P. falciparum (Zhang et al., 2018) and by a P. berghei knockout study

(Bushell et al., 2017). Complementing K/D parasites with a second copy wild-type PfNCR1 rescued

the growth defect (Figure 2C, Figure 2—figure supplement 1D). Modulating the expression level

of PfNCR1 with aTc shifted the MMV009108 concentration-response curve (Figure 2D) and maximal

K/D hypersensitized parasites to the three compounds that were used for the resistance selection

(Figure 2E–H, Figure 2—source data 1). Our findings suggest that PfNCR1 performs a function

important for the viability of blood-stage malaria parasites and that the three compounds act

directly on the protein.

PfNCR1 localizes to the parasite plasma membrane
To better understand the functional significance of PfNCR1, we localized the protein. For this pur-

pose, we used parasites expressing wild-type PfNCR1 protein tagged with a C-terminal GFP from its

native promoter. Live microscopy showed fluorescence surrounding the intraerythrocytic parasites

(Figure 3A). The distribution of GFP was in contrast to an earlier suggestion that PfNCR1 may reside

in the digestive vacuole (DV) membrane (Martin et al., 2009). Immuno-electron microscopy of para-

sites expressing GFP or HA-tagged PfNCR1 confirmed localization of the protein to the membranes

surrounding parasites (Figure 3B,C, Figure 3—figure supplement 1). Blood-stage parasites are sur-

rounded by two membranes in very close apposition - the parasitophorous vacuolar membrane

(PVM) and the PPM. The resolution of our immuno-electron microscopy images was not sufficient to

definitively determine whether PfNCR1 is present in the PVM or the PPM. To answer this question,

Figure 1 continued

DOI: https://doi.org/10.7554/eLife.40529.002

The following source data and figure supplements are available for figure 1:

Source data 1. Potencies of compounds against parental (wild-type) parasites in Figure 1D–F).

DOI: https://doi.org/10.7554/eLife.40529.006

Source data 2. Resistance of allelic exchange-modified parasites, compared to parental parasites.

DOI: https://doi.org/10.7554/eLife.40529.007

Figure supplement 1. Characterization of 1108 allelic exchange clones.

DOI: https://doi.org/10.7554/eLife.40529.003

Figure supplement 2. Characterization of A1208E and F1436I clones.

DOI: https://doi.org/10.7554/eLife.40529.004

Figure supplement 3. Concentration response curves of PfNCR1 mutant parasite clones with compounds.

DOI: https://doi.org/10.7554/eLife.40529.005
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Figure 2. PfNCR1 is required for blood-stage parasite replication and is targeted by three antimalarials. (A) Western blot showing regulation of the

PfNCR1apt by aTc. Trophozoite-stage parasites were harvested from the replication cycle in which aTc was removed (cycle 0), as well as the following

two cycles. PfNCR1 was detected using a C-terminal HA-tag. The ER membrane protein plasmepsin V (PM-V) was used as a loading control. Note that

the two bands recognized by a-PM-V antibody correspond to the full-length protein and a proteolytic fragment of the protein produced during the

membrane isolation. Expected sizes: 171 k Da for PfNCR1-HA, 69 k Da for PM-V. This experiment was done two times. (B) Replication of PfNCR1apt

parasites. Using a flow cytometry assay, the replication of two PfNCR1apt clones was monitored over two weeks. +aTc is in black and solid lines, -aTc is

Figure 2 continued on next page

Istvan et al. eLife 2019;8:e40529. DOI: https://doi.org/10.7554/eLife.40529 5 of 23

Research Communication Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.40529


we prepared split-GFP constructs (Cabantous et al., 2005; Külzer et al., 2013) in which GFP strands

1–10 are expressed either in the parasite cytoplasm or targeted to the lumen of the parasitophorous

vacuole (PV) and GFP strand 11 is expressed as a C-terminal tag on PfNCR1 (Figure 3—figure sup-

plement 2). GFP fluorescence was only observed when cytoplasmic GFP 1–10 was co-expressed

with PfNCR1-GFP11 (Figure 3D–G), suggesting that the C-terminal residues of PfNCR1 project into

the parasite cytoplasm. We cannot rule out the possibility that the cytoplasmic GFP 1–10 signal is

due to vesicles at the PPM in transit to the PVM, but based on these results, we propose a model in

which PfNCR1 membrane domains are in the PPM while the soluble domains project into the PV

(Figure 3H). In contrast to hNPC1, PfNCR1 does not appear to localize to internal organellar mem-

branes. Nevertheless, our model suggests that the relative orientation of the cytosolic regions in

these two distantly related proteins is conserved.

Compound treatment or protein knockdown hypersensitizes parasites
to saponin
Saponins are amphipathic glycosides with high affinity for cholesterol that are capable of penetrating

membranes (Seeman et al., 1973; Gögelein and Hüby, 1984). Inhibiting the Na+-efflux pump

PfATP4 has previously been shown to lead to changes in PPM saponin sensitivity (Das et al., 2016).

We were curious whether interfering with PfNCR1 function would have similar effects. We noticed

decreased levels of cytosolic aldolase protein in saponin parasite extracts after incubation with

MMV009108, while levels of the PVM-localized membrane-bound protein EXP2 did not change

(Figure 4A). Hypersensitivity to saponin was reversed when MMV009108 was removed by washout.

We obtained similar results in experiments probing for a different cytosolic protein, haloacid dehalo-

genase 1 (HAD1) (Figure 4—figure supplement 1A). Using a flow cytometry-based assay and a pre-

viously reported parasite clone expressing eGFP (Straimer et al., 2012), we observed elevated

saponin-induced leakage of cytoplasmic eGFP after incubation of parasites with sub-EC50 concen-

trations of MMV009108, MMV028038 and MMV019662 (Figure 4B–D). Western blots probing for

eGFP in supernatant and pellet fractions showed that the decrease in signal of cytosolic proteins

was not a consequence of increased protein degradation, but rather of elevated leakage of cyto-

plasmic contents (Figure 4—figure supplement 1B). These results suggest that the PPM, the mem-

brane to which PfNCR1 localizes, undergoes a redistribution of membrane lipids during compound

treatment. We have previously shown that, for PfATP4 inhibitors, induction of saponin sensitivity is

abrogated in parasites adapted to grow in low [Na+] (Das et al., 2016). This was different from the

effect of MMV009108 treatment where we observed saponin hypersensitivity in regular medium, as

Figure 2 continued

in red and dashed lines. Cultures were seeded at 1% parasitemia, and subjected to daily media changes, and/or sub-culturing. Cumulative parasitemias

were calculated by multiplying with dilution factors. One representative experiment with technical triplicates is shown. The inset magnifies the initial

time points. Doubling times in days are as follows (95% confidence intervals in parentheses): clone 1 -aTc = 1.596 (1.546–1.650), R2 = 0.9964; clone

1 +aTc = 0.8663 (0.8218–0.9159), R2 = 0.9930; clone 2 -aTc = 1.463 (1.417–1.512), R2 = 0.9965; clone 2 +aTc = 0.7776 (0.7559–0.8005), R2 = 0.9981. This

experiment was done four times. (C) Complementation of PfNCR1apt rescues growth phenotype. Wild-type PfNCR1 was stably expressed in the

PfNCR1apt background. Replication of parasites was monitored over two weeks. +aTc is in black and solid line, -aTc is in red and dashed line. One

representative experiment with technical triplicates is shown. Doubling times in days are as follows (95% confidence intervals in parentheses):

-aTc = 1.152 (1.036–1.298), R2 = 0.97; +aTc = 1.166 (1.039–1.329), R2 = 0.96. This experiment was done four times. Note that the complemented strain

grows less well than PfNCR1apt with aTc (B), but that there is no significant difference ±aTc. (D) Expression level of PfNCR1 correlates with sensitivity to

MMV009108. Concentration response curves using a flow cytometry-based growth assay. After aTc washout, aTc was replenished in triplicate cultures at

different concentrations and parasitemias were measured after 72 hr. aTc concentrations are indicated. This experiment was done three times. (E–H)

PfNCR1 K/D hypersensitizes parasites to three compounds. Concentration-responses of PfNCR1apt parasites to E) MMV009108, (F) MMV028038, (G)

MMV019662, and H) mefloquine (MFQ) (control compound) without aTc (red open symbols, dashed lines) or with 500 nM aTc (black symbols, solid

lines) after 72 hr. One representative experiment with technical triplicates is shown. The experiment in E) was done three times the experiments in F-H)

were done two times.

DOI: https://doi.org/10.7554/eLife.40529.008

The following source data and figure supplement are available for figure 2:

Source data 1. Shifts in EC50s under PfNCR1 K/D.

DOI: https://doi.org/10.7554/eLife.40529.010

Figure supplement 1. Editing of the PfNCR1 locus to generate aptamer-regulated strains and generation of the PfNCR1 complementation.

DOI: https://doi.org/10.7554/eLife.40529.009
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Figure 3. PfNCR1 localizes to the parasite plasma membrane. (A) Live fluorescence microscopy with C-terminally GFP-tagged wild-type PfNCR1-

expressing parasites (clone Wt-GFP1 from Figure 1) localizes PfNCR1 to the parasite surface. Scale bar 5 mm. (B–C) Immuno-electron-micrographs of

trophozoite-stage parasites using a-GFP antibody. Arrows mark gold particles, RBC = infected red blood cell, DV = digestive vacuole, N = nucleus. The

close-up in C) shows gold particles clustered at the parasite-delimiting membranes. EM = erythrocyte membrane; PVM = parasitophorous vacuolar

Figure 3 continued on next page
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well as in low [Na+]-containing medium (Figure 4E). Also, unlike PfATP4 inhibitors, MMV009108 did

not result in Na+ influx into parasites (Figure 4F). PfNCR1 K/D did not change sensitivity to KAE609

(Figure 4—figure supplement 1C and Figure 4—source data 1). We conclude that MMV009108

acts directly on PfNCR1 but suggest that PfATP4 activity influences PfNCR1 function (PfATP4

mutants are hypersensitive to our compounds (Corey et al., 2016)).

We looked for changes in the PVM using a parasite clone in which the fluorescent protein

mRuby3 is targeted via a signal peptide to the PV (Figure 5A). As expected, the PVM was exqui-

sitely sensitive to saponin and mRuby was released irrespective of drug treatment (Figure 5B). Leak-

age of cytosolic HAD1 after saponin treatment was enhanced by MMV009108, as previously seen

(Figure 5—figure supplement 1). With the same PV-targeted mRuby parasites we examined the

sensitivity of the PVM to the cholesterol-binding toxin tetanolysin, which, at low concentrations, nor-

mally lyses the erythrocyte membrane but not the PVM (Hiller et al., 2003). Treatment with

MMV009108 did not alter PVM susceptibility to tetanolysin (Figure 5C), suggesting that compound

treatment does not perturb PVM lipid composition.

Next, we examined whether PfNCR1apt parasites are hypersensitive to saponin after K/D.

Removal of aTc sensitized parasites to saponin as monitored by the loss of cytoplasmic HAD1, while

complemented control parasites expressing wild-type PfNCR1 in the K/D parasite background had

normal saponin sensitivity (Figure 6A). As an independent marker, we prepared a PfNCR1apt para-

site line expressing cytosolic eGFP. In this background, PfNCR1 K/D increased PPM sensitivity to

saponin within 22 hr of aTc removal (Figure 6B), much more rapidly than the onset of slowed para-

site growth (Figure 2B). Adding back aTc to PfNCR1apt parasites rapidly restored normal saponin

sensitivity (Figure 6B). Similarly, saponin sensitivity after K/D of PfNCR1 for 40 hr was reversible in as

little as 2 hr (Figure 6—figure supplement 1). In summary, PfNCR1 K/D phenocopies the effect of

the three compounds on the PPM, suggesting that the compounds we identified interfere with

PfNCR1 activity and that PfNCR1 function is required to maintain normal PPM lipid composition.

PfNCR1 activity is required for digestive vacuole function
We hypothesized that DV formation could be affected by PfNCR1 impairment as DVs are formed

from endocytic vesicles that invaginate at the PPM (Figure 7A). To observe DVs in live parasites we

used a strain that expresses GFP as a fusion protein with the DV protease plasmepsin II (PMII)

(Klemba et al., 2004). In this strain, PMII-GFP is produced as a membrane-bound pro-enzyme that

enters the secretory pathway and is delivered from the ER to the PPM. At the PPM, pro-PMII-GFP

accumulates in cytostomes and migrates via vesicles to the DV.

After incubation with compounds we noticed abnormally punctate and occasionally diffuse GFP

fluorescence that was not concentrated in DVs (Figure 7B,C). Whereas most DMSO-treated control

parasites had round DVs of ~2 mm diameter and contained only a few small submicron GFP-positive

dots, compound-treated parasites frequently had many small fluorescent foci, some of which were

unusually bright. To confirm that abnormal DVs were a consequence of interfering with normal

PfNCR1 function, we introduced PfNCR1apt into the parasite line containing the PMII-GFP fusion

(Figure 7 —figure supplement 1A-C). PfNCR1 K/D parasites had dispersed GFP puncta similar to

those seen in compound-treated parasites (Figure 7D,E). Electron micrographs prepared from

Figure 3 continued

membrane; PPM = parasite plasma membrane. Scale bar B = 500 nm, C = 100 nm. (D–G) Live fluorescence microscopy on split-GFP expressing

parasites. (D) Co-expression of PfNCR1-GFP11 with cytoplasmic GFP1-10. The bottom panels were generated using confocal microscopy. (E) Co-

expression of PfNCR1-GFP11 with GFP1-10 that contains a signal peptide and localizes to the vacuole. (F) Cytoplasmic GFP1-10 without expression of

PfNCR1-GFP11. (F) GFP-1–10 containing a signal peptide without expression of PfNCR1-GFP11. Scale bar: 1 mm for epifluorescence images, 10 mm for

confocal images. (H) Cartoon of the proposed orientation of PfNCR1 in the PPM (parasite plasma membrane). PV = parasitophorous vacuole;

PVM = parasitophorous vacuolar membrane.

DOI: https://doi.org/10.7554/eLife.40529.011

The following figure supplements are available for figure 3:

Figure supplement 1. Immuno-electron microscopy of HA-tagged PfNCR1.

DOI: https://doi.org/10.7554/eLife.40529.012

Figure supplement 2. Preparation of PfNCR1-GFP11.

DOI: https://doi.org/10.7554/eLife.40529.013

Istvan et al. eLife 2019;8:e40529. DOI: https://doi.org/10.7554/eLife.40529 8 of 23

Research Communication Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.40529.011
https://doi.org/10.7554/eLife.40529.012
https://doi.org/10.7554/eLife.40529.013
https://doi.org/10.7554/eLife.40529


DMSO MMV009108

Aldolase

EXP2

43

30

Washout- +

MMV009108

DMSO

50nM

100nM

500nM

% Saponin

%
In

tr
a

c
e

ll
u

la
r 

G
F

P

MMV019662

0.0 0.1 0.2 0.3

0.0

50nM

100nM

500nM

DMSO

% Saponin

%
In

tr
a

c
e

ll
u

la
r 

G
F

P

MMV028038

DMSO

50nM 

100nM

500nM

% Saponin

%
In

tr
a

c
e

ll
u

la
r 

G
F

P

A

B

C

D

E

Aldolase

EXP2

43

30

C
on

tr
ol

91
08

, 2
5n

M
91

08
, 5

0n
M

91
08

, 1
00

nM
91

08
, 3

00
nM

21
A
05

0,
 1

00
nM

A
rt
em

is
in

in
, 1

00
nM

F




Compounds 

Added

PA21A050-11nM (3)

3
4

0
/3

8
0

 R
a

ti
o

MMV009108-100nM

PA21A050-11nM (1)

MMV009108-1000nM (1)

PA21A050-11nM (2)

MMV009108-1000nM (2)

Figure 4. Compound treatment hypersensitizes parasites to saponin. (A) Strain 3D7 parasites (30–34 hr post-infection) were exposed to DMSO or 100

nM MMV009108 for 2 hr. Compound or vehicle were removed by washout and rescued by growing in compound-free cRPMI medium for another 2 hr.

Parasites were treated with saponin (0.02%) to release parasites followed by western blot analysis using antibodies to parasite aldolase or EXP2. EXP2

was used as a loading control. This experiment was done three times. B – D) Flow cytometry-based assay to monitor cell leakiness using a cytoplasmic

Figure 4 continued on next page
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parasites under PfNCR1 K/D (Figure 7F) or treated with MMV009108 (Figure 7G) showed dramatic

defects. Normal DVs are easily distinguished from the parasite cytosol, not only because they con-

tain hemozoin crystals, but also because they are electron-lucent. In contrast, the abnormal DVs we

observed were electron-dense, smaller, elongated and irregular in shape. Usually, we could see mul-

tiple hemozoin-containing vesicles in PfNCR1-depleted/inhibited parasites.

To investigate whether DV membranes might contain defects similar to those observed in the

PPM after PfNCR1 K/D or compound treatment, we measured the saponin sensitivity of the DV

membrane. In PMII-GFP parasites, free GFP is hydrolyzed from PMII-GFP in the DV (Figure 7A and

ref (Klemba et al., 2004)). DV-resident GFP was released from drug-treated parasites at low saponin

concentrations that did not affect control parasite DVs (Figure 7H,I). Importantly, the levels of pro-

PMII-GFP did not change, suggesting that the synthesis of PMII was not affected. To control for the

possibility that DV membranes have increased leakiness after compound treatment or PfNCR1 K/D

simply because the PPM is leaky and less detergent is necessary to access the DV, we repeated the

experiment with isolated DVs. Again, after incubation with MMV009108, low saponin concentrations

resulted in leakage of DV-localized GFP (Figure 7—figure supplement 1D).

Metabolomic profiling of parasite extracts after incubation with MMV009108, MMV091662 (pub-

lished previously (Allman et al., 2016)) or MMV028038 (Figure 8) showed reductions across hemo-

globin-derived peptides, supporting the hypothesis that the normal function of the DV has been

compromised by the compounds.

Discussion
We have identified PfNCR1, Niemann-Pick C1-related protein, as a new antimalarial target that

resides in the PPM and serves important functions during intraerythrocytic growth of P. falciparum.

Through a chemical genetics approach we have provided evidence suggesting that three structurally

diverse small molecules target PfNCR1. Conditional K/D of pfncr1 gene expression resulted in para-

site demise. Phenotypic consequences of compound treatment or of conditional K/D of PfNCR1

were essentially identical, strongly suggesting that the compounds directly inhibit PfNCR1.

PfNCR1 belongs to a superfamily of multi-pass transmembrane proteins involved in a variety of

biological functions ranging from being receptors for signaling molecules to transport of different

types of hydrophobic molecules (Higaki et al., 2004; Eicher et al., 2014; Trinh et al., 2017). Cur-

rently, the gene encoding this protein, PF3D7_0107500, is annotated as a lipid/sterol:H+ symporter

(www.plasmodb.org). However, on the basis of its sequence similarity with previously investigated

proteins from Saccharomyces cerevisiae (ScNCR1) (Higaki et al., 2004) and Toxoplasma gondii

(TgNCR1) (Lige et al., 2011) we believe it is more appropriate to name it as PfNCR1. When

Figure 4 continued

GFP expressing parasite clone (NF54eGFP). Parasites were incubated with MMV009108 (B), MMV028038 (C), or MMV019662 (D) at the indicated

concentrations for 1 hr (DMSO was the vehicle control). Following compound washout with PBS, parasites were released from RBCs with saponin. Using

flow cytometry, 50,000 cells were counted and scored as GFP positive or negative. At 0% saponin, all samples had similar numbers of GFP-positive cells

(~80%). The experiment in B) was done three times. The experiments in C and D) were done two times. For each B)-D) a single representative

experiment (with technical duplicates) is shown. E) Low Na+-adapted trophozoite stage 3D7 parasites were subjected to varying concentration of

MMV009108 for 2 hrs followed by saponin (0.02%) treatment to release the parasites and subjected for western blot analysis using antibodies to

parasite aldolase or EXP2 (loading control). 100 nM PA21A05024 and 100 nM artemisinin were used as controls. This experiment was done two times.

Unlike the pyrazoleamide PA21A050, MMV009108 does not induce Na+ influx into parasites. Low Na+-adapted trophozoite stage 3D7 parasites were

subjected to varying concentration of MMV009108 for 2 hrs followed by saponin (0.02%) treatment to release the parasites and subjected for western

blot analysis using antibodies to parasite aldolase or EXP2 (loading control). 100 nM PA21A05024 and 100 nM artemisinin were used as controls. This

experiment was done two times.Unlike the pyrazoleamide PA21A050, MMV009108 does not induce Na+ influx into parasites. SBFI 340 nm/380 nm

emission ratio traces are plotted for indicated compounds and concentration. Unlike the pyrazoleamide PA21A050, MMV009108 does not alter

intracellular [Na+] as represented by the lack of change in SBFI 340/380 ratiometric traces. This experiment was done three times.

DOI: https://doi.org/10.7554/eLife.40529.014

The following source data and figure supplement are available for figure 4:

Source data 1. EC50fold change to KAE609 under PfNCR1 K/D.

DOI: https://doi.org/10.7554/eLife.40529.016

Figure supplement 1. Further characterization of PfNCR1 inhibition or K/D.

DOI: https://doi.org/10.7554/eLife.40529.015
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engineered to display endosomal retention signals, ScNCR1 and TgNCR1 were able to revert defec-

tive cholesterol transport in mammalian cells lacking functional NPC1 (Malathi et al., 2004), though

TgNCR1 appears to be selective for sphingomyelin in the parasite. PfNCR1 displays 30% amino acid

sequence identity over 69% of TgNCR1. Proof of a direct role of PfNCR1 as a lipid transporter awaits

functional analysis. Despite significant homology, there appear to be significant differences as to

functions served by the proteins. Whereas ScNCR1 and TgNCR1 are dispensable for survival,

PfNCR1 appears to be essential. ScNCR1 has been localized to the yeast vacuole and T. gondii

NCR1 to the inner membrane complex, a continuous patchwork of flattened vesicular cisternae

located beneath the plasma membrane and overlying the cytoskeletal network; PfNCR1 is on the

PPM.

Striking phenotypic consequences of PfNCR1 depletion or inhibition provide hints as to the func-

tions served by this transmembrane protein. The ability of the cholesterol-dependent glycoside

saponin to release cytosolic content of parasite-infected erythrocytes by permeation of the host
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Figure 5. PVM lipid homeostasis is not affected by MMV009108. (A) Live microscopy on NF54-EXP2-mNeonGreen + PV-mRuby3 parasites. The PVM

protein EXP2 is expressed as mNeonGreen fusion; mRuby3 is targeted to PV lumen. Scale bar = 5 mm. (B) Western blot on saponin-treated NF54-EXP2-

mNeonGreen + PV-mRuby3 parasites following treatment with 500 nM MMV009108 for 2 hr. The saponin gradient was as follows: 0%, 0.009%, 0.018%.

This experiment was done two times. (C) Western blot on NF54-EXP2-mNeonGreen + PV-mRuby3 parasites following treatment with tetanolysin

(concentrations: 0, 0.5, 1, 2.5, 5, 7.5 ng/ml). Blot was probed with anti-RFP and anti-PM-V antibodies. This experiment was done two times. Expected

sizes: PV-Ruby3 = 27 kDa, PM-V = 69 kDa.

DOI: https://doi.org/10.7554/eLife.40529.017

The following figure supplement is available for figure 5:

Figure supplement 1. Control experiment: PPM but not PVM lipid homeostasis is affected by MMV009108.

DOI: https://doi.org/10.7554/eLife.40529.018
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plasma membrane while largely sparing the parasite cytosolic content has been a mainstay for

experiments requiring ‘freeing’ of parasites for biochemical and physiological investigations

(Hsiao et al., 1991). Cholesterol is not synthesized by malaria parasites but is taken up from the

erythrocyte and incorporated into parasite membranes. An inward cholesterol gradient is formed as

the parasite grows (Tokumasu et al., 2014). Resistance of the PPM to saponin permeation is

believed to be due to a dearth of cholesterol within the PPM. Furthermore, the accessibility of cho-

lesterol to saponin is highly dependent on its interactions with other lipids (Aittoniemi et al., 2007;

Lange et al., 2005). Interestingly, treatment with PfNCR1-active compounds results in saponin sensi-

tivity of the parasites leading to the release of parasite cytosolic content within a short period of

exposure. Remarkably, this saponin sensitivity was reversed upon the removal of the compounds tar-

geting PfNCR1. The reversible saponin sensitivity seen here is reminiscent of effects we have previ-

ously reported for antimalarial drugs that inhibit PfATP4, a P-type Na+ pump (Das et al., 2016).

Induction of saponin sensitivity by PfATP4-active drugs was dependent upon the parasite being

grown in a medium with standard [Na+]; saponin sensitivity was not seen in parasites grown in a

medium with low [Na+]. Comparing the effects of PfNCR1-active compounds with PfATP4-active

compounds, some similarities as well as differences become apparent. Both sets of compounds

cause rapid but reversible saponin sensitivity in the PPM. PfATP4-active compounds disrupt Na+

homeostasis, which is a prerequisite for induction of saponin sensitivity, whereas PfNCR1-active com-

pounds induce saponin sensitivity without disrupting Na+ homeostasis (Figure 4F and Figure 4—fig-

ure supplement 1C). It is possible that PfATP4 blockade perturbs the ionic environment critical for

PfNCR1 function.

50

37

25

C
lo

n
e

 1
 +

a
T
c

C
lo

n
e

 1
 -

a
T
c

C
lo

n
e

 2
 +

a
T
c

C
lo

n
e

 2
 -

a
T
c

C
o

m
p

le
m

e
n

t 
+

a
T
c

C
o

m
p

le
m

e
n

t 
-

a
T
c

PM-V

HAD1

PfNCR1
apt

PfNCR1
apt

-GFP

+
 2

2

-
2

2

250

50

150

PM-V

PfNCR1- 
HA

*

+
 2

8

-
2

2
+

6

+
 4

2

 -
 2

2
 +

 2
0

hrs +/- aTc

 m
e

m
b

ra
n

e
s

25

50

GFP

PM-V

s
a

p
o

n
in

 p
e

ll
e

ts

A B

Figure 6. PfNCR1 K/D hypersensitizes parasites to saponin. (A) Western blot analysis of saponin extracts (0.07%) from two PfNCR1apt clones and

complemented parasites. Parasites were harvested 24 hr after aTc washout. This experiment was done two times. (B) Replenishing aTc after washout

reverts the K/D phenotype. aTc was removed from PfNCR1apt-GFP parasites (stable expression of cytosolic GFP). 22 hr after washout, one set of

parasites was harvested, while aTc (500 nM) was added back to another set of parasite samples for 6 or 20 hr. Parasites were either harvested to

prepare membranes, or released with saponin. Lysates were subjected to western blotting. * in top blot (anti-HA) marks a cross-reacting protein. This

experiment was done two times. Expected sizes: HAD1 = 33 kDa, PM-V = 69 kDa, PfNCR1-HA = 171 kDa, GFP = 27 kDa.

DOI: https://doi.org/10.7554/eLife.40529.019

The following figure supplement is available for figure 6:

Figure supplement 1. Saponin hypersensitivity after PfNCR1 K/D is reversed rapidly by addition of aTc.

DOI: https://doi.org/10.7554/eLife.40529.020
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Figure 7. PfNCR1 inhibition or K/D impairs digestive vacuole genesis. (A) Cartoon of trafficking route to the DV in an infected red blood cell.

DV = digestive vacuole; PVM = parasitophorous vacuolar membrane; PPM = parasite plasma membrane. (B) Live microscopy of PMII-GFP parasites

after incubation with MMV009108 (1 mM, 3 hr) or with vehicle (DMSO). Scale = 1 mm. (C) Quantitation of abnormal DVs from parasites in (B) after

incubation with MMV009108 (N = 43), or MMV019662 (N = 43) or vehicle (DMSO) (N = 77) (1 mM, 3 hr). p<0.0001, Fisher’s exact test. (D) Live microscopy

Figure 7 continued on next page
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We noted that the concentrations at which PfNCR1-active compounds caused saponin sensitivity

after a short exposure were much lower than the concentrations at which the compounds inhibited

parasite growth in 72 hr assays. Similarly, PfNCR1 K/D caused saponin sensitivity of the PPM much

sooner than inhibition of parasite growth. These results are opposite of what was previously seen for

PfATP4-active compounds (Das et al., 2016). Parasites might have a greater tolerance for PPM com-

position disruption compared to the perturbation of Na+ homeostasis.

Another major consequence of PfNCR1 inhibition or K/D was dramatic changes in formation and

morphology of the DVs of parasites. DVs are lysosome-like organelles crucial for degrading hemo-

globin. Unlike other eukaryotes or related apicomplexans, malaria parasites must actively digest

hemoglobin to create room in the erythrocyte for the growing cell and to generate amino acids for

parasite protein synthesis (Krugliak et al., 2002; Rosenthal, 2011; Liu et al., 2006). Uptake of

erythrocyte cytosolic contents proceeds via the invagination of the PVM and the PPM and fusion of

the PPM with the DV membrane contributes to mature DV formation (Klemba et al., 2004). Perhaps

the abnormal membrane curvature (Churchward et al., 2008) and lack of fusion of the DVs upon

loss/inhibition of PfNCR1 function provide clues towards understanding the critical requirement for

normal lipid homeostasis in malaria parasites. The accumulation of hemoglobin peptides after incu-

bation with PfNCR1 inhibitors suggests hemoglobin catabolism as a target pathway for these com-

pounds and supports our findings. Among eukaryotes with NCR1 proteins but lacking receptor-

mediated sterol uptake, malaria parasites are unusual in their requirement for functional NCR1, thus

making this protein an exciting new antimalarial target. The diversity of chemical scaffolds targeting

a single critical protein should provide guidance for future drug design and discovery efforts.

Materials and methods

Parasite strains, culturing and resistance selection
Parasites were cultured in human red blood cells (2% hematocrit) in RPMI 1640 with 0.25% (w/v)

Albumax (cRPMI) as previously described (Klemba et al., 2004; Trager and Jensen, 1976). A lab-

adapted strain of 3D7 that has been fully sequenced was used for most experiments (Corey et al.,

2016). For GFP overexpression in wild-type parasites, the previously described NF54eGFP line was

used, which bears an eGFP expression cassette targeted to the cg6 locus using the attB x attP site-

specific integrase recombination system (Straimer et al., 2012). Parasites with evolved resistance to

MMV009108, MMV028038, or MMV019662 have been described (Corey et al., 2016). Briefly, 5 �

108 to 2 � 109 3D7 parasites were pressured with concentrations of 3x-10x EC50. Resistant parasites

were readily obtained in multiple selections for the three compounds. Resistant and transfected par-

asites were cloned by limiting dilution. Dose-response experiments were done in triplicate starting

with synchronous, young ring-stage cultures (1–1.2% starting parasitemia). Parasitemia (percentage

of total erythrocytes infected with parasites) was measured approximately 70–80 hr post compound

Figure 7 continued

of PfNCR1 K/D parasites expressing PMII-GFP, after removal of aTc. Scale = 1 mm. (E) Quantitation of abnormal DVs from parasites in (D) after aTc

washout. Cycle 0 + aTc (N = 93), –aTc (N = 84); cycle 1 + aTc (N = 107), –aTc (N = 116). p<0.0001, Fisher’s exact test. (D and E): cycle 0 = trophozoites

after removal of aTc within the same replication cycle (27 hr post washout), cycle 1 = trophozoites after removal of aTc in the preceding replication

cycle (68 hr post washout). (F) Transmission electron micrographs of PfNCR1 K/D parasites (clone 2) after aTc removal (68 hr post washout). Scale = 0.5

mm. (G) Transmission electron micrographs of PfNCR1 K/D parasites maintained with aTc and incubated with 500 nM MMV009180 for 1 hr. Scale = 0.5

mm. (H) Western blot analysis of PMII-GFP parasites after treatment with 1 mM compounds for 2 hr. Parasites were released from RBCs with low (L)

(0.009%) or high (H) (0.035%) saponin. Top blot was probed with a-GFP antibody, bottom blot (loading control) was probed with a-Hsp60 antibody, an

organellar marker. This experiment was done two times. (I) Western blot analysis of PMII-GFP, PfNCR1 K/D parasites after aTc washout for 22 hr.

Parasites were released from RBCs with 0.009%, 0.0175%, 0.035%, 0.07% or 0.14% saponin. Top blot was probed with a-GFP antibody, bottom blot

(loading control) was probed with a-Hsp60 antibody. This experiment was done two times. Expected size of pro-PMII-GFP=79 kDa, free GFP = 27 kDa.

DOI: https://doi.org/10.7554/eLife.40529.021

The following figure supplements are available for figure 7:

Figure supplement 1. Characterization of strain with PfNCR1apt in PMII-GFP background.

DOI: https://doi.org/10.7554/eLife.40529.022

Figure supplement 2. Examples of different digestive vacuole GFP patterns.

DOI: https://doi.org/10.7554/eLife.40529.023
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addition by nucleic acid staining of iRBCs with 0.8 mg/ml acridine orange in PBS. Growth was normal-

ized to parasite cultures with carrier only (DMSO). Chloroquine (500 nM) was used as a positive con-

trol for parasite growth inhibition. Data were fit to a sigmoidal growth inhibition curve. Growth

curves of K/D and complemented parasites were done in technical triplicate with synchronous para-

site cultures (aTc washout at young ring stage) by measuring daily parasitemias. Data were fit to an

exponential growth equation. GraphPad Prism 5.0 was used for data analysis. Experiments for moni-

toring leakage (western blots and flow cytometry) of cytoplasmic HAD1, GFP or mRuby after com-

pound treatment or under PfNCR1 K/D were performed with MACS LD (Miltenyi Biotech, Cat. No.

130-042-901) column-enriched parasites. Parasites were kept in cRPMI during all experiments. For

aTc washouts, synchronous young ring-stage parasites were used. Washouts were repeated 3-4x,

resuspending parasites at 2% hematocrit in cRPMI with 10 min incubations at room temperature for

each washout.

Saponin release experiments
To monitor sensitivity to saponin, parasite cultures were pelleted (3 min x 840 g), pellets were sus-

pended in 10X volume (most experiments) of room temperate saponin (prepared in PBS) for two

MetaPrint Map

!"#$%&"'(%)*+,#-

Figure 8. Metabolomic analysis of parasites incubated with PfNCR1 inhibitors. Mass spectrometry-based

metabolic profiling of hydrophilic extracts from parasites (Allman et al., 2016) exposed to the three PfNCR1-

targeting MMV compounds depicts a depletion in hemoglobin-derived peptides. Each panel represents

incubation with a different compound and is an average of two experiments (each containing triplicates). These

Metaprint representations (Fang and Gough, 2014) also demonstrate a highly similar metabolic response upon

drug treatment with these compounds.

DOI: https://doi.org/10.7554/eLife.40529.024

The following source data is available for figure 8:

Source data 1. Log2 fold changes of treated versus untreated controls.

DOI: https://doi.org/10.7554/eLife.40529.025
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mins (Sigma, Cat. No. S7900). Typical saponin concentration was 0.035%; modifications are indi-

cated in the figure legends of experiments where appropriate. The released parasites were collected

by centrifugation (3 min x 2200 g) and washed one time in cold PBS. In the experiment in Figure 4—

figure supplement 1B (in which both supernatant and pellet fractions were collected) 2X volume

saponin was used.

Tetanolysin release experiments
Magnet-purified synchronous trophozoite-stage parasites were suspended in 10X volume of tetano-

lysin (0, 0.5, 1, 2.5, 5, 7.5 ng/ml prepared in PBS) and incubated at room temperature for 2 min. The

released parasites were collected by centrifugation (3 min x 2200 g) and washed one time in cold

PBS.

Cloning and Southern blots
All plasmids were verified by direct Sanger sequencing. Primers are listed in Supplementary file 1.

Allelic exchange constructs
Allelic exchange constructs were based on the vector pPM2GT (Klemba et al., 2004). Basepairs

2305–4893 of PF3D7_0107500 were cloned into the AvrII/XhoI sites using primers AR1-F and AR1-R

primers. Using this strategy, pfncr1 is expressed from the endogenous promoter in-frame with a

C-terminal GFP (the native stop is deleted). The mutant constructs were prepared using QuikChange

mutagenesis (Agilent Technologies, Cat. No. 20053). For the A1108T mutation, primer Mut-1 was

used. In addition to the resistance mutation, this primer also introduces a BspHI site at bp 3294. For

the A1208E mutation, primer Mut-2 was used. In addition to the resistance mutation, this primer

also introduces a EcoRI site at bp 3605. For the F1436I mutation, primer Mut-3 was used. F1436I

mutant parasites also contain a synonymous change at bp4579, resulting in the deletion of a HincII

site. 100 mg of circular DNA was transfected by electroporation of ring-stage parasites. Parasites

were selected with 5 nM WR99210 (kind gift of D. Jacobus), cycled twice off drug to enrich for para-

sites with integrated plasmid and cloned by limiting dilution.

PfNCR1apt parasites
In-Fusion cloning (Clontech) following PCR from gDNA was used to clone right and left homologous

regions (RHR and LHR) for integration into the pfncr1 locus. For the right homologous region, the

sequence between bp3671 and bp4893 (the stop was deleted) (primers RHR1F and RHR1R) was

amplified. An AflII site was introduced at the 5’ end and AatII was introduced at the 3’ end. Silent

shield mutations to protect the construct from cleavage by CRISPR/Cas9 were introduced at S1464-

S1465. For the left homologous region, a 948 bp fragment starting 38 bp past the stop codon was

amplified (LHR1F and LHR1R). An AscI site was introduced at the 5’ end and an AflII site was intro-

duced at the 3’ end. After generation of single homologous region fragments, RHR and LHR PCR

products were mixed, amplified with primers RHR1F and LHR1R and cloned into the plasmid pMG75

as described (Spillman et al., 2017). The resulting construct (pMG75-PfNCR1) contains a single in

frame HA sequence followed by 10x aptamers for aTc-regulatable translational repression. The con-

struct contains two additional amino acids (D,V) before the HA sequence, as two tandem AatII sites

were mistakenly introduced. For the gRNA sequence, the sequence 5’-TTAATGTAG

TGGGCCAAAAC-3’ was chosen. The sense and antisense primer pair GRNA1 and GRNA2 encoding

the pfncr1 sgRNA seed sequence was annealed and inserted into the BtgZI site in plasmid pyAIO

(Spillman et al., 2017), resulting in the plasmid pyAIO-PfNCR1-gRNA1. 100 mg of pMG75-PfNCR1

was linearized with AflII, purified by phenol-chloroform extraction and co-transfected with 50 mg of

pyAIO-PfNCR1-gRNA1 by electroporation. Parasites containing the modified pfncr1 locus were

selected with 5 mg/ml Blasticidin S. For the PfNCR1apt strain that expresses PMII-GFP, we trans-

fected the previously described PMII-GFP clone (Klemba et al., 2004) with pyAIO-PfNCR1-gRNA1

and linearized pMG75-PfNCR1. In this case, parasites were selected with 5 nM WR99210 plus 5 mg/

ml Blasticidin S and kept in media with 500 nM aTc. Parasites were cloned by limiting dilution.
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Complementation of PfNCR1apt

For complementation, RNA was prepared from 3D7 parasites using TRIzol (ThermoFisher), pfncr1

RNA was amplified using a SuperScript RT-PCR kit (Invitrogen) with primers Comp1 and Comp2,

cloned into the XhoI/AvrII sites of the pTEOE random integration vector with the PiggyBac transpo-

sase as described (Sigala et al., 2015; Balu et al., 2005). PfNCR1apt clone two was transfected and

selected with 5 mg/ml Blasticidin S and 2 mM DSM-1 (Asinex) (Ganesan et al., 2011).

Expression of cytoplasmic GFP in PfNCR1apt background
GFP overexpression in PfNCR1apt parasites was achieved by targeting the eGFP expression cassette

of NF54eGFP parasites to the rh3 locus by CRISPR/Cas9 editing. The calmodulin promoter and egfp

coding sequencing was amplified from NF54eGFP genomic DNA template using primers eGFP-F and

eGFP-R and inserted into the plasmid pPM2GT (Klemba et al., 2004) between AatII and EagI by In-

Fusion cloning, allowing for fusion to the hsp86 3’ UTR. The sgRNA target site TGGTAATACAGAAA

TGGATG was chosen in the dispensable rh3 gene. Homology flanks were then amplified from

sequence just upstream and downstream of the Cas9 cleavage site defined by this sgRNA using pri-

mers Rh3-5’F/R and Rh3-3’F/R. These amplified flanks were used as template and assembled into a

single DNA molecule with an intervening AflII site in a second PCR reaction using primers Rh3-5’R

and Rh3-3’F and this flank assembly was inserted into the BglII site of the pPM2GT-CAM-eGFP plas-

mid resulting in the plasmid pPM2GT-CAM-eGFP-RH3-flanks. A sense and antisense primer pair

(Rh3-G1 and Rh3-G2) encoding the rh3 sgRNA seed sequence was annealed and inserted into the

BtgZI site in plasmid pyAIO (Spillman et al., 2017) resulting in the plasmid pyAIO-RH3-gRNA1. Plas-

mid pPM2GT-CAM-eGFP-RH3-flanks was linearized at AflII and co-transfected with pyAIO-RH3-

gRNA1 into PfNCR1apt clone two and selected with 2 mM DSM-1 for integration into the rh3 locus.

Expression of split-GFP
For split GFP experiments, two parasite lines were generated expressing either PV-targeted or cyto-

solic GFP1-10. A fusion of the sera5 signal peptide and gfp1-10 coding sequence was synthesized as

a gBlock (gBlock1; IDT) and used as template to PCR amplify gfp1-10 with primers GFP1-10-1F and

GFP1-10-1R or without the sera5 signal peptide (primers GFP1-10-2F and GFP1-10-1R). These ampli-

cons were inserted into plasmid pLN-ENR-GFP (Adjalley et al., 2010) between AvrII and AflII to

generate plasmids pLN-SP-GFP1-10 and pLN-GFP1-10, respectively. Each plasmid was co-trans-

fected with plasmid pINT into NF54attB parasites and selected with 2.5 mg/ml Blasticidin S to facili-

tate integration into the cg6 locus through integrase-mediated attB x attP recombination

(Adjalley et al., 2010). A clonal line was derived from each transfected parasite population by limit-

ing dilution and designated NF54pvGFP1-10 or NF54cytGFP1-10, respectively. GFP1-10 expression and

targeting to the proper compartment (parasitophorous vacuole or cytosol) was confirmed by west-

ern blot and immunofluorescence assay using a rabbit-anti-GFP (Abcam 6556). For endogenous tag-

ging of PfNCR1 with 3xHA-GFP11, pfncr1 was amplified from pMG75-PfNCR1 with primers GFP11-F

and GFP11-R and inserted into the plasmid pyPM2GT-EXP2-mNeonGreen (Glushakova et al., 2017)

between XhoI and AvrII. Transfections were selected with 2 mM DSM-1. This construct expresses

PfNCR1-GFP11 from its native promoter.

For monitoring PVM integrity
The line NF54-EXP2-mNeonGreen + PV-mRuby3 was used (Glushakova et al., 2018).

Southern blot
To confirm correct integration, we used the AlkPhos Direct Kit (FisherScientific Cat. No. 45-000-936)

for Southern blots as described (Klemba et al., 2004). For the probe, we amplified a 674 bp frag-

ment from gDNA using primers Probe1 and Probe2.

Microscopy
Fluorescence microscopy was performed on live, GFP-expressing parasites using a Zeiss Axioskope.

Nucleic acid was detected by staining with DAPI. For Figures 3D–G and Figure 7B and D, back-

ground correction was done using the program Affinity Designer and was applied consistently for all

figures. For Figure 3D, spinning-disc confocal images of live or immunolabeled cells were captured
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and analyzed on an AxioObserver Z1 (Carl Zeiss, Inc) with a 60X oil objective, running Zen two soft-

ware (Carl Zeiss, Inc).

For electron microscopy, infected RBCs were enriched using MACs LD columns, fixed in 4% para-

formaldehyde (Polysciences Inc, Warrington, PA) in 100 mM PIPES/0.5 mM MgCl2, pH 7.2 for 1 hr at

4˚C. Samples were then embedded in 10% gelatin and infiltrated overnight with 2.3M sucrose/20%

polyvinyl pyrrolidone in PIPES/MgCl2 at 4˚C. Samples were trimmed, frozen in liquid nitrogen, and

sectioned with a Leica Ultracut UCT cryo-ultramicrotome (Leica Microsystems Inc, Bannockburn, IL).

50 nm sections were blocked with 5% FBS/5% NGS for 30 min and subsequently incubated with rab-

bit anti-GFP (Life Technologies; Cat. No. A11122) (1:500) for 1 hr, followed by goat anti-rabbit IgG

(H + L) antibody conjugated to 18 nm colloidal gold (1:30) (Jackson ImmunoResearch) for 1 hr. Sec-

tions were washed in PIPES buffer followed by a water rinse, and stained with 0.3% uranyl acetate/

2% methyl cellulose and viewed on a JEOL 1200EX transmission electron microscope (JEOL USA,

Peabody, MA) equipped with an AMT eight megapixel digital camera (Advanced Microscopy Tech-

niques, Woburn, MA). All labeling experiments were conducted in parallel with controls omitting the

primary antibody which was consistently negative at the concentration of colloidal gold conjugated

secondary antibodies used in these studies. For EM without immunostaining, cells were fixed in 2%

paraformaldehyde/2.5% glutaraldehyde (Polysciences Inc, Warrington, PA) in 100 mM sodium caco-

dylate buffer, pH 7.2 for 1 hr at room temperature. Samples were washed in sodium cacodylate

buffer and postfixed in 1% osmium tetroxide (Polysciences Inc) for 1 hr. Samples were then rinsed

extensively in dH2O prior to en bloc staining with 1% aqueous uranyl acetate (Ted Pella Inc, Redd-

ing, CA) for 1 hr. Following several rinses in dH2O, samples were dehydrated in a graded series of

ethanol and embedded in Eponate 12 resin (Ted Pella Inc). Sections of 95 nm were cut with a Leica

Ultracut UCT ultramicrotome (Leica Microsystems Inc, Bannockburn, IL), stained with uranyl acetate

and lead citrate, and viewed on a JEOL 1200 EX transmission electron microscope (JEOL USA Inc,

Peabody, MA) equipped with an AMT eight megapixel digital camera and AMT Image Capture

Engine V602 software (Advanced Microscopy Techniques, Woburn, MA).

Flow cytometry
For flow cytometry experiments with eGFP, 50,000 cells were counted on a BD FACSCanto and

scored for high or low GFP signal. Appropriate gating of cells was established using untreated

parental or NF54eGFP parasites.

Western blotting
For PfNCR1 blots, membrane preparations were made. 1 � 108 to 5 � 108 trophozoite-stage para-

sites were released from RBC with 0.035% saponin, washed in cold PBS, resuspended in 300 ml DI-

water with protease inhibitors (HALT, ThermoFisher, Cat. No. 78430), freeze-thawed 3x with liquid

nitrogen/42˚C water bath. The membranes were pelleted (17 k g), resuspended in 100 ml-300ml

(depending on sample amount) Ripa buffer (25 mM Tris (pH 7.6), 150 mM NaCl, 1% NP-50, 0.1%

SDS, 1% Sodium Deoxycholate) containing 0.1% CHAPS and 0.1% ASB-14, sonicated 3x with a

microtip, and incubated at 42˚C with shaking for 45 min. The samples were then centrifuged (17 k g,

30 min), SDS sample buffer was added to the soluble portions. The samples were warmed at 42˚C
and loaded on 4–15% TGX gradient gels (Biorad). Proteins were transferred onto PVDF using wet

transfer with 20% methanol. Blots were blocked either 1 hr at 25˚C or overnight at 4˚C with Licor

Odessey block buffer. Primary antibodies were mouse monoclonal a-HA antibody (Biolegend) at

1:1000 or LivingColors mouse-a-GFP (Takara, Cat. No. 632380) (1:1000). For the loading control

mouse monoclonal a-PM-V antibody (Banerjee et al., 2002) at 1:20 was used. Secondary antibody

was goat-a-mouse (800) IR-Dyes (1:20,000) from Licor.

For western blot monitoring leakage of cytosolic proteins after incubation with compound or

PfNCR1 K/D, parasites were resuspended in saponin-containing PBS, pelleted, lysed in Ripa buffer

containing protease inhibitors and with brief sonication. Soluble proteins after centrifugation (30

min, 17 k g) were added to sample buffer, briefly heated at 980C and loaded onto 10% or 12% TGX

gels (Biorad). Western blotting was done using the protocol indicated above. Primary antibodies

were: rabbit a-HAD1 (a gift from Dr. Audrey Odom John, WU) (Guggisberg et al., 2014) (1:1000),

rabbit a-Hsp60 (1:500) (a gift from Dr. Sabine Rospert, University of Freiburg), mouse a-PM-V (1:20)

(Banerjee et al., 2002), rabbit a-RFP (1:1000) (Thermofisher, Cat. No. R10367), mouse a-GFP (Living
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Colors JL-8, Clontech, Cat. No. 632380) (1:1000), HRP-conjugated a-aldolase (Abcam, Cat. No.

ab38905) (1:10000), a-EXP2 antibody (gift from Professor James Burns, Drexel University) (1:10000)

(Das et al., 2016). Secondary antibodies were goat-a-mouse (800) and donkey-a-rabbit (680) IR-

Dyes (1:20,000) from Licor. Immunoblots shown in Figure 4A and E and Figure 6—figure supple-

ment 1 were washed in PBS-Tween (0.2%) and developed using the Super Signal West Pico Chemi-

luminescent substrate (Thermo Scientific, Cat. No. 34080).

Measuring intracellular [Na+]
Intracellular Na+ measurements for parasites were performed using methods adapted from

Spillman et al. (2013). Briefly, P. falciparum cultures were loaded with the sodium-sensitive dye

SFBI-AM (5.5 mM) (Molecular Probes) and 0.02% w/v Pluronic F-127 (Molecular Probes) in RPMI at

37˚C for 1 hr. Loaded parasite cultures were diluted to 5% hematocrit and freed from host red blood

cells by exposing the culture to 0.05% w/v saponin (Sigma-Aldrich #47036) for 15–20 s and pelleted

by centrifuging at 500x g, 5 min. Freed parasites were washed twice (2000x g, 30 s) and resus-

pended to a final concentration of 5–7.5 � 107 cells/mL in a saline buffer (125 mM NaCl, 5 mM KCl,

1 mM MgCl2, 20 mM glucose, 25 mM HEPES, pH 7.3). SBFI-loaded parasites were excited at 340

nm and 380 nm with emissions recorded at 505 nm at 37˚C in a fluorescence spectrophotometer

(Hitachi F-7000). Auto-fluorescence corrected SBFI emissions at 340 nm and 380 nm were plotted as

ratios.

Metabolomic profiling
Changes in metabolites were measured in response to compounds using whole cell hydrophilic

extraction, followed by ultra-high precision liquid chromatography mass-spectrometry (UHPLC-MS)

using negative ionization as in Cowell et al., 2018 (Cowell et al., 2018). This was performed on syn-

chronous, trophozoite infected red blood cells (iRBCs, 24–36 hpi) which had been magnetically sepa-

rated from culture. Quantification of cells was performed by hemocytometry, and treatments were

performed on 1 � 108 iRBCs in wells containing 5 mL of RPMI. Treatment conditions were per-

formed in triplicate, with compound concentrations of 10xEC50 for 2.5 hr, followed by washing with

PBS and extraction using 90% methanol containing isotopically-labeled aspartate as an internal stan-

dard for sample volume. Samples were dried using nitrogen prior to resuspension in water contain-

ing 0.5 uM chlorpropamide as an internal standard for injection volume. Samples were then

analyzed via UHPLC-MS on a Thermo Scientific EXACTIVE PLUS Orbitrap instrument as established

in Allman et al., 2016 (Allman et al., 2016).
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