
Review
The brain as an insulin-sensitive metabolic
organ
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ABSTRACT

Background: The brain was once thought of as an insulin-insensitive organ. We now know that the insulin receptor is present throughout the
brain and serves important functions in whole-body metabolism and brain function. Brain insulin signaling is involved not only in brain ho-
meostatic processes but also neuropathological processes such as cognitive decline and Alzheimer’s disease.
Scope of review: In this review, we provide an overview of insulin signaling within the brain and the metabolic impact of brain insulin resistance
and discuss Alzheimer’s disease, one of the neurologic diseases most closely associated with brain insulin resistance.
Major conclusions: While brain insulin signaling plays only a small role in central nervous system glucose regulation, it has a significant impact
on the brain’s metabolic health. Normal insulin signaling is important for mitochondrial functioning and normal food intake. Brain insulin
resistance contributes to obesity and may also play an important role in neurodegeneration.
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1. INTRODUCTION

With the introduction of insulin in 1921, diabetes, then a near uniformly
fatal disease, became manageable. But along with an initial increase in
lifespan, many of complications of diabetes became apparent. Early
research focused on the organs most associated with morbidity and
mortality, including the kidney and heart, as well as the classically
insulin-sensitive tissues responsible for much of glucose homeostasis
such as liver and skeletal muscle. As this research has led to
increasingly longer lifespan for those affected by diabetes, it has
become apparent that no organ, including the brain, is spared by the
disease. The huge advances in molecular biological and neuroscience
tools over the past 30 years have opened the way for a greater un-
derstanding of how the brain, a non-classical insulin-sensitive tissue,
is impacted by diabetes. Intriguingly, the potential roles of insulin in the
pathogenesis and treatment of some neurological diseases, including
depression, cognitive decline, and Alzheimer’s disease (AD), have
expanded the brain insulin signaling research field beyond the confines
of diabetes.
While the brain comprises only 2% of the human body’s overall mass,
it utilizes an estimated 20% of the body’s glucose. For the most part,
this glucose utilization is not dependent on insulin-stimulated trans-
location of glucose transporter 4 (GLUT4), as seen in classical insulin-
sensitive tissues such as adipose tissue and skeletal muscle. As such,
the brain was labeled early on as an insulin-insensitive organ whose
glucose utilization was mediated through insulin-independent mech-
anisms. Since that designation, a vast amount of research has shown
that the brain is, in fact, insulin-sensitive, despite its ability to uptake
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glucose being, for the most part, insulin-independent. The first hints at
the brain’s insulin sensitivity came from studies showing widespread
expression of the insulin receptor (IR) in the brain. Since then, we have
learned that the brain regions that harbor high levels of IR expression
are some of those most known for their roles in cognition and feeding
behaviors. In addition, it is now apparent that insulin and its close
relative, insulin-like growth factor 1 (IGF1), are both able to influence
brain metabolism and cellular function. This review presents what is
currently understood about insulin’s role in the brain, beginning with its
transport across the bloodebrain-barrier (BBB) and its signaling ef-
fects on cellular function and metabolism. We also discuss insulin’s
role in modulating the activity of different brain circuits and the
resulting behavioral and metabolic implications arising from this. We
also address cognitive impairment and Alzheimer’s disease, which are
associated with insulin resistance, and the potential for combatting
them with intranasal insulin and insulin sensitizers.

2. INSULIN RECEPTOR EXPRESSION AND SIGNALING IN THE
BRAIN

2.1. Brain insulin receptor expression
As noted, a critical first step in recognizing the brain as an insulin-
sensitive organ was the identification of IR expression in a variety of
brain regions. Although the insulin receptor is found ubiquitously
throughout the brain, its expression is at higher levels in select regions
such as the cerebellum, cortex, and hypothalamus [1]. The receptor
itself is primarily found in the plasma membrane and is composed of
dimers of a and b subunits. It is important to note that neurons and
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glial cells such as astrocytes express different isoforms of the a
subunit of the insulin receptor. Neurons express the IR-A isoform,
which excludes exon 11, whereas glia predominantly express IR-B,
which includes exon 11 [2e4]. This differs from peripheral tissues
where the majority of IRa expression is the IR-B isoform. Also in
contrast to the brain, IRa isoform expression patterns in the periphery
are largely tissue-dependent rather than cell-type-dependent [5].
Despite this, there has not been evidence to suggest differing affinities
for insulin between central and peripheral IRs. In general, studies
assessing the affinities for the IR-A and IR-B isoforms for insulin have
concluded that the IR-A isoform has approximately a 1e2 fold higher
than to the IR-B isoform (EC50 calculations range from 0.4 to 6 nM
depending on the study and methods used) [6e11].
To add even more complexity to receptoreligand interactions, heter-
odimers consisting of an IR and a receptor for IGF1 (IGF1R) have been
described in the brain and periphery [4,12] (Figure 1). As a result, there
are five possible combinations of receptor dimerization between the IR
and IGF1R, including the homodimers IR-A:IR-A, IR-B:IR-B, and
IGF1R:IGF1R as well as the heterodimers IR-A:IGF1R and IR-B:IGF1R.
These heterodimers, also referred to as hybrid receptors, seem to
Figure 1: Insulin signaling and mitochondria. Binding of insulin and IGF1 to IR and
cascade that activates IRS1/2 and PI3K, which in turn activates mTORC2 and Akt. Both mT
by Akt and amino acids promotes lipid and protein synthesis as well as mitochondrial m
FOXO1: forkhead box O1, HO: 1-heme oxygenase-1, IGF1: insulin-like growth factor 1, IRS1
I/2, NRF1/2: nuclear respiratory factor 1/2, PGC1a: peroxisome-proliferator activated rece
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have increased affinity for IGF1 compared to insulin, although they are
able to bind both of these hormones, along with IGF2, at varying af-
finities. IR-A:IGF1R and IR-B:IGF1R hybrid receptor EC50 values for
insulin are widely variable between studies (w1e350 nM for IR-
A:IGF1R and w1e325 nM for IR-B:IGF1R), with some showing no
difference in insulin binding and some showing a higher affinity by the
IR-A:IGF1R hybrid receptor [8,11,13e16]. Thus, more work is required
to better clarify or confirm the different substrate-binding efficiencies
of these two hybrid receptors. The extent to which IRs and IGF1Rs are
in a heterodimer or homodimer conformation is believed to depend on
the number of receptors in the tissue, as the energy required for
producing either a hetero- or homodimer is equivalent [5,14,16]. How
these heterodimers and homodimers differentially impact the brain’s
response to insulin requires additional research, although some work
has been done to elucidate this in vitro. Specifically, Cai et al. [2]
reported that the primary contributing factor to the downstream
signaling effects of the IR and IGF1R is these two receptors’ intra-
cellular juxtamembrane domains, not the extracellular domain or
substrate. While this study provides insight into what contributes to the
differential signaling by IR and IGF1R homodimers after activation, the
IGF1R homo- and heterodimers (also known as hybrid receptors) initiates a signaling
ORC2 and Akt inhibit FoxO1 to prevent the transcription of HO-1. Activation of mTORC1
etabolism and biogenesis through the PGC1a-NRF1/2 pathway. Akt: protein kinase B,
/2: insulin receptor substrate 1/2, mTORC1/2: mammalian target of rapamycin complex
ptor coactivator-1a, PI3K: phosphatidylinositol 3-kinase.
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downstream effects of IR/IGF1R hybrid receptor signaling have not yet
been well characterized.

2.2. Insulin production and transport across the BBB
Whether the brain produces its own insulin or if it is all or at least
mostly pancreatic in origin has been controversial for decades.
Pancreatic preproinsulin is processed in the endoplasmic reticulum
and requires the expression and activity of multiple endopeptidases to
cleave the C-peptide fragment from proinsulin. This generates the
mature form of insulin that will subsequently be exocytosed in
secretory granules by b cells in response to elevated blood glucose
levels. Humans and rabbits have a single gene encoding for insulin,
while rodents have two. Of the two Ins genes that lead to the pro-
duction of preproinsulin in rodents, Ins II appears to be the one pre-
dominantly expressed by neurons [17,18]. In cultured rabbit neurons
and glia, only neurons can secrete insulin into culture media [18].
While Ins II may be expressed in the brain in vivo, whether the en-
dopeptidases that are required for secretion of the mature hormone
product are expressed in the brain has been less well-demonstrated.
Overall, data suggesting that the human brain produces and secretes
significant amounts of insulin locally are lacking, and it is largely
believed that the vast majority of insulin found in the brain parenchyma
originates from the pancreas. To allow for this, insulin transport from
the blood into the brain must occur via passage through the BBB and/or
the blood-cerebrospinal fluid (CSF) barrier.
The insulin concentration in the CSF is significantly lower than that
found in the blood. Multiple studies have shown that the CSF insulin
concentration increases much slower and peaks at much lower levels
than that of plasma insulin levels during hyperinsulinemic-euglycemic
clamps [6,19e21]. Together with the fact that insulin is a 51-amino
acid peptide, these findings suggest that insulin’s transport into the
brain is not through diffusion and instead requires active mechanisms.
These mechanisms have not been fully elucidated, but studies using
radiolabeled insulin have found that insulin quickly localizes to the
brain endothelial cells, which can uptake insulin in an IR-dependent
manner [6,22e24]. Confirming a role of endothelial IR in insulin
transport across the BBB, endothelial cell-specific IR knockout (IRKO)
mice intravenously injected with insulin have reduced downstream
insulin signaling in the hippocampus, hypothalamus, and frontal cortex
[25]. Insulin can also be transported across circumventricular organs
such as the median eminence, where the BBB vessels are fenestrated.
Here, insulin may be brought into the CSF or interact with specialized
ependymal cells called tanycytes that facilitate receptor-mediated
endocytosis of insulin for transport to neurons in the hypothalamus
[6,26].
Notably, there is controversy regarding measuring CSF insulin con-
centrations to extrapolate brain parenchymal insulin levels. CSF insulin
has been used as a proxy for tissue insulin given the relative ease of
collection; however, insulin levels in the CSF are very low and may not
reach levels needed to induce insulin signaling in the brain [6,19,20].
Complications with measuring brain insulin levels directly via micro-
dialysis make interpreting these data difficult. An in-depth discussion
of insulin transport and confounding insulin concentration measure-
ments between compartments can be found in a recent review by Gray
and Barrett [6].

2.3. Insulin signaling and glucose uptake in the brain
Once it has entered the brain, insulin binds to its receptor and
initiates a series of phosphorylation events. First, an autophos-
phorylation event occurs on the intracellular tail of the IR, recruiting
the insulin receptor substrates 1 and 2 (IRS1 and IRS2). Tyrosine
MOLECULAR METABOLISM 52 (2021) 101234 � 2021 The Authors. Published by Elsevier GmbH. This is
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phosphorylation of IRS1/2 leads to downstream activation of the
kinases phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt),
and mammalian target of rapamycin (mTOR) (Figure 1) [27,28]. This
PI3K/Akt/mTOR signaling pathway impacts a wide variety of cellular
functions, including synaptic plasticity, cholesterol synthesis,
neuronal survival, and neurotransmitter trafficking [29e32]. Insulin
is also able to modulate cell growth and proliferation through in-
duction of Shc and its downstream targets Ras, ERK, and mitogen-
activated protein kinase (MAPK). Although insulin can promote this
pathway, it appears to be more active in response to IGF1R
signaling compared to IR signaling [2]. In addition, some evidence
suggests that the different IRa isoforms promote different down-
stream signaling, with the IR-A isoform preferentially activating the
mitogenic Shc/Ras/ERK/MAPK pathway and the IR-B isoform acti-
vating the PI3K/Akt/mTOR pathway [4,16].
The primary difference between peripheral and brain insulin signaling
is the regulation of glucose transporters. In peripheral tissues, insulin-
mediated Akt activation induces translocation of glucose transporter 4
(GLUT4) from vesicles to the plasma membrane to facilitate glucose
uptake from the blood [33]. However, in the brain, the expression of
GLUT4 is limited to specific brain regions such as the hippocampus
and hypothalamus, resulting in a much smaller impact on glucose
uptake [34,35]. Thus, it is primarily the glucose uptake effects of in-
sulin signaling, rather than the signaling pathways themselves, which
differ between the brain and periphery.
In the brain, glucose import from the circulation is primarily mediated
through the insulin-insensitive GLUT1, which is expressed by endo-
thelial cells and astrocytes at the BBB [36e38]. Within the brain pa-
renchyma, GLUT3 and GLUT1, both of which are considered insulin-
insensitive, are expressed widely by neurons and glial cells, respec-
tively. There is evidence to support some function of insulin in regu-
lating brain glucose uptake. Astrocyte-specific IRKO in adult mice
results in decreased CSF glucose levels after peripheral glucose in-
jection [39]. Furthermore, in vivo 18FDG-PET imaging of astrocyte-
specific IRKO mice shows decreased glucose uptake in the brain
and this effect coincides with diminished GLUT-1 mRNA expression
[39]. There is also evidence that insulin can indirectly induce GLUT3
translocation to the plasma membrane in neurons to allow glucose
uptake [40], suggesting that insulin plays a role in modulating glucose
transporter expression in the brain, despite the limited expression of
insulin-sensitive GLUTs. Fernandez et al. [41] identified a putative
mechanism by which astrocytes can uptake glucose through GLUT1
translocation in response to concurrent signals from insulin and IGF-1.
Together, these data indicate that insulin signaling may play an
important role in regulating glucose uptake into the brain through non-
traditional pathways.
Despite these findings, most glucose uptake by the brain is not
regulated by insulin signaling. While this holds true for brain glucose
metabolism as we currently understand it, insulin plays a critical role in
intracellularly modulating metabolic activity through its regulation of
metabolic signaling pathways.

2.4. Control of cellular metabolism by insulin
Diseases related to impaired insulin signaling, commonly referred to as
insulin resistance, are predominantly associated with altered metabolic
function. As such, it is not surprising that insulin affects many aspects
of cellular and mitochondrial metabolism, not only in the periphery, but
also in the brain. As the primary producers of cellular ATP, mito-
chondria are critical in maintaining metabolic homeostasis, and
mitochondrial dysfunction is observed in many metabolic diseases that
are characterized by insulin resistance.
an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 3
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As mentioned, the insulin signaling cascade is associated with the
activation of Akt, which leads to assembly of mTORC1. mTORC1
signaling is critical for regulating protein, lipid, and fatty acid synthesis
as well as mitochondrial metabolism [42e45]. In terms of its metabolic
impact, mTORC1 is integral to mitochondrial oxidative metabolism and
biogenesis through its control of peroxisome-proliferator activated
receptor coactivator (PGC)-1a and the transcription factors nuclear
respiratory factors 1 and 2 (NRF1/2) (Figure 1) [46,47]. In addition to
activation by insulin through Akt, mTORC1 can be activated by
increased levels of amino acids [48e50]. When mTORC1 is activated
by either insulin or amino acids, production of nuclear-encoded
mitochondrial proteins is stimulated. These are then incorporated
into a variety of mitochondrial metabolic pathways, including the
tricarboxylic acid (TCA) cycle, fatty acid b oxidation (FAO), and the
electron transport chain complexes [51]. Further, mTORC1 drives a
metabolic shift from oxidative phosphorylation (OXPHOS) to glycolysis
during cell growth and development. The ability of mTORC1 to sense
amino acids and regulate both mitochondrial metabolism and
biogenesis places it as a central player controlling cellular metabolism
and nutrient sensing. This may be important for regulating metabolism
in different brain cell types, both under normal conditions and meta-
bolic stress. For example, mTOR-driven autophagy in response to
metabolic stress appears to be more robust in astrocytes than neurons
[52]. Therefore, it is possible that the regulation of metabolism by
mTORC1 signaling may differ between these cell types. Because as-
trocytes utilize glycolysis and FAO as their primary means of energy
production while neurons preferentially use OXPHOS [53e56], differ-
ences in mTOR signaling may play a role in establishing these
metabolic phenotypes. However, this comparison and whether the
variable mTOR signaling in these cells differentially affects their
mitochondrial response to nutrient deprivation have yet to be
addressed.
mTOR is also found in a second complex, mTORC2, which acts through
Akt to promote cell proliferation and survival. mTORC2-mediated Akt
activation also negatively regulates forkhead box O1 (FoxO1) (Figure 1).
FoxO1 promotes the transcription of heme oxygenase-1 (HO-1). Excess
hepatic HO-1 expression in the liver impairs mitochondrial OXPHOS
and FAO [57] by decreasing mitochondrial biogenesis [57,58].
Therefore, insulin’s activation of Akt inhibits FoxO1-dependent HO-1
transcription and prevents HO-1 hyperactivation-induced mitochon-
drial dysfunction in the liver. Whether this same process occurs in the
brain has not been determined. However, there is evidence suggesting
an important role of insulin-mediated regulation of FoxO1 in controlling
food intake, insulin sensitivity, and glucose homeostasis. Mice with
constitutively active nuclear FoxO1 have elevated food intake and
associated obesity, while mice with deletion of FoxO1 in hypothalamic
neurons have diminished food intake [59e64].
Insulin’s other major signaling pathway, which involves activation of
Ras/ERK/MAPK, also modulates mitochondrial homeostasis and
function. In in vitro experiments using a hypothalamic neuronal cell
line, Wardelmann et al. [65] found that insulin acts through ERK to
induce the expression of the mitochondrial chaperones heat shock
protein (Hsp) 60 and Hsp10. They further identified this pathway as a
potential mediator of insulin-induced mitochondrial respiration, as
inhibition of ERK signaling alleviated the induction of mitochondrial
respiration due to insulin treatment. Of note, they found the same
response with IGF1 acting through the IGF1R. Whether these effects
in vivo are primarily driven by IGF1R signaling or IR signaling remains
to be determined. Altogether, brain insulin action has clear roles in
regulating cellular metabolism despite its limited impact on modulating
glucose uptake into the brain.
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3. BRAIN CIRCUITRY AND BEHAVIOR IN RESPONSE TO
INSULIN

3.1. Insulin signaling in neuronal populations
As previously discussed, one of the prominent effects that insulin
exerts on the brain is regulating feeding behaviors. This is done, in
part, through its binding to IRs on pro-opiomelanocortin (POMC) and
agouti-related protein (AgRP) neurons in the arcuate nucleus of the
hypothalamus. AgRP neurons are orexigenic and promote hunger
while POMC neurons are anorexigenic and promote satiety. Thus,
the individual activities of these neuronal populations oppose each
other to modulate hunger and food intake. On balance, intra-
cerebroventricular infusion of insulin reduces food intake in both
fasted and non-fasted rodents and results in weight loss [6,66e69].
However, insulin’s role in these subpopulations of neurons extends
beyond food intake and into the periphery through regulation of
peripheral metabolism.
For example, central insulin resistance alters glucose sensing in hy-
pothalamic neurons, leading to an impaired sympathetic outflow in
response to hypoglycemia [70,71]. Insulin control of sympathetic
outflow also seems to participate in body temperature regulation.
When IR is knocked out from the brain, mice become hypothermic [72].
In contrast, intranasal delivery of insulin in humans promotes ther-
mogenesis [73]. At least in rodents, this effect is mediated by sym-
pathetic activation of brown fat [74].
Further evidence delineating the impact that insulin signaling in hy-
pothalamic neurons has on peripheral metabolism comes from cell-
specific IRKO experiments in AgRP and POMC neurons. These
studies demonstrated that insulin signaling in AgRP neurons regulates
hepatic glucose production, while insulin signaling in POMC neurons
affects adipose tissue lipolysis (Figure 2) [75,76]. Supporting this,
insulin injection directly into the CNS increases insulin sensitivity in the
liver while also stimulating lipogenesis and fat accumulation [77,78].
However, insulin’s role in POMC neuronal control of hepatic glucose
production has been controversial due to dichotomous results showing
that insulin can either inhibit POMC neuron activity [76,79e81] or
promote it [82e84]. Although more work is needed to better under-
stand these findings, a series of recent studies from the Tiganis group
[85e87] shed some light on this issue by identifying T cell protein
tyrosine phosphatase (TCPTP), whose expression increases during
fasting and decreases post-prandially. This phosphatase appears to be
able to determine whether insulin is inhibitory or excitatory to POMC
neuronal firing and control of hepatic glucose production. Others have
shown through single-cell profiling that POMC and AgRP neuronal
populations in the hypothalamus are heterogeneous and these subsets
may act differently in response to nutrient availability [88e90], further
suggesting that the regulation of these neuronal populations and their
effects in the brain and periphery are much more complex than
currently understood.
This complexity is likely reflected in human clinical trials of intranasal
insulin. This delivery method, which allows for direct delivery of insulin
to the brain, thus avoiding the potential for hypoglycemia, results in
suppressed food intake in most trial participants [91,92]. However, one
study that treated patients with intranasal insulin for 8 weeks found
that while men lost body fat with the treatment, women did not [93].
This may represent a sex-based difference in the balance of hypo-
thalamic control by centrally acting insulin of food intake vs stimulation
of peripheral lipogenesis. Altogether, these various studies demon-
strate that in addition to insulin’s important role in regulating brain
metabolism, there are multiple peripheral homeostatic functions that
are fine-tuned by insulin signaling in the brain.
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Figure 2: Hypothalamic regulation of whole-body metabolism under different feeding states. Fasting induces mitochondrial fission in both AgRP and POMC neurons in the
arcuate nucleus of the hypothalamus. AgRP neurons produce more AgRP protein, while POMC-derived aMSH decreases. These combined effects decrease the activity of MCH
neurons in the paraventricular nucleus of the hypothalamus to increase food intake. AgRP and POMC regulation of hepatic glucose production and adipose tissue lipolysis is
diminished to allow for elevated circulating levels of blood glucose and FFAs, resulting in reduced fat mass and higher insulin sensitivity. Under fed conditions, mitochondria in
AgRP and POMC neurons are in an intermediate state, with a balance between mitochondrial fusion and fission. AgRP release is diminished and aMSH is enhanced, promoting
MCH neuronal activity and satiety. IR signaling in AgRP and POMC neurons inhibits hepatic glucose production and lipolysis, respectively. In response to long-term HFD feeding,
AgRP neuronal mitochondria enter a fused state, whereas mitochondria in POMC neurons are fissed. AgRP neurons upregulate the production of AgRP protein, while aMSH
production by POMC neurons is impaired, inhibiting MCH neurons and increasing food intake. Impaired IR action on AgRP and POMC neurons leads to deficits in these neurons’
ability to inhibit hepatic glucose production and lipolysis, resulting in elevated fat mass and diminished insulin sensitivity. AgRP: agouti-related protein, FFAs: free fatty acids, MCH:
melanin-concentrating hormone, aMSH: a-melanocyte-stimulating hormone, POMC: pro-opiomelanocortin.
Convincing evidence supporting a specific role of insulin signaling in
the brain in cognitive or affective behaviors has been scarce until more
recently. The commonly cited and used nestin-Cre IRKO (NIRKO)
mouse shows some anxiety behaviors later in life [94,95]. This mouse
is sometimes mistakenly referred to as a neuron-specific knockout, but
nestin is an intermediate filament expressed during development by all
neural progenitor cells. As such, the NIRKO mouse is a model of whole-
brain IRKO (excluding microglia) rather than a neuron-specific deletion.
Additional evidence implicates IR/IGF1R signaling in both the hippo-
campus and amygdala in behavior. Using adeno-associated virus
(AAV)-Cre injection into both of these brain regions, Soto et al. [96]
found that IR/IGF1R double-KO (DKO) in either brain region elevated
anxiety behaviors and impaired systemic glucose homeostasis
compared to mice injected with a control AAV. Further, hippocampal
IR/IGF1R DKO mice had impaired spatial memory, whereas DKO in the
amygdala dysregulated brown adipose tissue thermogenesis [96].
These findings were consistent with a previous report that showed
injection into the hippocampus of a lentiviral construct expressing an IR
antisense sequence to downregulate IR expression specifically in this
region negatively affected long-term potentiation and spatial memory
[97]. While these two methods may have been able to decrease IR
expression in the hippocampus and amygdala, they were not able to
distinguish cell-type-specific effects of IR or IR/IGF1R DKO in these
brain regions. It will be critical to determine the individual contributions
of insulin and IGF1 in long-term potentiation and spatial memory
MOLECULAR METABOLISM 52 (2021) 101234 � 2021 The Authors. Published by Elsevier GmbH. This is
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formation in the hippocampus and whether IR/IGF1R homodimers and
heterodimers have distinct roles in these processes.

3.1.2. Mitochondrial dynamics regulate hypothalamic neuron
activity
Mitochondrial dynamics, among other aspects of mitochondrial
biology, include fission and fusion of mitochondria and these pro-
cesses are imperative for mitochondrial quality control and adaptation
to the cell’s redox and energetic state. As the names imply, mito-
chondrial fusion is the process in which two discrete mitochondria
combine into a single mitochondrion or when a single mitochondrion
integrates into a mitochondrial network. In contrast, mitochondrial
fission describes the separation of a single mitochondrion into two
discrete organelles or the removal of a mitochondrion from the mito-
chondrial network. Mitochondrial fusion is primarily mediated by the
proteins mitofusin 1 (MFN1), MFN2, and Opa1, whereas fission is
mediated by the proteins dynamin-related protein 1 (Drp1), mito-
chondrial fission factor (MFF), and Fis1. Generally, when the cell is
under energetic stress or nutrient deprivation, mitochondria will fuse
and become elongated in an attempt to maximize energy production
[98,99]. However, this response to stress may not be sustainable, as
the increase in OXPHOS from these mitochondria may also augment
ROS production and eventual mitochondrial damage [100]. Mito-
chondrial fission aids mitochondrial quality control by ensuring that old
or damaged mitochondria are sequestered and isolated off of the
an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 5
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mitochondrial network to be degraded through selective autophagy,
termed mitophagy. In this way, fission is able to respond to increases
in ROS or decreases in ATP production to mitigate these and limit
downstream damage. These basic aspects of mitochondrial biology
and homeostasis have been identified as imperative for maintaining
mitochondrial adaptations to nutrient availability and neuronal activity
in both AgRP and POMC neurons [101e104], which has direct im-
plications for regulating whole-body insulin sensitivity and glucose
homeostasis.
Under fasted conditions, mitochondria in both AgRP and POMC neuron
populations undergo increased fission levels, which coincide with
decreased POMC activity and increased AgRP activity [101,103,104].
After feeding, mitochondrial fusion is upregulated in these cells,
resulting in an intermediate phenotype of the mitochondrial network
that is associated with diminished AgRP activation and enhanced
POMC activation [101e104]. It is clear that the regulation of mito-
chondrial fission and fusion is required for proper activation of POMC
neurons under fed conditions. This comes from mouse studies
demonstrating that POMC-specific KO of the fission regulator Drp1 or
either of the fusion regulators MFN1/2 leads to altered POMC activity
and impaired food intake and whole-body glucose tolerance [102e
104] (Figure 2). Mitochondrial fusion in POMC neurons may also be
involved in controlling pancreatic glucose-stimulated insulin secretion
by these cells, as POMC-specific MFN1 KO increased sympathetic
outflow to the pancreas, resulting in reduced insulin secretion [103].
Taken together, mitochondrial dynamics in both AgRP and POMC
neurons are not only affected by nutrient availability, but are also
themselves important for these hypothalamic neuronal populations to
function regularly and therefore modulate feeding behaviors, insulin
sensitivity, glucose homeostasis, and fat storage throughout the body
(Figure 2).

3.2. Astrocyte insulin signaling
Astrocytes are integral for BBB integrity and neuronal metabolic and
redox homeostasis [105]. It has become increasingly apparent that
insulin signaling in astrocytes is imperative for these processes and
modulating behavior and whole-body glucose homeostasis [39,106].
Whereas NIRKO mice do not have any behavioral abnormalities until
later in life, mice with astrocyte-specific IRKO exhibit depressive and
anxiety behavioral phenotypes at an earlier age [106]. These effects
have been attributed to impaired dopamine release and signaling in the
nucleus accumbens [106]. Further, these mice are hyperphagic and
have impaired peripheral glucose tolerance, insulin sensitivity, and
POMC neuronal firing in response to glucose [39]. IRKO from astro-
cytes in the hypothalamus shows similar whole-body effects, sug-
gesting that insulin signaling in hypothalamic astrocytes may serve a
crucial role in modulating food intake and glucose homeostasis [39].
Interestingly, astrocyte IGF1 signaling also seems to be involved in
learning and memory, as KO of IGF1R from astrocytes in mice impairs
working memory [107]. Cultured astrocytes respond to both insulin
and IGF1 by increasing GLUT1 expression and glucose uptake [41].
Individual roles of insulin and IGF1 signaling in modulating astrocyte
metabolic activity have also been described in in vitro systems. IGF1R
KO in primary astrocyte cultures reduces their basal oxygen con-
sumption rate and adenylate energy charge [107], a measure of the
cell’s energetic state that accounts for cellular AMP, ADP, and ATP
levels. Similar to cultured neurons, treating primary cortical astrocytes
with insulin suppresses H2O2 production and increases mitochondrial
ATP production, suggesting that insulin-stimulated mitochondrial
respiration occurs in both of these cell types [108]. IRKO astrocytes
in vitro have diminished glycolytic activity as evidenced by decreased
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glucose uptake and L-lactate release, which appears to be due to a
switch in their metabolic phenotype from glycolysis to FAO [39].
Because astrocytes contribute to neuronal metabolic homeostasis and
respond to neuronal firing by releasing lactate [56,105,109], these
findings may have implications for astrocyte insulin signaling in
maintaining neuronal metabolism and brain metabolic defects
observed in insulin-resistant conditions. While this phenomenon also
appears to be present in humans based on modeling nuclear magnetic
resonance imaging data [110], whether this astrocyte metabolic
phenotype switch is altered in vivo during insulin resistance or
neurodegenerative disease has not been assessed. Altogether, these
data add astrocyte insulin signaling to the ever-growing list of ways
that astrocytes and neurons interact and impact each other’s function.

4. BRAIN INSULIN RESISTANCE AND METABOLISM IN
DISEASE

4.1. Molecular contributors to brain insulin resistance
A number of mechanisms have been proposed as potential factors in
the development of brain insulin resistance. When we consider the
complexity and heterogeneity of diseases associated with insulin
resistance, it becomes clear that there is undoubtedly an interplay
between multiple mechanisms in vivo. For example, consuming a
high-fat diet, living a sedentary lifestyle, and genetic predisposition are
all risk factors for developing insulin resistance and type 2 diabetes
(T2D) in humans. Although many of these are also risk factors for
developing cognitive decline and AD, AD’s brain insulin resistance is
also present in individuals without diabetes [111].
We next explore some of the mechanisms thought to contribute to
brain insulin resistance, mostly through the lens of a high-fat diet in
mice. Mouse studies of HFD-induced obesity and insulin resistance
have found that the composition of the HFD, including the source of fat,
has a significant impact on the degree of insulin resistance. HFD can
result in increases in free fatty acids (FFAs), ceramides, phosphatidic
acid, and diacylglycerols, all of which have been implicated in pe-
ripheral insulin resistance [112]. Humans rarely if ever eat a diet that is
as consistent and molecularly defined as what mice are fed in HFD
studies. Despite these considerations, much can be learned from
mouse studies about how insulin resistance develops, both throughout
the body and in the brain, and how this contributes to metabolic de-
fects and neurodegeneration. Additionally, while not discussed in more
detail, it is important to note that there is likely at least some contri-
bution of impaired insulin transport into the brain in response to a HFD
and during neurodegenerative diseases associated with brain insulin
resistance. The extent to which disrupted insulin transport into the
brain or any of the individual molecular mechanisms described
contribute to cognitive impairment and insulin resistance in the brain
compared to any of the other mechanisms is unknown. It is critical to
keep all these considerations in mind when discussing and studying
brain insulin resistance in any given neurological context.

4.1.1. Fatty acids and inflammation
One of the primary mechanisms proposed for the development of brain
insulin resistance is the accumulation of damaging FFAs and ceram-
ides in the brain because of HFD intake. Indeed, chronic brain infusion
of saturated fatty acids such as palmitic acid (PA) leads to insulin
resistance [113]. Elevated levels of circulating FFAs induce the syn-
thesis of ceramides in the brain [114e116]. Excessive brain ceram-
ides induce inflammation by activating the nuclear factor kappa-light-
chain-enhancer of activated B cell (NF-kB) pathway, which coordinates
the transcription of proinflammatory cytokines such as interleukin-1b
mbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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(IL-1b), tumor necrosis factor a (TNFa), and IL-6. These inflammatory
mediators not only impair insulin signaling on their own, but also
activate c-Jun N-terminal kinase (JNK), a signaling molecule involved
in the endoplasmic reticulum (ER) stress response that disrupts brain
insulin signaling (Figure 3) [115,117,118]. Importantly, Schell et al.
[119] demonstrated that varied compositions of HFDs have differential
effects on the induction of insulin resistance, JNK activation, and
mitochondrial function in the hypothalamus. This research highlights
the importance of matching the macronutrient composition of control
and experimental diets and testing different types of HFDs (Western vs
Mediterranean) to better elucidate which HFD components may in-
fluence the onset of insulin resistance.
Palmitic acid, which is the most abundant saturated fatty acid in most
HFDs used for rodent research, is increased in the cerebrospinal fluid
and brains of individuals with obesity [116,120,121] and the hypo-
thalamus of mice fed a long-term HFD [118]. Treating neurons in vitro
with PA leads to insulin signaling deficits, inflammation, and JNK
activation in these cells [118,119]. Primary astrocytes treated with PA
have similarly elevated astrogliosis and inflammatory cytokine
expression [118]. Interestingly, inducible KO of a key inducer of NF-kB,
IKKb, from astrocytes after the onset of HFD-induced obesity and
astrocyte reactivity reduces food intake and prevents further weight
gain in these mice [122]. Furthermore, mice with IKKb KO in their
astrocytes have elevated energy expenditure, glucose tolerance, and
insulin sensitivity, all of which coincide with diminished hypothalamic
inflammation [122]. Supporting this, overexpression of IKKb and NF-
Figure 3: Mechanisms of brain insulin resistance. High-fat diet feeding leads to elevate
are transported into the brain, where they impair insulin receptor signaling, activate ER st
HFD feeding, palmitate, and ceramide induce mitochondrial damage, resulting in elevated
coupled with HFD-induced impairment of the Nrf2-driven antioxidant response culminates
glutathione, FFAs: free fatty acids, HFD: high-fat diet, HO: 1-heme oxygenase-1, IL-1b: in
kappa-light-chain-enhancer of activated B cells, Nrf2: nuclear factor erythroid 2-related
necrosis factor a.
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kB led to weight gain coupled with glucose intolerance and insulin
resistance [123]. These studies suggested that insulin resistance,
induced by either a HFD or elevated PA concentrations, is detrimental
to astrocytes due to induction of an inflammatory state. Indeed,
astrogliosis has also been observed in obese humans [24,124e126].
Whether the inflammatory response of astrocytes to a HFD plays a
direct role in influencing whole-body energy expenditure, food intake,
glucose tolerance, and insulin sensitivity or if it instead acts indirectly
by influencing neuronal populations that are involved in controlling
these processes remains unclear.

4.1.2. Oxidative stress
As a natural byproduct of mitochondrial oxidative metabolism and
some enzymatic reactions, ROS have been implicated in the control of
several cellular functions, including cell death, cell signaling, induction
of antioxidant responses, and regulation of mitochondrial metabolism.
Indeed, mitochondrial ROS are critical for many major signaling
pathways, including NF-kB, JNK, and insulin among others [127e
131]. Excess free radicals are normally neutralized by a variety of
antioxidants and enzymes that together form the antioxidant response.
While more nuanced and extensive than discussed in this review, the
antioxidant response is largely controlled by the transcription factor
nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates the
expression and activity of many key antioxidants and antioxidant
biosynthesis pathways [132] including superoxide dismutases (SODs),
glutathione (GSH), HO-1, and catalase (CAT). The short polypeptide
d circulating levels of FFAs, ceramides, palmitate, and inflammatory cytokines. All these
ress signaling through JNK, and initiate an inflammatory response via NF-kB signaling.
ROS production and diminished mitochondrial function. The increase in ROS production
in oxidative stress, which further exacerbates insulin resistance. CAT: catalase, GSH:
terleukin-1b, IL-6: interleukin-6, JNK: c-Jun N-terminal kinase, NF-kB: nuclear factor
factor 2, ROS: reactive oxygen species, SOD2: superoxide dismutase 2, TNFa: tumor
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antioxidant GSH is used as a cofactor for antioxidant enzymes such as
glutathione peroxidases that are critical for reducing ROS and lipid
peroxides [133]. In addition, many of these are localized within
mitochondria to regulate mitochondrially derived ROS. All these anti-
oxidants maintain cellular redox balance and prevent oxidative damage
to essential components of the cell. Oxidative stress occurs when there
is an imbalance in the ROS-antioxidant axis, resulting in damage to the
cell that eventually can culminate in cell death.
Oxidative stress is prevalent in an array of diseases, including
obesity, T2D, and AD. Much of the research into the connections
between oxidative stress and insulin resistance have utilized skeletal
muscle as a model tissue; however, the role of ROS in the devel-
opment of brain insulin resistance has more recently gained atten-
tion. The brain is particularly sensitive to oxidative damage due to its
high oxygen utilization and relatively low antioxidant activity relative
to other tissues [115,134,135]. The presence of insulin resistance in
the brain has also been linked to increased oxidative stress and
altered antioxidant expression and activity as well as elevated levels
of protein, lipid, and DNA oxidation products (Figure 3) [115,136e
139]. Treating cultured neurons with PA to mimic aspects of HFD
feeding induces both oxidative stress and NF-kB signaling
[115,119,140,141]. Ceramide exposure in neurons also leads to
oxidative stress, insulin resistance, and mitochondrial dysfunction
[115,142,143]. Further, disrupting mitochondrial homeostasis in the
hypothalamus through knockdown of the mitochondrial chaperone
Hsp60 is sufficient to induce insulin resistance, mitochondrial
dysfunction, and ROS production [144].
Feeding mice a HFD, which increases whole-body insulin resistance
(as measured by the homeostatic model of insulin resistance, HOMA-
IR), positively correlates with brain ROS production, but negatively
correlates with brain mitochondrial ATP production [108,138]. Rueg-
segger et al. [108] found decreased activity of the antioxidant enzymes
SOD2 and CAT in whole-brain lysates of mice fed a HFD for 4 weeks,
consistent with some previous reports [145], but in disagreement with
others [138]. However, the latter study placed mice on a HFD for 8
weeks and also showed regional differences in antioxidant enzyme
expression and activity [138]. Together, these findings demonstrate
the importance of considering the length of the HFD and the brain
regions assessed when making conclusions regarding oxidative stress
and HFD-induced brain insulin resistance. Nonetheless, the positive
correlation between HOMA-IR in mice and ROS production in the brain
is notable. Altogether, it is clear that oxidative stress is an important
factor in brain insulin resistance that can influence and be influenced
by the lipid content and inflammatory and metabolic states of the brain
during insulin-resistant conditions.

4.2. Alzheimer’s disease and insulin resistance
Insulin resistance in the brain has been observed in association with
HFD feeding, obesity, and T2D [108,146,147]. Interestingly, it has also
been associated with several neurologic disorders, including depres-
sion, Parkinson’s disease, cognitive decline, and AD [148]. In AD, brain
insulin resistance is a prominent characteristic and potential factor in
the onset, independent of coincident T2D [111,149]. Studies assessing
brains from recently deceased AD patients and age-matched controls
found that IR and IGF1R expression were significantly reduced in
multiple regions of the AD brain [150] and components of the insulin
signaling cascade decreased in both T2D and AD [151]. Moreover,
ex vivo stimulation of AD brains with insulin or IGF1 revealed that
signaling is impaired for both hormones in AD [111]. However, T2D and
excess caloric intake are also risk factors for developing cognitive
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deficits and AD [152e154], and the exact molecular mechanisms
linking insulin resistance to AD are not currently well characterized. It
remains unclear whether insulin resistance seen in the brain in AD
occurs by the same mechanisms as T2D and HFD feeding. Waka-
bayashi et al. [155] attempted to address this question by comparing
HFD feeding to IRS2 KO in an AD mouse model that induced amyloid-b
(Ab) accumulation. They found that AD mice fed a HFD were insulin
resistant prior to the onset of amyloid pathology and that HFD feeding
exacerbated the rate of Ab accumulation [155], consistent with pre-
vious studies [156,157]. They also found that KO of IRS2, while
inducing insulin resistance in the brain, liver, and pancreas, diminished
Ab deposition in the brain, suggesting that HFD feeding and IRS2 KO
act through different mechanisms to impact AD pathology [155].
Although the disease’s underlying pathogenesis remains unclear, the
core pathological features of AD are extracellular plaques composed of
Ab and the accumulation of phosphorylated tau into intracellular
tangles. Insulin signaling appears to be important for mitigating am-
yloid plaques in animal and cellular models of AD and also regulates
normal clearance of Ab oligomers. Whole-brain IRKO mice (NIRKO)
have increased levels of phosphorylated tau, which is a critical
component for the generation and accumulation of neurofibrillary tau
tangles [94]. Supplementation with either insulin or IGF1 decreased
cognitive deficits in an AD mouse model and increased trafficking and
clearance of Ab [158e161]. Furthermore, insulin can ameliorate Ab
oligomer-induced impairment to long-term potentiation in hippocam-
pal brain slices [162]. Studies conducted on primary neurons found
that treating cells with Ab oligomers induced local insulin resistance by
reducing the amount of IR on dendrites prior to dendritic spine loss and
sequestered the IRs to the neuronal soma [163,164]. Treating these
cells with insulin stopped the loss of synapses induced by Ab oligomer
exposure, although it should be noted that the insulin concentration
used in this study was high enough to activate both IR and IGF1R,
possibly suggesting that IGF1R signaling is involved in preventing
neuronal synapse loss in response to Ab oligomers [4,163,165].
How and when insulin resistance arises during the course of cognitive
decline and AD pathology is not currently well known; however, Ab,
ceramides, ROS, and inflammation have been suggested as mecha-
nisms that can further the progression of AD [139,157,158,166e168].
It is likely that the development of insulin resistance in AD is multi-
factorial and highly complex.

4.3. Impact of brain insulin resistance on brain metabolism
As diseases associated with insulin resistance are primarily meta-
bolic disorders, it is not surprising that metabolism and mitochondrial
function in the brain are impaired in these conditions. HFD-induced
brain insulin resistance leads to decreased OXPHOS and TCA cycle
function in the hypothalamus, hippocampus, and cortex of mice,
which coincides with reduced mitochondrial content and mRNA
expression of OXPHOS components [108]. In addition, insulin-
resistant rodents have increased ROS production and impaired
mitochondrial oxygen consumption in the brain, resulting in reduced
ATP production and mitochondrial dyshomeostasis [115,169e171].
These effects are also observed in AD models, where excess ROS and
disruptions to both mitochondrial function and quality control are
prominent aspects of the disease [172,173].
Another contributing factor to the TCA cycle and overall mitochondrial
bioenergetic function is the oxidation of fatty acids. Fatty acid b
oxidation is a metabolic pathway that utilizes fatty acids to generate
acetyl-CoA, which is then fed into the TCA cycle. In the brain, this
process is necessary to minimize the damaging accumulation of lipids.
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Evidence for this comes from models aimed at disrupting hypothalamic
fatty acid sensing and oxidation. Knockout of carnitine palmitoyl-
transferase 1c (CPT1c), a brain-specific isoform of the enzyme, is
necessary for transport of long-chain fatty acyl-CoAs into the mito-
chondria for FAO and decreases food intake and body weight [174].
This suggests that CPT1c activity in the brain modulates feeding be-
haviors and possibly body fat accumulation. Supporting this, increasing
the amount of malonyl-CoA, a fatty acid synthesis intermediate and
inhibitor of CPT1c and FAO, also reduces food intake [175]. Interest-
ingly, astrocytes appear to utilize FAO as an energy source much more
than neurons [53], which may in part be due to their position at the
BBB and resulting exposure to circulating fatty acids. When FAO is
overwhelmed by chronic HFD intake, increased PA in the brain impairs
astrocyte lipid sensing and uptake [176]. This deficiency in astrocyte
lipid uptake can lead to hypothalamic insulin resistance and accu-
mulation of ceramides [116,176,177]. While the pathways are still not
fully elucidated, cellular and mitochondrial metabolism in the brain are
clearly impacted by insulin resistance.
Regarding mitochondrial quality control, some studies showed that
mitochondrial fission in the hippocampus increased in response to
HFD feeding [108]. Indeed, using an inhibitor of Drp1 to decrease
mitochondrial fission prevents HFD-induced insulin resistance in the
dorsal vagal complex of mice [145], a brain region involved in
regulating hepatic glucose production [178]. Furthermore, the in-
hibition of Drp1 activity in primary hippocampal neurons isolated
from obese (ob/ob) mice ameliorated the obesity-related decrease
in ATP production [179], suggesting that Drp1-mediated fission
may underlie deficits in neuronal ATP production in this model.
Pharmacological inhibition of Drp1 in these obese (ob/ob) mice
restored hippocampal synaptic plasticity, linking excess mito-
chondrial fission to obesity-related cognitive deficits [179]. How-
ever, there is likely a heterogeneous mitochondrial response to HFD
feeding, as AgRP neurons have elevated mitochondrial fusion after
long-term HFD exposure, which coincides with a higher AgRP firing
rate [101,180,181] (Figure 2). When mitochondrial fusion is
impaired in these neurons by AgRP-specific MFN1 or MFN2 KO, the
mice are protected from the effects of HFD feeding. These mice
demonstrate increased mitochondrial fission in AgRP neurons,
leading to diminished ATP production, action potential firing, food
intake, and fat mass, but increasing whole-body insulin sensitivity
[101]. Disrupting mitochondrial fusion in POMC neurons impairs
their ability to regulate whole-body metabolism [102,103].
Combining all these data, it is clear that there are likely cell type-
specific responses to insulin resistance and nutrient availability as
well as region-specific responses. As such, studies assessing
overall levels of mitochondrial fission or fusion in whole-brain re-
gions during insulin resistance may be missing important infor-
mation regarding these responses’ cell-type specificity.
Furthermore, how changes in mitochondrial dynamics due to HFD
feeding and insulin resistance differ across brain regions requires
additional research.
Altogether, the metabolic impact of insulin resistance and impaired
insulin signaling in the brain is extensive. Abnormalities to mitochon-
drial bioenergetics and dynamics have been observed in models of
insulin resistance and AD in vitro and in vivo. The contribution to these
defects and whether metabolism in distinct cell types is differentially
affected by insulin resistance and insulin-resistant diseases requires
further exploration. Furthermore, identifying how insulin modulates
metabolic processes in the brain and individual cell types and how
these are affected by insulin resistance may yield novel targets for
therapeutic intervention.
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5. THE THERAPEUTIC POTENTIAL OF DIABETES TREATMENTS
FOR NEUROLOGIC DISORDERS

5.1. Insulin
With the knowledge that the brain is insulin resistant in Alzheimer’s
disease and that improving insulin signaling in the brain in AD mouse
models ameliorates the disease, a variety of approaches has been
utilized to overcome the insulin signaling defects of AD. These in-
terventions lean heavily on our knowledge of treatments for type 2
diabetes. Trials to date can be thought of broadly as attempts to either
overcome insulin resistance with additional insulin, improve insulin
sensitivity, or a combination of the two.
While it is known that impaired insulin signaling occurs in the brain
parenchyma as a result of excess FFAs, inflammation, and ROS pro-
duction, insulin transport across the BBB may also be diminished
during insulin resistance. Both IR downregulation and altered IR
signaling by brain endothelial cells could reduce insulin uptake into the
brain; however, studies have shown that BBB integrity during insulin-
resistant conditions is actually decreased, allowing the passage of
more solutes into the brain [182]. Human data examining CSF insulin
levels in AD have been mixed. An early study found that CSF insulin
was reduced in moderate to severe AD, despite increased blood insulin
levels [183], but a more recent study found no correlation between
disease state and CSF insulin [184]. Further, in the second study, a
higher CSF insulin concentration was associated with worse cognition
and increased phosphorylated tau in women. This was in contrast to a
series of studies in which inducing hyperinsulinemia with
hyperinsulinemic-euglycemic clamps actually improved cognition in
patients with AD [185]. However, the clamp studies rather than being
an observed correlation were a potential intervention.
In T2D management, high doses of systemic insulin are often required
to overcome insulin resistance and normalize blood glucose levels. The
same approach cannot be used in AD patients without diabetes to
overcome brain insulin resistance, as systemic treatment with insulin
would result in hypoglycemia. To circumvent this issue, AD interven-
tion trials were designed that delivered insulin directly to the brain
through intranasal administration. Initial studies showed that the de-
livery of intranasal insulin had the potential to improve both cognition
and AD biomarkers [186e189]. These data were in line with studies
that also demonstrated enhancements in memory in cognitively normal
individuals receiving intranasal insulin [190]. Unfortunately, a recent
phase 2/3 clinical trial designed to prove the efficacy of intranasal
insulin for treating AD failed to show a meaningful difference between
treatment groups [191]. The authors cited issues with the delivery
device as a concern in the study, but there were a variety of other
factors that could have contributed to the outcome. There may be
significant differences in the degree of brain insulin resistance in a
given individual, as is observed in the periphery. If that is the case, then
individualized dosing could be required, but we currently have no way
to determine how insulin resistant a given person’s brain might be.
While this might lead one to conclude that higher doses would be
better, increased insulin binding to the IR leads to receptor down-
regulation, potentially worsening resistance [192]. Further compli-
cating dosing of insulin in the brain, there is actually a greater
abundance of IGF1R in the brain compared to IR. Both insulin and IGF1
can bind to each other’s receptors and, like the IR, the IGF1R is also
downregulated in AD [111]. Increased IGF1R signaling has also been
shown to improve AD in mouse models [159]. If the IGF1R plays an
import part in AD pathology, then even higher doses of insulin would be
required due to its lower affinity for the IGF1R. Paradoxically,
decreasing IGF1R signaling has also been beneficial in mouse models
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of AD, demonstrating a need for further research and understanding of
the role that IGF1R signaling plays in AD pathology [193].

5.2. Insulin sensitizers
Another approach that has been attempted in recent years is improving
brain IR sensitivity. Large studies have been conducted with the
biguanide metformin and the thiazolidinedione (TZD) pioglitazone.
Epidemiological data relating metformin to the prevention of AD have
been mixed, although generally favoring a protective effect [194e
197]. This drug’s mechanism of action is not entirely understood;
however, it seems to improve insulin sensitivity in the liver and AMP-
activated protein kinase (AMPK) signaling [198]. It also has the often
overlooked side effect of causing vitamin B12 deficiency in some
patients [199]. Given the relationship between vitamin B12 deficiency
and cognitive impairment, this may be a reason for some of the
confounding results with metformin for the prevention of AD. Several
prospective intervention trials are being planned or are underway to
systematically assess metformin’s potential to impact aspects of ag-
ing, including cognitive dysfunction.
Pioglitazone, in contrast to metformin, has a well-defined mechanism
of action. It is a peroxisome proliferator-activated receptor g (PPARg
receptor agonist). Activation of the receptor leads to lipogenesis,
removing FFAs from circulation and thus improving insulin sensitivity.
This medication is a very potent insulin sensitizer and does not cause
hypoglycemia in people without diabetes, making it an attractive
candidate for preventing AD. However, a large prospective clinical trial
to evaluate pioglitazone for preventing mild cognitive impairment was
terminated early for lack of efficacy (NCT01931566). It is perhaps not
all that surprising that pioglitazone was unsuccessful at preventing
cognitive decline in a nondiabetic patient population. While brain in-
sulin resistance in AD has been observed, it seems likely that Ab and
local inflammation are also important drivers of brain insulin resistance
that are unlikely to be impacted by pioglitazone. While pioglitazone
may be able to reduce the added burden of AD seen in people with
obesity and diabetes, who are more likely to have a contribution to
insulin resistance from dyslipidemia, this has not been directly tested.
More recently, there has been interest in using a newer class of dia-
betes drugs, sodium glucose transporter 2 (SGLT2) inhibitors, to
prevent and/or treat Alzheimer’s disease. This drug class reduces
blood glucose by inducing glucosuria; hence, the mechanism of action
is independent of insulin. However, the impact of glucose lowering may
serve to reduce brain insulin resistance [200,201]. Epidemiologic ev-
idence supports a potential benefit from this drug class on cognitive
decline in patients with diabetes [202], but prospective clinical trials
have not been performed. Interestingly, these drugs also cause an
increase in circulating levels of ketone bodies, a preferred energy
source for the brain. There are currently two small clinical trials un-
derway to test the impact of this drug class on brain function, one with
a focus on ketone body production in normal subjects (NCT03852901)
and the other testing cognitive function in patients diagnosed with
Alzheimer’s disease (NCT03801642).

5.3. Combination therapy
The two most successful interventions to slow AD to date that addressed
brain insulin resistance might be considered combination therapies in
which insulin sensitivity and insulin secretion were likely both improved
through the intervention. These included lifestyle interventions and the
glucagon-like peptide-1 (GLP1) receptor agonist dulaglutide. The land-
mark FINGER study (Finnish Geriatric Intervention Study to Prevent
Cognitive Impairment and Disability) demonstrated that targeting diet and
exercise, but also cognitive and social activities and vascular risk factors,
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could significantly prevent cognitive decline in a high-risk population
[203]. The FINGER study was not designed to isolate the effects of any of
the individual interventions. While brain insulin signaling may have
improved using this multifactorial approach, other risk factors were also
mitigated, likely contributing to the positive result.
GLP1 receptor agonists are examples of drugs that improve insulin
secretion by binding to the GLP1 receptor on pancreatic beta cells and
stimulating insulin release while also decreasing insulin resistance,
albeit indirectly, by binding GLP1 receptors in the hypothalamus to
induce weight loss. In addition to these drugs’ potential beneficial
impact on insulin signaling, GLP1 receptors are expressed throughout
the brain and are able to directly impact cellular metabolism [204].
Dulaglutide, one drug in the GLP1 receptor agonist class, was found in
a clinical trial to reduce the risk of developing AD [205]. While this drug
and/or drug class may positively impact brain metabolism and the risk
of AD, there are many caveats worth noting. First, this was an
exploratory analysis of a trial designed to assess cardiovascular out-
comes, not cognitive outcomes. In addition, in contrast to the previ-
ously mentioned studies, this trial only enrolled patients with diabetes.
Patients in the treatment group had better diabetes control, lost weight,
and had lower blood pressure and fewer adverse cardiovascular events
throughout the 5 years of follow up [206]. Thus, it is difficult to
separate the potential impact on brain metabolism from improvements
in vascular risk. As we consider the successes and failures in
addressing the contribution of brain insulin resistance to the patho-
genesis and treatment of AD, it seems clear that there is still much
research needed to understand the underlying causes of abnormal
brain insulin receptor signaling in this disorder.

6. CONCLUSION

In the century since insulin was introduced for clinical care, our
knowledge of how this hormone works has grown immensely. Despite
all this progress, our understanding of insulin’s action in the brain still
lags well behind the rest of the body. As we continue to further
delineate the role of insulin signaling in the brain, we hope that this will
eventually lead us toward new therapies for obesity, diabetes, and
neurodegenerative diseases.
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