
ICARUS: Minimizing Human Effort in Iterative Data Completion

Protiva Rahman,
Department of Computer Science & Engineering, The Ohio State University

Courtney Hebert, and
Department of Biomedical Informatics, The Ohio State University

Arnab Nandi
Department of Computer Science & Engineering, The Ohio State University

Abstract

An important step in data preparation involves dealing with incomplete datasets. In some cases,

the missing values are unreported because they are characteristics of the domain and are known by

practitioners. Due to this nature of the missing values, imputation and inference methods do not

work and input from domain experts is required. A common method for experts to fill missing

values is through rules. However, for large datasets with thousands of missing data points, it is

laborious and time consuming for a user to make sense of the data and formulate effective

completion rules. Thus, users need to be shown subsets of the data that will have the most impact

in completing missing fields. Further, these subsets should provide the user with enough

information to make an update. Choosing subsets that maximize the probability of filling in

missing data from a large dataset is computationally expensive. To address these challenges, we

present ICARUS, which uses a heuristic algorithm to show the user small subsets of the database

in the form of a matrix. This allows the user to iteratively fill in data by applying suggested rules

based on their direct edits to the matrix. The suggested rules amplify the users’ input to multiple

missing fields by using the database schema to infer hierarchies. Simulations show ICARUS has

an average improvement of 50% across three datasets over the baseline system. Further, in-person

user studies demonstrate that naive users can fill in 68% of missing data within an hour, while

manual rule specification spans weeks.

1. INTRODUCTION

Data used for analysis is often incomplete. Reasons for this can be broadly classified into

two categories: 1) random missing data, which includes incomplete response, attrition,

human error and 2) data that is not reported because it is known by practitioners. Traditional

methods for dealing with missing data, such as imputation or learning, address the first

category. These methods do not apply to the second category since imputation and machine

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For any use beyond those covered by this license, obtain
permission by emailing info@vldb.org.

PVLDB Reference Format:
Protiva Rahman, Courtney Hebert, Arnab Nandi. Icarus: Minimizing Human Effort in Iterative Data Completion. PVLDB, 11 (13):
2263–2276, 2018.

HHS Public Access
Author manuscript
Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

Published in final edited form as:
Proceedings VLDB Endowment. 2018 September ; 11(13): 2263–2276.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://creativecommons.org/licenses/by-nc-nd/4.0/

learning are based on observed values. When the data is unreported because its values for

specific instances are known, the observed data will not contain results for those instances.

Thus, inferred values for unreported instances will be highly inaccurate. Our work addresses

this second category of missing data. In the rest of this paper we use inputs, edits, updates

and completions interchangeably to mean the user filling in a null field.

1.1 Motivating Example

To better illustrate our contributions, we consider a real-world clinical microbiology task

[28] at the University’s medical center, where ICARUS has been deployed for biomedical

researchers to use on real data for the past six months. Microbiology laboratories report

sensitivities of antibiotics to infection-causing organisms in urine cultures. Each laboratory

result contains an organism that grew in culture and whether certain antibiotics are effective

against it. If an antibiotic is effective in killing the organism, the organism is said to be

sensitive (S) to it, otherwise it is resistant (R). Depending on characteristics of the organism,

antibiotic, and institutional preference, laboratories only do sensitivity testing for a subset of

antibiotics. For example, if the organism Staphylococcus aureus is sensitive to the antibiotic

Cefazolin, it is also sensitive to the antibiotic Cefepime. Hence, for Cefazolin sensitive

Staphylococcus aureus, Cefepime is unreported and there is no evidence in the data to learn

or impute from. For auxiliary use of this data, such as modeling risk of resistance to

individual antibiotics [17,27,28], sensitivity information on all antibiotics is needed. For

such cases, the unreported data has to be filled in by domain experts, such as physicians and

microbiologists, whose time is expensive. Manually specifying rules is time consuming and

can span multiple weeks. Hence, experts need to be able to effectively interact with the data.

A normalized database schema for this dataset might consist of the six tables shown in

Figure 2A. In this example, the antibiotic table is self-referencing with nested classes. The

organism table also has a hierarchical relation where an organism references the family it

belongs to, which in turn references its gram_stain. The culture table links every culture to

the organism it grew. The culture_antibiotic table is a many-to-many join between cultures

and antibiotics, with the result field storing R/S/null indicating resistant, sensitive or

unknown respectively. To complete null values in the result field, the culture, organism and

antibiotic tables need to be joined with the culture_antibiotic table. However, this only

shows organism and antibiotic pairs, which is not enough to complete all missing

sensitivities. The user further needs to look at the sensitivities that have been tested for the

antibiotics of the same family for that culture. This corresponds to a pivot on culture_id, so

that each row represents a culture and each column an antibiotic (Figure 2B). In a many-to-
many join, pivoting on one of the join values can create a very wide table, making it hard to

reason about the data. Thus, there is a need to guide the user on which updates will have the

most impact, and allow them to apply that update to multiple cells by expressing the edit as a

rule.

While much work has been done in using rule-based systems to identify and correct errors,

including HoloClean [44] and NADEEF [15], they have focused on using violations to

known conditional functional dependencies (CFD) and integrity constraints. Interactive rule

systems such as guided data repair [55] and Active-Clean [34] use a combination of machine

Rahman et al. Page 2

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

learning and human input to learn rules. They select elements for user validation which are

likely to increase the accuracy of their models, which is not applicable in our case when

some user rules contradict the data. Further, these systems deal with cleaning dirty data,

while our system addresses unreported data that is semantically knowable. He et al.’s Falcon

[26] is the only system that we know of which addresses a similar problem of reducing user

effort in an interactive cleaning system. Falcon iteratively asks the user multiple questions

based on a single update, to find the most general update query but is unable to provide

guidance on which updates will have the highest impact, i.e., will fix the most number of

values. Further, Falcon generalizes updates by using attributes within one table, but does not

use foreign-key relations among tables, which can apply to a larger number of values. Thus,

previous works either do not allow direct updates and suggest rules based on violations to

CFDs and knowledge bases [13,55], or if they allow updates [26,46], they do not provide

guidance on useful updates. In summary, we need to address the following challenges:

Guiding Users on Impactful Completions—For wide databases containing sparse

data, it is difficult for the user to write update queries to complete data if they do not know

what information is present and hence, which queries will fill in the most cells. Consider a

database containing country, city, temperature and precipitation. Suppose the user is filling

in information for the temperature field, and they specify an update query setting null values

of temperature to Below freezing whenever precipitation equals Snow. But if the

precipitation attribute is mostly missing whenever temperature is missing, this update has a

very low impact. Now, say the location attribute is present for most cases when temperature
is missing. A better query would be to set temperature to Below freezing when city equals

Reykjavik and month equals January. Thus, users need to be guided by seeing high impact

fields together.

However, simply showing high impact fields is not enough if the information is not relevant.

For example, showing temperature with traffic density is not helpful, even if traffic density is

always present when temperature is missing. Hence, the subsets should contain attributes

that are semantically relevant. However, this is computationally expensive in an interactive

system. If the user has the capacity or screen size, to look at a 10 × 10 matrix at a time, then

selecting an optimal 10 × 10 matrix from a dataset of 10, 000 rows and 50 columns gives

1035 subsets to choose from.

Generalizing Completion Updates: Manually updating thousands of null values in a

large database is infeasible, while writing rules a priori is ineffective. Thus, when the user

updates a null value, the system needs to suggest general update rules that apply to a larger

set of fields. Going back to the above example, once the user updates the temperature for

Reykjavik, along with suggesting an update query of setting temperature to Below Freezing
when city equals Reykjavik, the system can also suggest a generalized update of setting

temperature to Below Freezing when country equals Iceland, since there is a hierarchical

relation between country and city, denoted by a foreign-key in a normalized database.

Rahman et al. Page 3

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

1.2 Contributions

To address the above challenges, we designed ICARUS (Iterative Completion with RUles,

Figure 1) which shows the user samples of the database containing missing cells in the form

of a p × q matrix. Once the user fills in a data value, ICARUS suggests data specific update

rules (i.e., english translations of update queries) based on the information present on the

screen. It also presents general versions of these rules, by linking them to attributes in joined

tables. If the user sees a correct rule in the list of suggested rules, they can immediately

apply it to the entire dataset, thereby filling in all the null values where the rule is applicable.

The user goes back and forth between editing the subset and picking rules until the desired

amount of data is filled. If they are no longer able to update null values in the subset, they

can choose to see a different sample. This approach effectively completes sparse datasets

while minimizing the user input. Our contributions include:

1. Algorithm for identifying and showing the user candidates for updates that are

semantically relevant.

2. Minimization of user input by displaying high impact candidates whose updates

can be applied to a large set of null values.

3. Amplifying the user’s input to a larger number of cells using foreign-key

relations for rule generalization.

4. Implementation details and experimental evaluation of ICARUS, which allows

users to efficiently update incomplete databases. Simulations show up to 70%

reduction in human effort as compared to the state-of-the-art baseline system.

user study results show that domain experts (who were naive users of the system)

were able to fill in 68% of the missing values within an hour, while the manual

rule formulation process took weeks.

2. PROBLEM FORMULATION

Let D be a normalized database schema, containing multiple relations. Each relation A ∈ D
is defined over a set of attributes attr(A). Domain of an attribute X ∈ attr (A) is denoted by

dom(X).

2.1 Update Language

The supported repair language can be expressed as standard SQL Update statements, where

only null values are updated:

UPDATE A SET X = x WHERE X = null AND Y IN S

Where A ∈ D and X, Y ∈ attr (A) . S ⊂ dom (Y) can be a set of constants or a SELECT query

pulling from other relations in D which are joinable with A. The where clause can be

extended to constrain multiple attributes in A. For the rest of this paper, we use the terms

“update queries” and “rules” interchangeably.

Rahman et al. Page 4

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2.2 Multiple Relations for Rule Generation

When a user updates a null value given the context of a single relation, suggested rules

would traditionally consider attributes of only that relation [26], But given a normalized

database, we can leverage its structure to suggest more general rules to the user.

While normalized schemas are optimal for storing information, they are not ideal for data

exploration. Consider a relation C ⊆ A × B where C is a many-to-many join between A and

B, and a−id, b−id ∈ attr (C) are foreign-keys to A and B respectively. Suppose c ∈ attr (C)

contains null values. Presenting C to the user with a_id, b_id is unhelpful, since they do not

know what these keys mean. Instead, we should show them a meaningful attribute from the

referenced relation. This can either be manually specified or be the most distinct attribute,

i.e., whose distinct cardinality is closest to the cardinality of the relation. However, an

advantage of a normalized schema is that the join relations often encode hierarchies in the

form of many-to-one joins which we can use to reduce human effort.

In a many-to-one join, one can think of the relation in the many-side as belonging to, or

being a subtype of the relation in the one-side. Thus, there is a hierarchy where the one-side

relation is a parent of the many-side and rules on attributes of a relation can be generalized

to attributes of the parent relation. For example, a rule about a city could apply to all cities in

a state, or a rule about a book could generalize to all books written by that book’s author,

etc. We define a parent relation as follows:

Definition 1. Consider relations R, X, and Y, where R ⊆ X × Y. Then Y is a parent of X if R
is a many-to-one join between X,Y. Formally, Y = Parent(X) if

∀x ∈ dom (X), y1, y2 ∈ dom (Y) :

x, y1 ∈ R ∧ x, y2 ∈ R y1 = y2

Rules from one relation could be generalized to its parent. While generalization in databases

traditionally refers to attributes and is defined with respect to addition/deletion of predicates

[10], here we use it to mean rule generalization, i.e., a rule that applies to an attribute value

can be generalized to the attribute’s parent value in the next level of the hierarchy.

Definition 2. For relations X, Y, if Y is a parent of X, then rules made on attributes of X can

be generalized to attributes of Y. We use | < to denote “can be generalized”.

Parent(X) = Y Rules (attr (X)) | < Rules (attr (Y))

Generalization is transitive: Parent (X) = Y , Parent (Y) = Z

Rules (attr (X)) | < Rules (attr (Y))

∧ Rules(attr (Y)) | < Rules(attr (Z))

Rahman et al. Page 5

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rules (attr (X)) < Rules (attr (Z))

We refer to a parent’s parent as the relation’s grandparent and so on. In the example shown

in Figure 2, rules about an organism can be generalized to the organism’s family and

through the family to its gram stain. Similarly, rules about an antibiotic can be generalized to

its parent class, its grandparent class, etc. If in Figure 2B, the user were to fill in S in the first

null cell of the table, which corresponds to the result cell in the first row of the

culture_antibiotic table in Figure 2A, the generated update queries (and the corresponding

rules shown to the user) would include the following :

• UPDATE culture_antibiotic SET result = S WHERE cult_id IN (SELECT id
FROM culture WHERE org_id = 1)

AND anti_id = 1;

Translates to “Escherichia coli is Sensitive to Cefepime”

• UPDATE culture_antibiotic SET result = S WHERE cult_id IN (SELECT

culture_id FROM culture JOIN organism WHERE fam_id =1) AND anti_id = 1;

Translates to “Enterobacteriaceae are Sensitive to Cefepime”

• UPDATE culture_antibiotic SET result = S WHERE cult_id IN (SELECT

culture.id FROM culture JOIN organism JOIN family WHERE gram_id = 1)

AND anti_id IN (SELECT antibiotic.id FROM antibiotic WHERE class = 4;

Translates to “Gram Negative organisms are Sensitive to 4th Generation

Cephalosporins”

The where clauses of these rules are conditioned only on the join keys in the many-to-many

relation and independent of other tuples in this relation. Hence, we refer to these as

independent rules.

In addition to the above rules, since the attribute being updated already contains some data,

the user could potentially use the information of tuples associated with the same foreign-

keys to make update decisions. This would require a rotated view of the relation,

constituting a pivot operation (Figure 2):

SELECT culture_id, organism.name as org, antibiotic.name as anti FROM antibiotic
JOIN cult_anti JOIN culture JOIN organism PIVOT max(result) FOR anti IN

(SELECT name FROM antibiotic)

A pivot operation creates a column for each value of the attribute specified in the pivot line

(antibiotic), grouped by attributes in the outer select statement (organism,culture_id). Since

each culture and antibiotic pair have one value for result, max is an appropriate aggregate.

Going back to the above scenario of the user filling S in the first null cell, the following rule

is also added to the list of possible rules:

• UPDATE culture_antibiotic SET result = S WHERE cult_id IN (SELECT

cult_id FROM culture_antibiotic WHERE anti_id = 2 AND result = S) AND

anti_id = 1;

Rahman et al. Page 6

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Translates to “Organisms Sensitive to Cefazolin are also Sensitive to Cefepime”

In this case, the where clause is dependent on other tuples in the relation being updated (i.e.,

where clause selects from culture_antibiotic relation). Hence, we refer to these as dependent
rules. Dependent rules are only generated between attributes that have a similarity above a

threshold. The attribute similarity measure can be user-defined, such as sharing a common

foreign-key to the parent relation, in our case (both Cefepime and Cefazolin are

Cephalosporins), or automated using the CORDS algorithm [30].

It should be noted that all of the update rules have an additional clause requiring result =

null, i.e., the rules never update existing data that is known or has been filled in with a prior

rule. Further, rules are not applied until the user accepts them. It is possible that a user

defined rule conflicts with the original data, but this does not imply that the rule or the

original data is incorrect. It is the nature of this dataset. For example, in Figure 2B, the

Escherichia coli in culture 1 is sensitive to Cefazolin while the one in culture 2 is resistant

(i.e. the organism that grows in each culture has different sensitivities), hence domain

experts are required. Further, experts may first apply specific narrow rules and then later

make broader generalizations that contradict with one of their earlier rules for the remaining

cells. In our pilot studies we observed that rules selected in later passes were for rare cases

and of lower confidence, hence should not overwrite prior rules.

2.3 Problem Statement

Now that we have explained how rules are generated from an edit, we are ready to formalize

the data completion problem. As explained above, the normalized tables do not provide the

user with enough information to make edits and have to be presented in a denormalized

form, shown in Figure 2B. But the matrix in Figure 2B can be undigestible to humans due to

its size (10, 000 × 50 in our case) and moreover, denormalization is expensive. Hence, the

user needs to be shown subsets from the denormalized view. Subsets shown should

maximize null values filled during user interaction. Without loss of generality, we assume

that a relation contains only one attribute with null values.

Given a relation D that needs to be completed, let U ⊂ D be the set of tuples containing null

values in D. Let S = Powerset(D) be the set of potential subsets that can be shown to the

user. Each subset si ∈ S contains null value tuples, si ∩ U which upon editing generates a set

of rules - rules(si). Each rule r ∈ rules si , if accepted, in turn fills in a set of null values in

D:resultr ⊂ U. We refer to each subset shown to the user as one iteration. With these

definitions, we formally define our problem as follows.

Iterative Data Completion Problem: Given relation D and U ⊂ D denoting the set of

tuples containing null values in D, the iterative data completion problem (IDCP) is

minimizing the number of iterations required to complete U by selecting subsets si ∈ S ⊂ D

which maximize | ∪
r ∈ rules si

resultr| at each iteration.

Rahman et al. Page 7

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2.4 Search Space

IDCP is an instance of the maximal weighted set cover problem (MWSCP), which is a well

known NP-complete problem [23]. Given D, U, S as defined above and M = Powerset(U):

Each potential subset si ∈ S which can be shown to the user in matrix form (Figure 2B),

maps to one set mi ∈ M. We define the mapping as follows. For every cell c ∈ si, let pc be the

probability of the user updating it. Updating c generates rules(c). For each rule r ∈ rules(c),
let pr be the probability of the user accepting it. On showing si to the user, every cell

m ∈ resultr ⊂ U thus has probability pc × pr of being updated. Each subset si ∈ S can then be

mapped to mi ∈ M where mi = ∪
r ∈ rules si

resultr. The weight of mi is calculated as the

number of cells si can fill divided by the probability of filling in each cell. Thus, those

subsets with higher probability of filling have lower weights. We want to pick a set of

minimum weight sets from M such that the maximum number of elements in U is covered,

which is MWCSP.

In fact, calculating any optimization function to find an ideal subset is expected to be

expensive. If the denormalized matrix is m × n, and we want to select subsets of size p × q,

the number of ways to do this is equal to
m
p

× n
q

. This has a growth rate of 𝒪 mp × nq . For

our motivating example, there are about
10000

10 × 50
10 = 1035 subsets to choose from. This

calculation is expensive in an interactive system which has low latency requirements.

3. SYSTEM DESIGN

In this section we provide implementation details of ICARUS, a system that aims to

minimize the user’s effort in filling in null values. It does this by showing digestible subsets

of the dataset in the form of c = p × q matrix that fits on screen. c contains a combination of

null and filled in cells. The user has the option to fill in one of the null values or choose to

see a different subset if they feel they do not have enough information to make a decision.

On filling in a null values, ICARUS suggests rules to generalize the edit on the rules pane as

shown in Figure 3. If the user sees a correct rule, they can accept it, and it is immediately

applied to the dataset. The user then continues filling in the subset and applying rules until

they are unable to make any more updates. They can then ask for a different subset, ending

an iteration. This process continues until the desired percentage of data is filled, which the

user is able to track from a progress bar on top. Due to the computational challenges in

choosing optimal subsets outlined in Section 2, we use sampling based techniques.

Algorithm 1

ICARUS Workflow

C: dataset

1: while Percentage of missing cells > threshold do

2: GENERATE_SUBSET(C)

Rahman et al. Page 8

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3: while user can edit do

4: ti[c] = v user edit

5: rules = GENERATE_INDEPENDENT_RULES(c,v,i) ∪

6: GENERATE_DEPENDENT_RULES(c,v,i)

7: if user accepts rule ∈ rules then

8: apply rule to C

9: end if

10: end while

11: end while

3.1 Subset Selection

Before we present our heuristic algorithms for choosing subsets, we provide some intuition.

A row with all values missing is not very helpful because the user does not have any

information to make a decision, and only independent rules can be generated from an edit.

Similarly, having rows with only filled in values is a waste, since they do not contribute to

completing the dataset. Hence, we would like to pick a subset with filled in and null values

distributed in a manner that maximizes the probability of the user updating a null value.

Clustering, machine learning and imputation methods do not work well as we will show in

Section 4, since they do not account for the user’s information needs.

3.1.1. Optimization Function—The probability of a user updating a cell in the given

subset depends on whether they have informative filled values. A filled cell is informative to

a null cell if it has a common foreign-key, i.e., they belong to the same row in the

denormalized matrix. Thus, given a denormalized matrix C = X × Y, with X denoting rows

and Y denoting columns, we want to select c = x × y where, x ⊂ X, y ⊂ Y that maximizes the

probability of a null cell being updated and its impact. Impact, in this case, refers to number

of values in the entire dataset that will be updated if the user accepts a rule generated by

updating that cell. Formally, let M ⊂ C denote the set of null cells and N ⊂ C, denote cells

that are filled in the matrix, sim [y j][yk] be the similarity between column j and k,

impact[y j][yk] be the number of rows where column k is filled but j is missing. We want to

maximize:

∑
mi j ∈ {c ∩ M

∑
nk ∈ {xi ∩ N

sim [y j][yk] ⋅ impact[y j][yk] (1)

Subject to the following constraints:

1. c ∩ M ≠ ∅ ∧ c ∩ N ≠ ∅

2. |x | = p ∧ | y | = q, where p, q are screen constraints

Equation 1 is maximizing the probability of a null cell being filled, which is proportional to

the similarity between the columns of the filled cells and the null cell in that particular row.

Rahman et al. Page 9

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

This is weighted by the number of cells that will be impacted if a rule based on these two

columns is formulated. Thus, if there are many rows where j is filled and k is empty and the

columns are correlated, then having the user specify a rule between the two will fill in a

large number of cells. Column similarity can be user-defined with help of experts, using

number of common parents through foreign-key relations, or for a single relation, CORDS

[30] can be used.

3.1.2 Increasing Entropy for Subset Diversification—Similarity alone is not

enough for completing the entire dataset. The independent rules described in Section 2, are

based on characteristics of two relations that are not necessarily related. These rules could be

generated by looking at row and column headers in the denormalized view, i.e., the user

needs to see null cells in different row-column positions. To ensure that the null cells are

distributed across rows and columns, we maximize the information entropy [35] for each

row and column. Entropy of an item denotes the amount of uncertainty contained in it and is

calculated as:

H(X) = − ∑
x ∈ X

P(x)logP(x) (2)

where X is the set of values in the row/column and P(x) is the probability with which each

value occurs. A row/column with high entropy has a diverse set of values and hence provides

more information. Initially, however, we want to show the user subsets with higher impact.

The diversity of subsets has more importance towards the end of the session when there are

fewer null cells which need to be filled in with specific rules and the user requires more

information to make a decision. Keeping this in mind, we borrow ideas from simulated

annealing techniques [3] and increase the weight of entropy as the temperature, i.e.,

iterations increase. Thus, our final optimization function is a modified version of Equation 1:

∑
mi j ∈ {c ∩ M}

∑
nk ∈ {xi ∩ N

sim[y j [yk ⋅ impact[y j [yk + H(c) ⋅ temp (3)

3.1.3. Two-stage Subset Sampling—Picking a subset with the above conditions is

challenging, since we are optimizing for two different conditions along each dimension, i.e.,

similar columns but diverse row. Co-clustering techniques do not work since they cluster

based on data, without accounting for external column similarity such as semantic similarity

or foreign-key relationships. In fact, co-clustering does the opposite by selecting subsets that

have the exact same values of rows and columns, instead of diversifying. Hence, we follow a

two-stage sampling approach where we first sample rows with probability proportional to

the row’s entropy and number of null cells and inversely proportional to number of prior

iterations that the row has been selected. In the second stage, we choose a column to

optimize for and select the remaining columns by maximizing Equation 3 with respect to the

chosen column and rows sampled in the first stage. Subset selection pseudocode is presented

in Algorithm 2.

Rahman et al. Page 10

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3.2 Rule Generation

As explained in Section 2, the suggested rules are generalized based on many-to-one joins

referenced by attributes of the denormalized table. Given C = A × B, suppose the user fills in

a value which corresponds to ti[c] = v for c ∈ attr (C) in the denormalized version.

Suggested independent rules then include setting c = v when the foreign-keys a_id and b_id
share parents with ti a−id and ti b−id , i.e., values of the updated tuple. Two items share a

parent if they have the same foreign-key to a parent relation directly or transitively as

defined in Section 2.2. Also, in the denormalized matrix, for every column y that shares a

parent with column c and has a filled in value ti[y] in the row being updated, the suggested

rules include setting c = v when y = ti[y]. The pseudocode for this is presented in Algorithm

3.

Algorithm 2

Entropy based Subset Selection

visx[i] : no. of iterations row i was selected

iterations: no. of iterations user has gone through

impact[i][j]: no. of times coli is filled but colj is missing

entropyx[i]: entropy of row i

entropyy
rows[i]: entropy of column i for {rows}

I[x][i]: Indicator function = 1 if value is present in row x and column y, 0 otherwise {rows}

1: procedure GENERATE_SUBSET(C)

2: X = C.rows, Y = C.columns

3:
 temperature = italicized

100
4: for i = 1 X . length do

5:
 scoresx[i] iterations

visx[i] + entropyx[i] + missingx[i]

6: end for

7: rows select p rows with probability = scoresx

8: y select column to optimize for, with probability proportional to missing values

9: for i = 1 Y . length do

10: scores[i] sim[y][i] . impact [y][i] . ∑x ∈ rows I[x][i] + entropyy
rows[i] × temperature

11: end for

12: columns = Top q indices from scoresy

13: return c = rows ∩ columns

14: end procedure

3.3 User Interactions

The interactions available to the user on ICARUS interface include:

Rahman et al. Page 11

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Update NULL Value: The user can update a null value, represented as R/S buttons in the

interface by clicking on the corresponding button. On an update, rules are generated on the

top left pane.

Navigate Rules: The rule pane is scrollable, with suggested rules ranked from broadest to

narrowest impact. Rules can be filtered to display only independent or dependent ones.

Rule Application: Once the user sees a correct rule, they can accept it by clicking on

“Yes” or “Maybe” next to the rules. Both these buttons have the same effect - they apply the

rule to the entire dataset, however the “Maybe” rules are noted as “low confidence” rules

when stored. While this feedback is not used in ICARUS, it is useful for uphill analysis when

results of experts are compared. If the user selects “No” for a rule it is never generated again.

Refresh Sample: The user can see a different subset by clicking the “refresh sample”

button on top of the subset.

3.4 Optimizations

Even though we present a denormalized form of the database to the user, the complete

database is never denormalized during implementation. We provide further details of this

with respect to different components of our system below.

Algorithm 3

Rule Generation

c : updated column; v : updated value; i : tuple index

C – A many-to-many join B

ti a−id = value of attribute a_id in ith tuple

ti a−id . S . id : S . id value associated with ti a_id

1: procedure GENERATE_INDEPENDENT_RULES(c,v,i)

2: S A

3: while S ≠ ∅ do

4: T B

5: while T ≠ ∅ do

6: rules.append (UPDATE SET c = v WHERE a_id in (SELECT id from A WHERE
S . id = ti a−id . S . id) AND b_id in (SELECT id from B WHERE T . id = ti b−id . T . id))

7: T T . parent

8: B B × T

9: end while

10: S S . parent

11: A A × S

12: end while

13: return rules

14: end procedure

Rahman et al. Page 12

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

15: procedure GENERATE_DEPENDENT_RULES(c,v,i)

16: S A

17: X b ∈ B if b . parents ∩ ti b_id parents ≠ ∅ ∧ C ti a−id [b . id] ≠ null

18: for b ∈ X do

19: while S ≠ ∅ do

20: rules.append (UPDATE SET c = v WHERE a_id in (SELECT id from A JOIN C WHERE
S . id = ti a_id . S . id AND C.b_id = b.id AND c = C ti a−id [b . id] . c) AND b_id = ti [b_id])

21: S S . parent

22: A A × S

23: end while

24: end for

25: return rules

26: end procedure

Subset Selection: Each of the components used during subset selection such as missing

cells per row and column, row entropy, column entropy, column similarity, and impact of an

edit is calculated and stored as a separate table prior to initialization of the system. In fact

column entropy is only calculated over the rows that will be shown to the user, and hence

can be calculated on the fly since p ≤ 10. As rows and columns are updated by rules, these

numbers can be updated quickly for the affected rows and columns.

Rule generation and application: Rule generation follows a depth-first search on

parents (defined in Section 2.2) of the shown relations. In case a relation has a deep ancestry,

the depth can be capped at a user defined k, or the Falcon dive algorithm [26] can be used

for restricting rule suggestion. In each iteration this only needs to be done for the subset

shown to the user, i.e., for p+q values. Thus, the rules are generated and cached, along with

the tuple IDs of their result sets, for each missing cell in the subset (number of missing cells

< p × q = 100), at the beginning of each iteration. As rules are applied, the result sets of the

cached rules are updated as well, removing IDs that are no longer missing.

Number of suggested rules: We show the user all the rules in a scrollable pane on the

left of the interface Figure 3. The dependent rules suggested are limited to pairwise clauses.

Let kx, ky be the depth of parents for rows and columns, respectively. So in the rare case that

all q − 1 columns in a row are filled and have the same foreign-key value to the parent

relation as the updated column, the number of rules suggested is

q − 1 + ky × kx i.e ., (q − 1) × kxdependent and kx × ky independent). The user is able to filter

rows by type (dependent vs. independent), to narrow this set. This can further be reduced by

sorting by impact (our default) or rarity and showing top n, or again by using techniques in

[26].

Rahman et al. Page 13

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3.5 Complexity Analysis

Consider the denormalized m × n table. At each iteration, if components of the optimization

function are precomputed, then subset sampling is constant time, otherwise, sampling rows

is 𝒪(m) and columns is 𝒪(n). Let x be the percentage of cells that are missing. Then rule

application will require x ⋅ m2 ⋅ n to fill in all values. The entire session has complexity

𝒪(m + n + x ⋅ m ⋅ n) ≡ 𝒪(m ⋅ n).

4. EXPERIMENTAL EVALUATION

In this section, we report results of experiments to (a) compare the effectiveness of subset

selection algorithms in reducing user effort; (b) compare latency of these algorithms; (c)

show contributions of components of our optimization function; (d) compare ICARUS to

Falcon [26] and Holoclean [44]; and (e) report findings from an in-person user study with

domain experts [31]. ICARUS is implemented using Python Django framework with

MySQL database backend and Javascript frontend. We use the following datasets:

Microbiology: This is the dataset from our motivating example, whose schema along with

a few tuples is shown in Figure 2, and the interface for the user study is shown in Figure 3. It

consists of culture results of patients admitted to the Ohio State Wexner Medical Center with

urinary tract infection (UTI) between 2009 and 2014. The dataset contains around 10, 797

cultures (rows) and about 50 antibiotics (columns). Out of these we are only interested in

filling in missing information for the 14 antibiotics which are used for empiric treatment.

The UMLS Metathesaurus [8] was used to create the classification tables [42]. Around 55%

of the data we are interested in is unreported, which is equivalent to around 83, 000 null

cells. Before creating ICARUS, this dataset was filled in with rules created manually with

consensus from four domain experts, which took around a month. It was a cumbersome

process that involved looking at columns pairwise, trying to find dependencies that covered

the maximum null cells, formulating rules, and then generating the pairwise frequencies

again. These rules are used as “gold” standard. 89 of the rules are dependent and 80 are

independent. Domain of null cells is binary: 1: sensitive, −1: resistant. This dataset has up to

three levels of hierarchy, i.e., the base relation has a parent, grandparent and great

grandparent along both dimensions (refer to Section 2 and schema in Figure 2).

IMDB: The IMDB data [1] was collected using IMDbPy [2] to create a database. We

selected the top 500 voted TV shows from the database. For each show, we found all

actresses that appeared in them and then collected up to 10 episodes where the actress

appeared. This was done to create rules of the form (actress, title role). We generated rules

by comparing episodes that appeared in the same show pairwise, as well as seeing if an

actress had the same values for all episodes of a show. 7,496 of these rules were dependent

while 23, 051 were independent. We removed any show that did not have any actresses that

appeared in more than one episode. This left us with 73 shows, 504 episodes and 317

actresses, giving us 317×504 matrix with about 160, 000 cells. From this we removed 50%

of the data based on the generated rules, giving us around 80, 000 missing cells. Missing

values are binary: 1 : actress appeared in series, −1 : actress did not appear. This dataset has

one level of hierarchy, where every episode has a parent series.

Rahman et al. Page 14

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hospital: This dataset, adopted from US Department of Health and Human Services 1,

contains 100, 000 rows and 17 columns. Out of these we non-randomly removed data from 7

attributes based on 45 manually created dependent rules, giving 517,134 missing cells, all

text. To transform these for regression and clustering, word features were created for 10 out

of the 17 columns. “State” was used as a proxy for geographic attributes like “address”, to

limit feature size (139 features). Unlike the other two datasets, this does not have a many-to-

many relation, with a hierarchy. Instead, it contains three relations and the attribute’s parent

is the relation it belongs to, again giving a one level hierarchy.

4.1 Comparison of Subset Selection Algorithms

We compare our subset selection algorithms, in terms of how much information they allow

the user to fill in incrementally over iterations, against the following algorithms:

Random: At each iteration, this chooses a random subset.

Random_history: Similar to random, except it inversely weights the probability of

selection of rows and columns to the number of prior iterations in which it was selected.

Clustering: At each iteration, this algorithm clusters rows based on their similarity, picks

rows from the cluster proportional to missing values then selects columns using our

optimization function.

Regression: At each iteration, this algorithm selects the column with the most missing

values to optimize for. It then trains a linear support vector machine (SVM) [48] on a

maximum of 10, 000 rows (to limit compute time) that have results for the missing column

and uses the weights of the model to choose the top q - 1 columns. In cases where no

training information is available, it simulates random. Rows were then chosen based on

those which had the most filled in values for the selected columns.

In order to simulate sessions, our algorithm generates a subset and if editing one of the cells

generates a rule that is in the gold standard, that rule is applied. This is done for all

applicable cells. Once no more edits can be made, a new subset is generated and the process

continues for the given number of iterations. The number of iterations shown is based on the

point after which most algorithms are stable. For each algorithm, we ran the simulation 50

times and picked the average to get the datapoint at each iteration. Since rules applied in the

simulation are from a gold standard, there is no concept of accuracy since all applied rules

are correct.

Figure 4 shows the results for the three datasets - regression and clustering are shown with

dotted lines since they do not meet latency requirements (Section 4.2). ICARUS consistently

performs well for all three datasets, achieving almost 80% in just 5 iterations for the

microbiology dataset (Fig 4a), while maintaining low latency. The IMDB dataset requires a

higher number of iterations due to its shallow one level hierarchy, which limits the amount

that edits can be generalized. This is also reflected in the number of rules (approx. 30, 000

1http://www.medicare.gov/hospitalcompare/

Rahman et al. Page 15

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.medicare.gov/hospitalcompare/

rules to fill in 80, 000 cells for IMDB as opposed to 169 rules to fill in 83, 000 cells for the

microbiology dataset). The hospital dataset stabilizes in 20 iterations in spite of having a

shallow hierarchy because it has a smaller number of attributes. ICARUS can thus work on

datasets with different levels of hierarchies and number of attributes, however the savings in

human effort vary accordingly.

4.2 Latency

Table 1 shows the average latency over 50 simulations for each dataset for the subset

selection algorithm. ICARUS maintains a latency of under 200ms across all three datasets;

interaction latency is negligible (less than 100ms which is below the threshold of human

perception [5]). It is 6x faster than the other methods for the microbiology dataset and 800x

faster for the hospital dataset. On the other hand, clustering latency increases as number of

attributes (IMDB) and samples (hospital) grow, while regression is highly sensitive to

number of samples and datatype. It performs fastest for IMDB which has 317 rows, so on

average the training size is around a 100 for each attribute, compared to about 8, 000 for

microbiology and 10, 000 for hospital. The large sample size along with the multi-class

prediction makes regression especially slow for the hospital dataset.

Subset generation has strict latency requirements. Since the user explicitly requests a new

subset once they are done editing the current one, they are idle during the time that a subset

is generated. Further, since the generated subset depends on the user’s edits in the current

iteration, it cannot be precomputed. Hence, regression and clustering are unsuitable for use

in its current form.

4.3 Components of the Optimization Function

In this section, we study the effect of each component of our weighted sum, namely, column

similarity, entropy and impact. For this experiment, we modified our optimization function

to only use one of the components for a set number of iterations and took the percentage

filled at the end as its result. We then normalized this by the total percentage filled by all

three. Further, we also studied each component’s effect when using only one type of rule

(i.e. dependent vs. independent), except for the hospital dataset which only has dependent

rules.

We can see in Figure 5, that all three components are equally important in most cases.

Entropy does slightly better for independent rules while similarity does better for dependent

rules, as expected (Section 3.1). The difference is noticeable in IMDB since the distribution

of rules between dependent and independent is skewed, while for microbiology they are

almost evenly split. Thus, based on the distribution of the rules, each component needs to be

weighted accordingly. By increasing the weight of entropy with iterations we cover this

entire spectrum, as demonstrated by results in Figure 4.

4.4 Comparison to Other Systems

Falcon: The Falcon system [26] is the state-of-the-art system in reducing user effort in rule

based updates. They perform better than systems such as guided data repair [55] and active

Rahman et al. Page 16

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

learning approaches. While their contributions can be considered orthogonal to ours (since

they use rules for error detection and correction), they are the closest work to our system.

Falcon algorithm: Given a table and a user edit. Falcon’s goal is to find the most general

update statement in terms of the number of attributes involved. The most specific update

would contain all attributes in the WHERE clause, while the most general update would

have an empty WHERE clause. It creates a lattice out of all possible subsets of attributes and

iteratively asks the user to validate rules until it finds the most general one. Falcon chooses

rules for validation are based on the user’s input (accept or reject) and then performs a

binary search on the set of rules ordered by impact. We compare number of edits for

ICARUS and Falcon.

Figure 6 shows the percentage filled against number of edits for 300 edits for the

microbiology dataset. Note that Falcon operates on a single table and hence would not

suggest broader rules based on relations. However, we compared a denormalized version

that has the many-to-one join attributes on the table, encoding the hierarchy. This version

performs better but still does not catch up to ICARUS. We also compared using semantic

schema-based similarity as used by ICARUS against Falcon’s similarity metric which uses

modified CORDS [30] for attribute sets.

The main benefits in using ICARUS over Falcon arise from the fact that ICARUS guides the

user on which edits will be the most impactful. Further, ICARUS allows rule updates that

affect multiple columns in the denormalized matrix, while Falcon only updates one column.

The improvements for the other two datasets are comparable to the microbiology dataset and

summarized in Figure 7, which shows the average number of edits saved over maximum

number of edits. Even if we ignore the edits the user makes in rejecting rules, ICARUS

provides significant improvement.

Holoclean: Holoclean [44] is a system that allows users to specify “rules” in the form of

denial constraints, which can be used to express integrity constraints and functional

dependencies, and then combines signals from these with external vocabularies and

quantitative statistics to perform error detection and repairs. As summarized in Table 4,

Holoclean is not the most appropriate system for our use case, but can serve as a orthogonal

and complementary component of ICARUS’s data preparation pipeline. In order to ascertain

Holoclean’s capabilities on our datasets, we started by manually expressing our rules as

denial constraints (a task that we do not expect our users to perform). We observed that

Holoclean yielded the following precision, recall scores respectively for the microbiology

data set: (.72, .24), IMDB (.99, .54), hospital (.21, .99) – which are high recall or high

precision, but not both (a contrast ICARUS’s high recall / high precision performance shown

in Figure 9). The results for microbiology are interesting – the highest results, which are

reported here, were achieved when we manually defined constraints for the rules which

could be expressed as functional dependencies. We consider this to be additional manual

intervention. On adding conditional functional dependency rules, the precision went down

to .5 with recall remaining the same. This is possibly due to there being circular dependence

between rules, or because the rules sometimes contradicted the data, leading the system to

incorrectly mark the original data as erroneous. From these observations, we can infer that

Rahman et al. Page 17

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Holoclean is not an ideal standalone tool in cases when rules are not true constraints.

Moreover, the default denial constraint error detector has very low precision (.22) and a

custom null detector had to be constructed by us, entailing data scientist intervention before

end-users perform cleaning.

It should be noted that Holoclean takes as input denial constraints or the rules which

ICARUS helps formulate. Holoclean thus solves an orthogonal and complementary problem

of combining multiple signal types for error detection and repair; we report its results here to

demonstrate that automatic repair systems by themselves are insufficient, and reducing

human effort remains desirable when using them. Such systems are also hard to interpret,

especially when it is unclear how different combinations of constraints conflict and what

each fills in. For these reasons, a combination of Holoclean and ICARUS seems to be a

promising area of future work.

4.5 User Study

We recruited 6 domain experts consisting of infectious disease physicians and pharmacists,

separate from the ones who created the manual “gold” standard, to do a preliminary usability

study on the microbiology dataset. All users were naive users of the system, but experts in

their fields. The first user was used as a pilot and is not included in analysis. We met with

each user individually for a 60 minute study session which consisted of the following:

1. Users are trained for 15 minutes during which they are shown how the system

works and allowed to interact with it while we walk them through updating a cell

and applying a rule.

2. They are then told to fill in as many of the missing cells correctly as possible in

the next 45 minutes.

3. At the end of the hour, they stopped and were asked to fill out the System

Usability Survey [9] anonymously.

We evaluate our system over the user effort required, the SUS score and agreement of the

filled in dataset with the “gold”. Table 2 summarizes the results of the user study for the five

domain experts.

4.5.1 Human Effort—Figure 8 shows the amount of information filled over iterations by

each user. The performance of the user depends on their approach. Some worked more

slowly, looking up antibiotic-organism coverage from literature. A user of this type would

have low recall over the short time period but high precision. A user that was focused on

task completion in the hour would have high recall but potentially low precision. Users went

through different number of iterations in 45 minutes, hence the percentage filled flatlines

over iterations. This plot lines up with our simulations in that users are able to see and make

rules on high impact cells at the beginning.

4.5.2 System Usability Scale—At the end of the study, users were asked to fill the

system usability scale (SUS) [9], an industry standard, robust and versatile scale [6] for

measuring system usability. It consists of 10 Likert scale questions, paraphrased in Table 3,

with each users Likert score. We can see that users found the system and its function useful

Rahman et al. Page 18

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(questions 1,3), albeit slightly complex (questions 6,7). Overall, ICARUS scored an average

of 75 across the five users on the SUS scale (scoring details for SUS in [9]). Studies show

that a score of 68 and above is considered good [6, 9],

4.5.3 Agreement with Gold—Inferring antibiotic susceptibility is not a simple or

traditional task for a domain expert and is somewhat subjective. Since the recruited users are

new users of the system with limited time and training, the variability in their usage patterns

is expected. Hence, we do not expect the user’s dataset to line up exactly with the “gold”

which was formulated by a different set of experts who did not interact with the data using

ICARUS. This does not imply that either set of experts are wrong but reflects the

subjectivity of the task and motivates the need for human involvement. We compare the

precision (number of correct cells out of those filled in) and recall (number of cells filled in

out of total missing) of the five users against automatic imputation methods. The following

methods are compared; all of which, except the first, are computed using Python’s

fancyimpute package [45]: Single Imputation [18], Matrix Factorization [33], Multiple

Imputations via Chained Imputation (MICE) [53], K-Nearest Neighbors (KNN) [20], and

Soft Imputation [37], We also augmented each of the methods with hierarchical information

used by ICARUS. This was done by transforming each value in a parent attribute into a

binary feature. We see in Figure 9 that the automated methods perform poorly, with most of

them having low precision, and the only one with high precision has very low recall of 16%.

The augmented methods do better but do not catch up to experts using ICARUS. The low

recall here is not a true metric, since they were given forty-five minutes for the usability test.

In real usage scenarios, users would have more time.

Imputation on partially filled dataset: One can argue that automated methods could be

used in conjunction with ICARUS, i.e., machine learned model could be trained after

partially filling in data with ICARUS. This is true, if data is filled in randomly. However,

with ICARUS, after the user makes an edit, they explicitly choose a rule that covers most

cases where that edit applies. Hence, the machine learned areas for that edit are already

filled in by the user. The alternative would be to have the user only make direct edits and

automatically learn rules from those edits. This would take more user effort, since they

would have to make more direct edits for the machine to learn one rule, while with ICARUS

their ratio of edit to rule is almost 1:1. We demonstrate this in Figure 10, where we can see

that random 17571 edits are required to achieve 90% precision from single imputation,

which corresponds to 17571 edits. Conversely, while ICARUS allows the user to fill in

17571 cells in 23 edits, imputation has a precision of only 48% for cells filled in this

manner.

5. RELATED WORK

ICARUS addresses reducing human effort when input is required in filling in unreported

data. While no prior work deals with this, there are many that appear to be similar. Table 4

summarizes how seemingly similar systems fail in user guided data completion.

Rahman et al. Page 19

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Interactive Data Cleaning:

As mentioned earlier, the Falcon system [26] is similar to ours in that it aims to reduce user

effort by generalizing updates through relaxation of the where clause. However, since its

rules are used for error detections as well as updates, the system cannot guide users on

impactful updates. This is especially a problem in long and wide tables, where navigating

the dataset is painful. In fact, the maximum number of attributes considered in Falcon’s test

datasets was 15 attributes. Further, its rules do not generalize based on foreign-key relations.

Due to these reasons, Falcon is not able to match the performance of ICARUS, as shown in

Section 4.4.

Uguide [49] is a similar system that asks the user cell based edits. However, it uses experts

for identifying functional dependencies (FDs) by choosing between asking the user cell-

based question, tuple based question and FD rules. This is orthogonal to our work, since we

need user feedback for correcting while they are trying to identify errors. In our case, we

already know which values are missing. The Rudolf system [39] employs interactive rule

refinement for fraud detection by clustering misclassifled tuples while Yakout et al’s Guided

Data Repair [55] work shows users subsets of data to clean. Similarly, DataProf [52]

generates Armstrong samples based on violations to business rules, and shows the users

samples of these violations. However, both theses systems have a base set of rules that they

know to be true, which they use to find dirty tuples that will have the most impact on

cleaning the dataset. This is not applicable in our case since our system generates the rules

based on the user’s edit.

On the other hand, DDLite [19], a framework for labeling data sets for machine learning

algorithms, addresses a similar problem of finding large coverage rules for labeling data.

However, data exploration is a manual process. The authors mention that users have

difficulty finding high impact items to label. ICARUS addresses these problems to an extent.

Rule-Based Systems:

Rule-based systems for data cleaning, such as NADEEF [15], cleanse data by finding data

violations to pre-specified rules, using a MAX-SAT algorithm. Other rule-based systems

[11, 14, 21, 22, 24] are focused on discovering and using CFDs for finding data

discrepancies. CFD based techniques assume a static database, hence techniques used there,

such as association rule mining, are inefficient to run in our case where the database is

constantly being updated. Finally, ERACER [36] uses statistical techniques to find

dependencies, but the problem of showing impactful subsets to the user remains.

In fact, the need for ICARUS is motivated by Meduri et al. [38], where the authors make a

case for users being involved in the rule discovery process as opposed to validating at the

endpoints. Wang and Tang use fixing rules, as described in [51], which contain an evidence

pattern used to match tuples, negative patterns that identify errors and a fact value that is

used to correct a tuple. Their rule generation starts with known FDs and then employs user

input to expand negative patterns. HoloClean and Holistic Data Repairing [12,44] aim to

combine different modes of error detection such as integrity constraints, FDs, knowledge

bases, and statistics, which is a very different goal from ours. Holoclean by itself is not

Rahman et al. Page 20

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

effective in solving the data completion problem, as shown in Section 4.4. On a different

note, DeepDive [16] uses user defined rules for knowledge base construction from literature.

The main difference between the rule-based systems and ICARUS is that most of them do

not rely on iterative human input and use data and knowledge bases to generate their rules.

And for those that do rely on human input, they do not address guiding and optimizing the

user’s input.

Data Imputation:

Missing data imputation [56] involves predicting trends based on given data, however is not

applicable when domain expertise is needed to fill in the information, since the data is not

missing at random. This is corroborated in Section 4.5.3, which shows imputation either has

low recall or low precision.

Crowdsourced and Knowledge-Based Cleaning:

Systems such as Crowdfill [41] and Deco [40] use the crowd to fill in missing data, while

AutoDetect [29] and Katara [13] employ knowledge bases. QOCO [7] and DANCE [4]

addresses a similar problem of asking a minimum number of questions to the crowd to

cleanse the database, but they do not allow direct edits or constraint creation. Hao et al. [25]

match positive and negative signals of a dataset to a knowledge base for cleaning. Most of

these systems lack an interactive, iterative component.

Transformational Edits and Spreadsheet Interfaces:

Systems such as Potter’s Wheel [43] use constraint violations transforms, while Polaris [47]

infers rules from user edits. However, neither of these deal with showing a sample of the

database to the user, and they assume rules are definite and can be inferred from columns.

Specifically, they do not consider the benefit of looking at a variety of tuples to infer rules.

Direct manipulation interfaces such as Wrangler, commercialized as Trifacta [32], suggest

general transformational rules based on user edits, but they focus on attribute extraction as

opposed to filling in missing data. Singh and Gulwani [46] deal in semantic transformations

by learning and synthesizing all possible set of transformations from a set of input-output

examples. All of these show the user the entire dataset and does not solve picking

informative subsets.

Query-Based Cleaning:

Other approaches in data cleaning account for dirty data based on semantics of the query

[50,54]. SampleClean [50], for example, uses a sample of the database to answer aggregate

queries, and accounts for errors by generalizing the sample errors to the whole database.

However, it deals with duplication error and value errors as opposed to missing data. Further,

it addresses aggregate queries such as sum, average, etc. for numeric data while we deal with

categorical. ICARUS is not comparable to SampleClean since we deal with different errors

and datatypes. Similarly, ActiveClean [34] cleans subsets of the dataset that have the most

impact in terms of improving accuracy of machine learning models that are being trained to

clean the data. These systems deal with query-based data cleaning, which is very different

Rahman et al. Page 21

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

from the problem we aim to solve, i.e., minimizing user effort in rule- based updates of null

values.

6. CONCLUSION AND FUTURE WORK

In this paper we present ICARUS, an interactive system that iteratively allows the user to fill

in missing data by making direct updates to a p × q matrix. Based on the update, ICARUS

suggests general dependency rules using the database schema, which the user can

immediately apply. They can keep making edits and applying rules iteratively until the

desired number of cells are filled. The subset selection algorithm used by ICARUS

maximizes the probability of the user making an update. Further, the subsets shown also

maximize the probability of formulating high impact rules. This reduces the burden of

finding related candidates that will fill in the most number of cells. Our experimental

evaluations show that a user is, on average, able to fill in 68% of missing cells in an hour

with each update filling in around 380 cells.

In terms of future work, we would like to draw the user’s attention to cases when they

contradict themselves during rule formulation. In other words, we want to highlight when a

new rule violates one of the prior rules or contradicts observed values. Presenting this

information to the user concisely and quickly is an interesting problem. We are also working

on visualizing disagreements in rules between experts and techniques for suggesting

resolutions. Further, we could expand ICARUS to correct errors along with data completion.

Using techniques mentioned [39, 49, 55], we can find suspected errors, after which ICARUS

would need to select a subset of attributes to show the user that provide evidence for the

tuple being incorrect. Finally, another direction we would like to explore is finding the

minimum set of rules required to fill in a dataset. This can be done by comparing result sets

as the user is specifying new rules, synthesizing them with previously accepted ones when

results overlap.

Acknowledgment

Research reported in this publication was supported by the NIAID of the NIH under R01AI116975. The content is
solely the responsibility of the authors and does not necessarily represent the official views of the NIH. This work is
supported by the NSF under awards IIS-1422977, IIS-1527779, CAREER IIS-1453582.

7. REFERENCES

[1]. IMDB Dataset. http://www.imdb.com/interfaces/.

[2]. IMDB Python Script. http://imdbpy.sourceforge.net/.

[3]. Aarts E and Korst J. Simulated Annealing and Boltzmann Machines. 1988.

[4]. Assadi A, Milo T, and Novgorodov S. Cleaning Data with Constraints and Experts. In Proceedings
of the 21st International Workshop on the Web and Databases, page 1 ACM, 2018.

[5]. Bailey BP, Konstan JA, and Carlis JV. The Effects of Interruptions on Task Performance,
Annoyance, and Anxiety in the User Interface. In Interact, volume 1, pages 593–601, 2001.

[6]. Bangor A, Kortum PT, and Miller JT. An Empirical Evaluation of the System Usability Scale. Intl.
Journal of Human-Computer Interaction, 24(6):574–594, 2008.

[7]. Bergman M, Milo T, Novgorodov S, and Tan W-C. Query-oriented Data Cleaning with Oracles. In
ACM SIGMOD, 2015.

Rahman et al. Page 22

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.imdb.com/interfaces/

[8]. Bodenreider O. The Unified Medical Language System (UMLS): Integrating Biomedical
Terminology. Nucleic acids research, 32(suppl_1):D267–D270, 2004. [PubMed: 14681409]

[9]. Brooke J et al. SUS-A Quick and Dirty Usability Scale. Usability evaluation in industry, 189(194):
4–7, 1996.

[10]. Cai Y. Attribute-oriented Induction in Relational Databases. PhD thesis, Theses (School of
Computing Science)/Simon Fraser University, 1989.

[11]. Chiang F and Miller RJ. Discovering Data Quality Rules. PVLDB, 1(1):1166–1177, 2008.

[12]. Chu X, Ilyas IF, and Papotti P. Holistic Data Cleaning: Putting Violations into Context. In Data
Engineering (ICDE), 2013 IEEE 29th International Conference on, pages 458–469. IEEE, 2013.

[13]. Chu X, Morcos J, Ilyas IF, Ouzzani M, Papotti P, Tang N, and Ye Y. Katara: A Data Cleaning
System Powered by Knowledge Bases and Crowdsourcing. In ACM SIGMOD, 2015.

[14]. Cong G, Fan W, Geerts F, Jia X, and Ma S. Improving Data Quality: Consistency and Accuracy
In PVLDB, pages 315–326. VLDB Endowment, 2007.

[15]. Dallachiesa M, Ebaid A, Eldawy A, Elmagarmid A, Ilyas IF, Ouzzani M, and Tang N. NADEEF:
A Commodity Data Cleaning System. In ACM SIGMOD, 2013.

[16]. De Sa C, Ratner A, Ré C, Shin J, Wang F, Wu S, and Zhang C. Deepdive: Declarative Knowledge
Base Construction. ACM SIGMOD Record, 45(1):60–67, 2016.

[17]. Dewart CM, Gao Y, Rahman P, Mbodj A, Hade EM, Stevenson K, and Hebert CL. Penicillin
Allergy and Association with Ciprofloxacin Coverage in Community-onset Urinary Tract
Infection. Infection Control & Hospital Epidemiology, pages 1–2, 2018.

[18]. Donders ART, Van Der Heijden GJ, Stijnen T, and Moons KG. A Gentle Introduction to
Imputation of Missing Values. Journal of clinical epidemiology, 59(10):1087–1091, 2006.
[PubMed: 16980149]

[19]. Ehrenberg HR, Shin J, Ratner AJ, Fries JA, and Ré C. Data Programming with DDLite: Putting
Humans in a Different Part of the Loop. In HILDA@ SIGMOD, 2016.

[20]. Falkowski MJ, Hudak AT, Crookston NL, Gessler PE, Uebler EH, and Smith AM. Landscape-
scale Parameterization of a Tree-Level Forest Growth Model: A K-Nearest Neighbor Imputation
Approach Incorporating LiDAR Data. Canadian Journal of Forest Research, 40(2):184–199,
2010.

[21]. Fan W and Geerts F. Foundations of Data Quality Management. Synthesis Lectures on Data
Management, 2012.

[22]. Fan W, Geerts F, Li J, and Xiong M. Discovering Conditional Functional Dependencies. IEEE,
2011.

[23]. Garey MR and Johnson DS. Computers and Intractability, volume 29 wh freeman New York,
2002.

[24]. Golab L, Karloff H, Korn F, Srivastava D, and Yu B. On Generating Near-optimal Tableaux for
Conditional Functional Dependencies. PVLDB, 1(1):376–390, 2008.

[25]. Hao S, Tang N, Li G, and Li J. Cleaning Relations using Knowledge Bases. In Data Engineering
(ICDE), 2017 IEEE 33rd International Conference on, pages 933–944. IEEE, 2017.

[26]. He J, Veltri E, Santoro D, Li G, Mecca G, Papotti P, and Tang N. Interactive and Deterministic
Data Cleaning. In Proceedings of the 2016 International Conference on Management of Data,
pages 893–907. ACM, 2016.

[27]. Hebert C, Hade E, Rahman P, Lustberg M, Stevenson K, and Pancholi P. Modeling Likelihood of
Coverage for Narrow Spectrum Antibiotics in Patients Hospitalized with Urinary Tract Infections
In Open forum infectious diseases, volume 4, page S281 Oxford University Press, 2017.

[28]. Hebert C, Ridgway J, Vekhter B, Brown EC, Weber SG, and Robicsek A. Demonstration of the
Weighted-incidence Syndromic Combination Antibiogram: An Empiric Prescribing Decision
Aid. Infection Control & Hospital Epidemiology, 33(4):381–388, 2012. [PubMed: 22418634]

[29]. Huang Z and He Y. Auto-Detect: Data-Driven Error Detection in Tables. In Proceedings of the
2018 International Conference on Management of Data, pages 1377–1392. ACM, 2018.

[30]. Ilyas IF, Markl V, Haas P, Brown P, and Aboulnaga A. CORDS: Automatic Discovery of
Correlations and Soft Functional Dependencies. In Proceedings of the 2004 ACM SIGMOD
international conference on Management of data, pages 647–658. ACM, 2004.

Rahman et al. Page 23

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[31]. Jiang L, Rahman P, and Nandi A. Evaluating Interactive Data Systems: Workloads, Metrics, and
Guidelines. In Proceedings of the 2018 International Conference on Management of Data, pages
1637–1644. ACM, 2018.

[32]. Kandel S, Paepcke A, Hellerstein J, and Heer J. Wrangler: Interactive Visual Specification of
Data Transformation Scripts. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 3363–3372. ACM, 2011.

[33]. Koren Y, Bell R, and Volinsky C. Matrix Factorization Techniques for Recommender Systems.
Computer, 42(8), 2009.

[34]. Krishnan S, Wang J, Wu E, Franklin MJ, and Goldberg K. Activeclean: Interactive Data Cleaning
while Learning Convex Loss Models. PVLDB, 9(12):948–959, 2016.

[35]. Lin J. Divergence Measures Based on the Shannon Entropy. IEEE Transactions on Information
theory, 37(1):145–151, 1991.

[36]. Mayfield C, Neville J, and Prabhakar S. ERACER: A Database Approach for Statistical Inference
and Data Cleaning In ACM SIGMOD, 2010.

[37]. Mazumder R, Hastie T, and Tibshirani R. Spectral Regularization Algorithms for Learning Large
Incomplete Matrices. Journal of machine learning research, 11(Aug):2287–2322, 2010.
[PubMed: 21552465]

[38]. Meduri VV and Papotti P. Towards User-Aware Rule Discovery In Information Search,
Integration, and Personlization, pages 3–17. Springer, 2017.

[39]. Milo T, Novgorodov S, and Tan W-C. Rudolf: Interactive Rule Refinement System for Fraud
Detection. PVLDB, 9(13):1465–1468, 2016.

[40]. Park H, Pang R, Parameswaran A, Garcia-Molina H, Polyzotis N, and Widom J. An Overview of
the Deco System: Data Model and Query Language; Query Processing and Optimization. ACM
SIGMOD Record, 2013.

[41]. Park H and Widom J. CrowdFill: Collecting Structured Data from the Crowd. In ACM SIGMOD,
2014.

[42]. Rahman P, Hebert CL, and Lai AM. Parsing Complex Microbiology Data for Secondary Use. In
AMIA, 2016.

[43]. Raman V and Hellerstein J. Potter’s Wheel: An Interactive Framework for Data Cleaning.
Technical report, Working Paper, 1999. http://www.cs.berkeley.edu/~rshankar/papers/pwheel.pdf,
2000.

[44]. Rekatsinas T, Chu X, Ilyas IF, and Ré C. Holoclean: Holistic Data Repairs with Probabilistic
Inference. PVLDB, 10(11):1190–1201, 2017.

[45]. Rubinsteyn A, Feldman S, O’Donnell T, and Beaulieu-Jones B. Hammerlab/Fancyimpute:
Version 0.2.0. 9 2017.

[46]. Singh R and Gulwani S. Learning Semantic String Transformations from Examples. PVLDB,
5(8):740–751, 2012.

[47]. Stolte C, Tang D, and Hanrahan P. Polaris: A System for Query, Analysis, and Visualization of
Multidimensional Relational Databases. IEEE Transactions on Visualization and Computer
Graphics, 8(1):52–65, 2002.

[48]. Suykens JA and Vandewalle J. Least Squares Support Vector Machine Classifiers. Neural
processing letters, 9(3):293–300, 1999.

[49]. Thirumuruganathan S, Berti-Equille L, Ouzzani M, Quiane-Ruiz J-A, and Tang N. Uguide: User-
guided Discovery of FD-detectable Errors. In Proceedings of the 2017 ACM International
Conference on Management of Data, pages 1385–1397. ACM, 2017.

[50]. Wang J, Krishnan S, Franklin MJ, Goldberg K, Kraska T, and Milo T. A Sample-and-clean
Framework for Fast and Accurate Query Processing on Dirty Data. In ACM SIGMOD, 2014.

[51]. Wang J and Tang N. Dependable Data Repairing with Fixing Rules. Journal of Data and
Information Quality (JDIQ), 8(3–4):16, 2017.

[52]. Wei Z and Link S. DataProf: Semantic Profiling for Iterative Data Cleansing and Business Rule
Acquisition. In Proceedings of the 2018 International Conference on Management of Data, pages
1793–1796. ACM, 2018.

Rahman et al. Page 24

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.cs.berkeley.edu/~rshankar/papers/pwheel.pdf

[53]. White IR, Royston P, and Wood AM. Multiple Imputation Using Chained Equations: Issues and
Guidance for Practice. Statistics in medicine, 30(4):377–399, 2011. [PubMed: 21225900]

[54]. Xu J, Kalashnikov DV, and Mehrotra S. Query Aware Determinization of Uncertain Objects.
IEEE Transactions on Knowledge and Data Engineering, 2015.

[55]. Yakout M, Elmagarmid AK, Neville J, Ouzzani M, and Ilyas IF. Guided Data Repair. PVLDB,
4(5):279–289, 2011.

[56]. Yucel RM, He Y, and Zaslavsky AM. Imputation of Categorical Variables using Gaussian-based
Routines. Statistics in Medicine, 30(29):3447–3460, 2011. [PubMed: 21976366]

Rahman et al. Page 25

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1:
ICARUS Workflow: ICARUS uses its entropy based sampling algorithm to display a subset of

the database containing missing data to show the user, in the form of a matrix. The user then

updates a cell, based on which ICARUS generates multiple update statements, presented as

rules. Users can then choose to apply correct rules, amplifying their single update to

multiple tuples.

Rahman et al. Page 26

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2:
Motivating Example - Microbiology Culture Database: Missing data is in the

culture_antibiotics table, which is a many-to-many join between the culture and antibiotic

tables. To make any inferences on the missing values, atleast four tables need to be joined.

Further, the culture’s sensitivity to other relevant antibiotics are also needed, hence the

culture_antibiotic table needs to be pivoted on culture_id.

Rahman et al. Page 27

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3:
ICARUS Interface: A) Editable interface showing a subset of the missing data. In each

iteration, the user fills in as many values as possible, based on the information present, and

then proceeds to refresh. B) Once they update a cell with a value, generalized update rules,

which can fill in a larger set of values, are suggested to the user.

Rahman et al. Page 28

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4:
Iterations vs. Cumulative Percentage Filled over Entire Dataset: ICARUS consistently

performs well across all three datasets. Dotted lines are used to represent baselines which

violate latency requirements.

Rahman et al. Page 29

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5:
Percent contributed by each component of weighted sum for 50 simulations, grouped by rule

type (hospital data only has dependent rules).

Rahman et al. Page 30

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6:
Iterations vs. Cumulative Percentage Filled for Microbiology dataset for ICARUS and Falcon,

with different optimizations. ICARUS does significantly better.

Rahman et al. Page 31

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 7:
Percentage of Edits Saved when using ICARUS instead of Falcon for each dataset (out of 300

edits for microbiology and hospital, and 1000 for IMDB). The impact of ignoring rejects is

significant for IMDB, since it has 500 attributes leading to a large Falcon lattice (i.e., more

questions for the user to answer).

Rahman et al. Page 32

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 8:
Percentage filled by each user over iteration. The results match our simulations.

Rahman et al. Page 33

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 9:
Agreement with Gold: Humans using ICARUS do better than automated imputation methods.

Rahman et al. Page 34

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 10:
Ineffectiveness of imputation in conjunction with Icarus: Random edits lead to improvement

in imputation, but ICARUS edits don’t because the user explicitly chooses rules to fill in data

where the edit applies.

Rahman et al. Page 35

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rahman et al. Page 36

Table 1:

Subset Generation Latency: Shaded cells violate latency constraints of 300ms, which Icarus meets in all

datasets

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rahman et al. Page 37

Table 2:

User Study Results: On average, users were able to fill 56,000 cells in just 148 edits.

User %Null Cells Filled #Cells Filled Iterations Edits

1 70.6 58,672 19 246

2 35.3 29,299 3 46

3 68.8 57,104 4 155

4 95.76 79,480 13 126

5 68.8 57,104 35 147

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rahman et al. Page 38

Table 3:

Paraphrased questions from SUS and the Likert score for 5 users: 1- Srongly Disagree, 5 - Strongly Agree.

Last column shows the average per question and its interpretation. The last row shows overall SUS scores per

user (SUS scoring details in [9]): ICARUS scored an average of 75 (above 68 is considered good [6]).

Question A B C D E Average

1. I would like to use this frequently. 4 3 5 5 5 4.4 - Agree

2. The system was easy to use. 2 4 5 4 5 4 - Agree

3. The various functions in this system were well integrated. 4 4 5 4 5 4.4 - Agree

4. Most people would learn to use this system very quickly. 3 3 4 4 5 3.8 - Agree

5. I felt very confident using the system. 2 3 3 4 5 3.4 - Neutral

6. I found the system unnecessarily complex. 4 3 1 2 2 2.4 - Disagree

7. I would need the support of a technical person to use this. 3 3 1 2 3 2.4 - Disagree

8. There was too much inconsistency in this system. 2 2 2 1 1 1.5 - Disagree

9. The system is very cumbersome to use. 3 2 1 1 1 1.75 - Disagree

10. I needed to learn a lot of things before I could get going with this system. 3 2 4 1 1 1.75 - Disagree

Score 50 62.5 82.5 87.5 92.5 75

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rahman et al. Page 39

Ta
b

le
 4

:

Su
m

m
ar

y
of

 li
m

ita
tio

ns
 o

f
pr

io
r

w
or

k
w

he
n

ap
pl

ie
d

to
w

ar
ds

 th
e

co
m

pl
et

io
n

pr
ob

le
m

. I
C

A
R

U
S

ad
dr

es
se

s
al

l 3
 f

ea
tu

re
s.

Sy
st

em
D

ir
ec

t
E

di
ts

G
ui

de
s

E
di

ts
G

en
er

al
iz

es
E

di
ts

L
im

it
at

io
ns

 w
it

h
re

sp
ec

t
to

 D
at

a
C

om
pl

et
io

n

Fa
lc

on
✓

×
✓

D
oe

s
no

t g
ui

de
 th

e
us

er
 o

n
ed

its
.

Sa
m

pl
eC

le
an

×
×

✓
A

dd
re

ss
es

 d
up

lic
at

io
n

an
d

va
lu

e
er

ro
rs

 f
or

 a
gg

re
ga

te
 q

ue
ri

es
 o

nl
y.

 D
oe

s
no

t f
ill

 in
 in

co
m

pl
et

e
da

ta
se

ts
.

D
at

a
Im

pu
ta

tio
n

&
 H

ol
oc

le
an

×
×

×
L

ow
 p

re
ci

si
on

 o
r

re
ca

ll,
 a

s
sh

ow
n

in
 S

ec
tio

n
4.

4
an

d
4.

6.
3,

 s
in

ce
 li

m
ite

d
ev

id
en

ce
 in

 th
e

da
ta

 f
or

 m
is

si
ng

 v
al

ue
s.

T
ra

ns
fo

rm
at

io
na

l E
di

ts
 -

T
ri

fa
ct

a,
 P

ot
te

r’
s

W
he

el
, P

ol
ar

is
✓

×
✓

W
hi

le
 th

es
e

sy
st

em
s

ge
ne

ra
liz

e
ed

its
 b

as
ed

 o
n

tr
an

sf
or

m
s,

 th
ey

 d
o

no
t g

ui
de

 u
se

rs
 o

n
ef

fe
ct

iv
e

tr
an

sf
or

m
s.

In
te

ra
ct

iv
e

L
ea

rn
in

g
-

A
ct

iv
eC

le
an

, G
ui

de
d

D
at

a
R

ep
ai

r
×

✓
✓

Su
gg

es
ts

 r
ul

es
 b

as
ed

 o
n

un
de

rl
yi

ng
 m

od
el

s,
 w

hi
ch

 is
 n

ot
 a

pp
lic

ab
le

 w
he

n
sp

ec
if

ic
 d

at
a

in
st

an
ce

s
ar

e
m

is
si

ng
.

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 June 06.

	Abstract
	INTRODUCTION
	Motivating Example
	Guiding Users on Impactful Completions
	Generalizing Completion Updates:

	Contributions

	PROBLEM FORMULATION
	Update Language
	Multiple Relations for Rule Generation
	Problem Statement
	Iterative Data Completion Problem:

	Search Space

	SYSTEM DESIGN
	Algorithm 1
	Subset Selection
	Optimization Function
	Increasing Entropy for Subset Diversification
	Two-stage Subset Sampling

	Rule Generation

	Algorithm 2
	User Interactions
	Update NULL Value:
	Navigate Rules:
	Rule Application:
	Refresh Sample:

	Optimizations

	Algorithm 3
	Complexity Analysis

	EXPERIMENTAL EVALUATION
	Microbiology: This is the dataset from our motivating example, whose schema along with a few tuples is shown in Figure 2, and the interface for the user study is shown in Figure 3. It consists of culture results of patients admitted to the Ohio State Wexner Medical Center with urinary tract infection (UTI) between 2009 and 2014. The dataset contains around 10, 797 cultures (rows) and about 50 antibiotics (columns). Out of these we are only interested in filling in missing information for the 14 antibiotics which are used for empiric treatment. The UMLS Metathesaurus [8] was used to create the classification tables [42]. Around 55% of the data we are interested in is unreported, which is equivalent to around 83, 000 null cells. Before creating ICARUS, this dataset was filled in with rules created manually with consensus from four domain experts, which took around a month. It was a cumbersome process that involved looking at columns pairwise, trying to find dependencies that covered the maximum null cells, formulating rules, and then generating the pairwise frequencies again. These rules are used as “gold” standard. 89 of the rules are dependent and 80 are independent. Domain of null cells is binary: 1: sensitive, −1: resistant. This dataset has up to three levels of hierarchy, i.e., the base relation has a parent, grandparent and great grandparent along both dimensions (refer to Section 2 and schema in Figure 2).IMDB: The IMDB data [1] was collected using IMDbPy [2] to create a database. We selected the top 500 voted TV shows from the database. For each show, we found all actresses that appeared in them and then collected up to 10 episodes where the actress appeared. This was done to create rules of the form (actress,). We generated rules by comparing episodes that appeared in the same show pairwise, as well as seeing if an actress had the same values for all episodes of a show. 7,496 of these rules were dependent while 23, 051 were independent. We removed any show that did not have any actresses that appeared in more than one episode. This left us with 73 shows, 504 episodes and 317 actresses, giving us 317×504 matrix with about 160, 000 cells. From this we removed 50% of the data based on the generated rules, giving us around 80, 000 missing cells. Missing values are binary: 1 : actress appeared in series, −1 : actress did not appear. This dataset has one level of hierarchy, where every episode has a parent series.Hospital: This dataset, adopted from US Department of Health and Human Services 11http://www.medicare.gov/hospitalcompare/, contains 100, 000 rows and 17 columns. Out of these we non-randomly removed data from 7 attributes based on 45 manually created dependent rules, giving 517,134 missing cells, all text. To transform these for regression and clustering, word features were created for 10 out of the 17 columns. “State” was used as a proxy for geographic attributes like “address”, to limit feature size (139 features). Unlike the other two datasets, this does not have a many-to-many relation, with a hierarchy. Instead, it contains three relations and the attribute’s parent is the relation it belongs to, again giving a one level hierarchy.
	Microbiology:
	IMDB:
	Hospital:

	Comparison of Subset Selection Algorithms
	Random:
	Random_history:
	Clustering:
	Regression:

	Latency
	Components of the Optimization Function
	Comparison to Other Systems
	Falcon:
	Falcon algorithm:
	Holoclean:

	User Study
	Human Effort
	System Usability Scale
	Agreement with Gold
	Imputation on partially filled dataset:

	RELATED WORK
	Interactive Data Cleaning:
	Rule-Based Systems:
	Data Imputation:
	Crowdsourced and Knowledge-Based Cleaning:
	Transformational Edits and Spreadsheet Interfaces:
	Query-Based Cleaning:

	CONCLUSION AND FUTURE WORK
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7:
	Figure 8:
	Figure 9:
	Figure 10:
	Table 1:
	Table 2:
	Table 3:
	Table 4:

