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Abstract: Marine organisms produce secondary metabolites that may be valuable for the 

development of novel drug leads as such and can also provide structural scaffolds for the 

design and synthesis of novel bioactive compounds. The marine alkaloids, clathrodin and 

oroidin, which were originally isolated from sponges of the genus, Agelas, were prepared 

and evaluated for their antimicrobial activity against three bacterial strains (Enterococcus 

faecalis, Staphylococcus aureus and Escherichia coli) and one fungal strain (Candida 

albicans), and oroidin was found to possess promising Gram-positive antibacterial activity. 

Using oroidin as a scaffold, 34 new analogues were designed, prepared and screened for 

their antimicrobial properties. Of these compounds, 12 exhibited >80% inhibition of the 

growth of at least one microorganism at a concentration of 50 µM. The most active 

derivative was found to be 4-phenyl-2-aminoimidazole 6h, which exhibited MIC90 

(minimum inhibitory concentration) values of 12.5 µM against the Gram-positive bacteria 

and 50 µM against E. coli. The selectivity index between S. aureus and mammalian cells, 
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which is important to consider in the evaluation of a compound’s potential as an 

antimicrobial lead, was found to be 2.9 for compound 6h. 

Keywords: marine alkaloid; Agelas; antimicrobial; antibacterial; antifungal;  

pyrrole-2-aminoimidazole; oroidin; clathrodin 

 

Abbreviations 

ATCC, American Type Culture Collection; d, doublet; dd, doublet of doublets; ddd, doublet of 

doublet of doublets; DMF, N,N-dimethylformamide; DMSO, dimethylsulfoxide; dt, doublet of triplets; 

ESI, electrospray ionization; EtOH, ethanol; FT-IR, fourier transform infrared; HRMS, high resolution 

mass spectrometry; Huh-7, human hepatocellular carcinoma cell line; IR, infrared; MOPS,  

3-(N-morpholino)propanesulfonic acid; mp, melting point; NMM, N-methylmorpholine; R, radical; 

RPMI-1640, Roswell Park Memorial Institute medium 1640; rt, room temperature; s, singlet; TBTU, 

N,N,N′,N′-tetramethyl-O-(benzotriazol-1-yl)uronium tetrafluoroborate; td, triplet of doublets; THF, 

tetrahydrofuran; TLC, thin layer chromatography; TMS, tetramethylsilane; Vis, visible light. 

1. Introduction 

Marine natural products constitute a vital pool of biologically active compounds that are amenable 

to drug discovery. The marine ecosystem is a rich source of chemically and functionally diverse 

molecules that function in their native environment as offensive weapons to capture pray or for 

protection against predators [1]. Sponges, for example, have been shown to produce secondary 

metabolites with highly promising antimicrobial activities [2]. Marine organisms produce some of the 

most potent bioactive compounds discovered to date. However, because the concentrations of these 

compounds are usually very low, natural sources are unlikely to provide sufficient material for 

isolation and detailed biological evaluation, and chemical synthesis is often necessary to investigate 

their mode of action and their biological implications. This option is often hampered by the fact that 

natural compounds are also known for their high molecular weight, large number of chiral centers and 

complex 3D structures, which limit their synthetic availability and make them non-drug-like. 

Alkaloids initially isolated from the sponges of the genus, Agelas, e.g., clathrodin and oroidin 

(Figure 1), belong to the pyrrole-2-aminoimidazole structural class of secondary metabolites and 

exhibit intriguing structural complexity and increasingly studied biological activities; thus, these 

compounds are attracting the attention of a growing number of researchers from numerous disciplines 

worldwide [3,4]. Apart from the genus, Agelas, several other genera of sponges, e.g., Hymeniacidon, 

Cymbaxinella and Axinella, have also been identified to produce these alkaloids [4,5]. Compared with 

many other pyrrole-2-aminoimidazoles, the structures of the oroidin class of alkaloids (the key 

precursor for this group) are relatively simple and are thus suitable candidates for optimization using 

established medicinal chemistry strategies. Because of its relatively low molecular mass and simple 

structure, oroidin offers several possibilities for chemical optimization through the introduction of 

additional side chains or functional groups. 
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Figure 1. Structures of the marine alkaloids, clathrodin and oroidin. 

 

Infectious diseases remain one of the leading global causes of death. The widespread occurrence of 

bacterial strains resistant to the currently used antimicrobials represents a significant health threat; 

therefore, novel structural classes of antimicrobials with novel mechanisms of action are urgently 

needed [6–10]. Marine alkaloids from Agelas sponges and their synthetic analogues have been 

extensively studied as inhibitors of bacterial biofilm formation [11–20] and as antibacterial [21–23], 

antifungal [24] and antiprotozoal [25,26] agents. Some mechanisms of antimicrobial and antibiofilm 

action have been proposed, and these include disruption of the bacterial cell membrane [27], targeting 

the response regulator protein, BfmR [11], and inhibition of enoyl reductases [26]. 

In our study, we first prepared two natural marine alkaloids, namely, clathrodin and oroidin, and 

evaluated their antimicrobial activity against a panel of laboratory strains of known pathogens, 

including Gram-positive (Enterococcus faecalis and Staphylococcus aureus) and Gram-negative 

bacteria (Escherichia coli) and fungi (Candida albicans). Our initial results revealed that clathrodin 

possessed almost no antimicrobial activity, but its dibromo analogue, oroidin, showed promising 

inhibition of the growth of the Gram-positive bacteria, S. aureus and E. faecalis. These results indicate 

that larger, lipophilic moieties, rather than the pyrrole ring found in the clathrodin molecule, are 

required for good antibacterial activity. The primary screen results stimulated us to prepare a series of 

oroidin analogues with pyrrol-replacing groups, such as indole and substituted indole rings. Using 

different substituents on the indole ring, we investigated the chemical properties required for biological 

activity. To further explore the structure-activity relationships, we also designed a series of 

conformationally restricted oroidin analogues. In addition to their antimicrobial evaluation, the in vitro 

cytotoxicity of these compounds on mammalian cells was determined to further assess the selectivity 

of the active compounds toward different prokaryotic and eukaryotic cells. 

2. Results and Discussion 

2.1. Design 

We designed two main classes of oroidin analogues, i.e., 4-(3-aminoprop-1-en-1-yl)-2-aminoimidazoles 

I and 4-phenyl-2-aminoimidazoles II (Figure 2). The structures of the class I compounds are closely 

related to natural alkaloids and were obtained through the replacement of the pyrrole or  

2,3-dibromo-pyrrole rings with indole and 5-fluoro-indole moieties (Scheme 1, compounds 2c and 2d). 

With respect to the class II series, a set of 34 analogues was designed and prepared by introducing a 

phenyl ring into position 4 of the 2-aminoimidazole ring. In that way, a conformational constraint was 

introduced into the molecule to limit the flexibility of the compounds without altering the length of the 

molecule compared with the natural alkaloids. In addition to compounds with a pyrrol-2-yl substituent, 



Mar. Drugs 2014, 12 943 

 

 

which is present in clathrodin, analogues with pyrrol-3-yl, (R)-pyrrolidin-2-yl, indol-2-yl, indol-3-yl, 

thieno[3,2-b]pyrrol-5-yl and furan-2-yl substituents were prepared. With the introduction of these 

groups, we wanted to explore their optimal size and the hydrophobic/hydrophilic properties required 

for biological activity. In that respect, different 5-substituted indole rings were also studied. To assess 

the importance of the free primary amino group of the 2-aminoimidazole moiety, a set of  

4-phenyl-(N-methylamino)-imidazoles, namely 5l and 6l (Scheme 2) and 10a–c and 11a–c  

(Scheme 3), was synthesized. Furthermore, the effects of different substituents on the imidazole N-1 

nitrogen, such as Boc (tert-butyl-oxy-carbonyl) and benzyl (Scheme 4, compounds 13–16), were 

studied. Finally, a set of 4,5-dihydro-2-aminoimidazoles (Scheme 3, compounds 10a–c and 11a–c) 

with a reduced imidazole C=C bond was prepared and evaluated. With that modification, the effects of 

aromaticity and planarity of the imidazole ring on the biological activity were assessed. 

Figure 2. The design of 4-(3-aminoprop-1-en-1-yl)-2-aminoimidazoles (I) and  

4-phenyl-2-aminoimidazoles (II) as clathrodin and oroidin analogues with potential 

antimicrobial activity. 

 

Scheme 1. Synthesis of clathrodin (2a), oroidin (2b) and their indole (2c) and  

5-fluoro-indole (2d) analogues. Reagents and conditions: corresponding carboxylic acid, 

TBTU, NMM, DMF, rt, 6 h. 
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Scheme 2. Synthesis of 4-phenyl-2-aminoimidazoles 5a–k and 6a–k and  

4-phenyl-2-(N-methylamino)-imidazoles 5l and 6l. Reagents and conditions:  

(a) Corresponding carboxylic acid, TBTU, NMM, CH2Cl2, 35 °C, 24 h; (b) HCl(g), 

THF/EtOH, rt, 5 h. 
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Scheme 3. Synthesis of 4-phenyl-4,5-dihydro-(N-methylamino)-imidazoles 10a–c and 

11a–c. Reagents and conditions: (a) Corresponding carboxylic acid, TBTU, NMM, 

CH2Cl2, 35 °C, 24 h; (b) HCl(g), EtOH, rt, 5 h. 

 

Compound R
 

Compound R
 

Compound R 

10a 

 

11a  

10b 

 

11b  

10c 

 

11c 
 

  



Mar. Drugs 2014, 12 945 

 

 

Scheme 4. Synthesis of 1-benzyl-4-phenyl-2-aminoimidazoles 13 and 14. Reagents and 

conditions: (a) Benzyl bromide, K2CO3, CH3CN, 50 °C, 14 h; (b) H2/Pd-C, THF, rt, 5 h;  

(c) pyrrole-2-carboxylic acid, TBTU, Et3N, CH2Cl2, rt, 18 h (for the synthesis of 15); 

pyrrole-2-carbaldehyde, NaBH(OAc)3, CH3COOH, CH2Cl2, rt, 13 h (for the synthesis of 16). 

 

2.2. Chemistry 

Clathrodin (2a) and its indole (2c) and 5-fluoro-indole (2d) analogues were prepared by coupling amine 

1 [28] and the appropriate carboxylic acid (pyrrole-2-carboxylic acid, 4,5-dibromo-pyrrole-2-carboxylic 

acid, indole-2-carboxylic acid or 5-fluoro-indole-2-carboxylic acid), as depicted in Scheme 1. 

The 4-phenyl-2-aminoimidazoles 5a–k and 6a–k and the 4-phenyl-2-(N-methylamino)-imidazoles 

5l and 6l were synthesized according to Scheme 2. First, N-Boc-protected derivatives 5a–l were 

prepared in a TBTU-promoted coupling reaction between tert-butyl 2-amino-4-(3-aminophenyl)-1 

H-imidazole-1-carboxylate (3) or tert-butyl 4-(3-aminophenyl)-2-(methylamino)-1 

H-imidazole-1-carboxylate (4) and various carboxylic acids (pyrrole-2-carboxylic acid,  

pyrrole-3-carboxylic acid, N-Boc-D-proline, indole-2-carboxylic acid, indole-3-carboxylic acid,  

5-substituted indole-2-carboxylic acids or 4H-thieno[3,2-b]pyrrole-5-carboxylic acid). Next, the N-Boc 

protecting groups of 5a–l were removed with gaseous hydrochloric acid to obtain the target 

compounds 6a–l. The detailed procedures for the syntheses of tert-butyl 2-amino-4-(3-aminophenyl) 

1H-imidazole-1-carboxylate (3) and tert-butyl 4-(3-aminophenyl)-2-(methylamino)-1 

H-imidazole-1-carboxylate (4) are described elsewhere [29]. 

Compound 8, which contains a 5-hydroxyl substituent on the indole ring, was prepared from the  

5-benzyloxy-indol derivative 5h through the two-step procedure depicted in Scheme 5. After a 

palladium-catalyzed hydrogenation to remove the O-benzyl group, the obtained compound 7 was 

converted into the target 4-phenyl-2-aminoimidazole 8 upon cleavage of the Boc protecting group with 

gaseous hydrochloric acid. 

Scheme 5. Synthesis of 4-phenyl-2-aminoimidazoles 7 and 8. Reagents and conditions:  

(a) H2/Pd-C, THF/MeOH, rt, 10 h; (b) HCl(g), THF/EtOH, rt, 5 h. 

 

The 4-phenyl-4,5-dihydro-(N-methylamino)-imidazoles 11a–c were prepared using the  

above-described procedure for the syntheses of compounds 6a–l (Scheme 3). The TBTU-promoted 
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coupling reactions between amine 9 and different carboxylic acids (pyrrole-2-carboxylic acid,  

indole-2-carboxylic acid or furan-2-carboxylic acid) yielded compounds 10a–c, which were converted 

into 11a–c upon cleavage of the N-Boc protecting group with gaseous hydrochloric acid. The synthesis 

of tert-butyl 4-(3-aminophenyl)-2-(methylamino)-4,5-dihydro-1H-imidazole-1-carboxylate (9) is 

reported elsewhere [29]. 

For the preparation of compounds 15 and 16, which contain a benzyl group on N-1 of the imidazole 

ring (Scheme 4), 4-(3-nitrophenyl)-2-aminoimidazole (12) was first reacted with benzyl bromide in the 

presence of potassium carbonate to obtain the 1-benzylated derivative 13. The nitro group of 13 was 

then reduced through catalytic hydrogenation, and the obtained amine 14 was coupled with  

pyrrole-2-carboxylic acid to afford the target compound 15. 1-Benzyl-4-phenyl-2-aminoimidazole 16, 

an analogue of 15 with a reduced amide bond, was obtained using sodium triacetoxyborohydride to 

achieve the reductive amination of 14 with pyrrole-2-carbaldehyde. 

2.3. Biological Evaluation 

The compounds belonging to both structural classes, i.e., 4-(3-aminoprop-1-en-1-yl)-2-aminoimidazoles 

I (2a–d) and 4-phenyl-2-aminoimidazoles II (5a–c, 5d, 5f–l, 6a–l, 7, 8, 10a–c, 11a–c, 15 and 16) were 

evaluated for their antimicrobial activity against three bacterial strains (Gram-positive Enterococcus 

faecalis ATCC 29212 and Staphylococcus aureus ATCC 25923 and Gram-negative Escherichia coli 

ATCC 25922) and one fungal strain (Candida albicans ATCC 90028). The primary screening results 

at a concentration of 50 µM are presented in Figure 3. The antimicrobial screening assays were 

performed using broth microdilution method, as detailed in the Experimental Section. The minimum 

inhibitory concentrations (MIC50, MIC90) were further determined for those compounds that showed 

>80% inhibition of growth in the primary screen (Table 1). In addition, the selected compounds were 

also tested for mammalian cell cytotoxicity to determine the selectivity indices (SI) for their 

antimicrobial effects (Tables 1 and 2). 

The parent compound, clathrodin (2a), exhibited activities below the hit threshold (>80% inhibition 

of growth at a concentration of 50 μM) against all of the microbial strains tested. Interestingly, its 

dibromo-pyrrole analogue, oroidin (2b), showed noticeably higher antibacterial activity against the 

Gram-positive bacteria, S. aureus (>90% inhibition of growth) and E. faecalis (approximately 50% 

inhibition of growth), but was also inactive against C. albicans and the Gram-negative bacteria, E. coli. 

Based on these results, a set of oroidin analogues was designed and prepared, i.e., the dibromo-pyrrole 

ring was substituted with other groups, such as indole and substituted indole rings with similar spatial 

and hydrophobic/hydrophilic properties to dibromo-pyrrole. Based on the primary screening results, 

the hit rates (>80% inhibition of growth) of all 36 tested compounds against S. aureus, E. faecalis,  

E. coli and C. albicans were 33, 14, six and 3%, respectively (Figure 3). Twelve compounds were 

active against S. aureus, and five of these were also active against the other Gram-positive bacterium, 

E. faecalis. The majority of the active compounds belonged to the 4-phenyl-2-aminoimidazole 

structural class, which is presented in Schemes 2 and 5. In general, the most active compounds were 

analogues containing an indol-2-yl, 5-substituted indol-2yl or thieno[3,2-b]pyrrol-5-yl group in the 

eastern part of the molecule and also possessing unsubstituted imidazole N-1 nitrogen (6d, 6f–l). 

Interestingly, compound 6e, which contains an indol-3-yl substituent, was inactive. Those compounds 
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with smaller substituents in the eastern part, such as pyrrol-2-yl (5a, 6a), pyrrol-3-yl (6b) and  

(R)-pyrrolidin-2-yl (5c, 6c) and those compounds with Boc substituents on the imidazole N-1 nitrogen 

(5a, 5c–l, 7 and 10a–c), were less active. The only active compound containing a Boc substituent on 

the imidazole N-1 was compound 7. In general, compounds with Boc substituents on the imidazole N-1 

nitrogen (5a, 5c–l, 7 and 10a–c) were less active than the products with free amino groups (6a, 6c–l, 8 

and 11a–c); therefore, some Boc analogues, like compound 5b, were not tested, as no increase in the 

biological activity could be anticipated. According to these findings, the unsubstituted imidazole N-1 

nitrogen plays an important role in enhancing the biological activity, possibly by forming direct or 

indirect interactions with the target. The most promising results were obtained for the  

4-phenyl-2-aminoimidazoles, 6g and 6h, containing 5-O-substituted indole rings. Interestingly, 

compound 6g showed full inhibition of growth of all four microbes tested, whereas compound 6h, 

which contains a large, lipophilic 5-benzyloxy substituent on the indole ring, was active against all 

bacterial strains tested, but showed no activity against C. albicans. Compounds structurally similar to 

6g have been identified as inhibitors of the biofilm formation in Gram-negative bacteria [18]. The  

4-phenyl-4,5-dihydro-(N-methylamino)-imidazoles, 10a–c and 11a–c, which contain a reduced 

imidazole C=C bond, were not active, which indicates the importance of the aromaticity and planarity 

of the imidazole ring for antimicrobial activity. 

Figure 3. Primary antimicrobial screening results for clathrodin (2a), oroidin (2b) and their 

analogues at a concentration of 50 µM against: (A) Enterococcus faecalis (ATCC 29212); 

(B) Staphylococcus aureus (ATCC 25923); (C) Escherichia coli (ATCC 25922); and  

(D) Candida albicans (ATCC 90028). The results are based on the activity measured after 

24 h (bacteria) or 48 h (C. albicans) of incubation (n = 3). Ciprofloxacin was used as a 

reference antibiotic in the antibacterial assays; MIC90 (minimum inhibitory concentration) 

values for E. faecalis, S. aureus and E. coli were 3, 1.5 and 0.048 µM (1, 0.5 and  

0.016 µg/mL), respectively. And amphotericin B was used as a reference in the antifungal 

assay (MIC90 = 0.5 µM (0.5 µg/mL). 
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Table 1. MIC90 and MIC50 values and the selectivity indices (SI) used to evaluate the 

antimicrobial activities of oroidin (2b) and selected oroidin analogues. The SI values were 

calculated as the ratio between the antimicrobial MIC50 and the Huh-7 cytotoxicity IC50 values. 

Cpd 

Enterococcus faecalis  

(ATCC 29212) 

Staphylococcus aureus  

(ATCC 25923) 

Escherichia coli  

(ATCC 25922) 

Candida albicans  

(ATCC 90028) 

MIC90 (µM) MIC50 (µM) SI MIC90 (µM) MIC50 (µM) SI MIC90 (µM) MIC50 (µM) SI MIC90 (µM) MIC50 (µM) SI 

2b    100 30.6 >3.3       

5i    75 11.7 >8.6       

6d 50 34.0 1.2 50 29.4 1.4       

6f    50 11.9 2.7       

6g 25 11.4 2.7 25 9.0 3.5 25 17.7 1.8 50 30.5 1.0 

6h 12.5 8.0 2.7 12.5 7.3 2.9 50 30.4 0.7    

6i    50 7.2 3.0       

6j 100 27.3 0.7 50 22.1 0.9       

6k    100 27.1 2.0       

6l 100 54.2 1.0 75 10.8 4.9       

7    100 11.6 8.1       

8       100 40.5 >2.5             

Table 2. Mammalian cell cytotoxicity of oroidin (2b) and selected oroidin analogues that 

showed >80% inhibition in the primary antimicrobial screening. The cytotoxicity IC50 

values against a hepatocellular carcinoma cell line (Huh-7) were determined by an ATP 

assay after 24 h of exposure to the compound. The results are averages from two 

independent dose-response experiments. 

Compound 

Cytotoxicity 

IC50 (µM) 

2b >100 * 

5i >100 * 

6d 42.3 

6f 32.2 

6g 31.0 

6h 21.2 

6i 21.7 

6j 19.8 

6k 53.6 

6l 52.3 

7 94.0 

8 >100 * 

* = highest concentration tested. 

The dose-response experiments conducted using the active compounds confirmed the primary 

screening results and demonstrated the potency differences between the analogues (Table 1). The 

lowest MIC90 values were obtained for derivative 6h with MIC90 values of 12.5 µM (5.7 µg/mL) 

against the Gram-positive bacteria and 50 µM against E. coli. The MIC90 values of the  

5-trifluoromethoxy-indole derivative 6g were 25 µM (10.9 µg/mL) against all of the bacteria and  
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50 µM against C. albicans. For all the other derivatives, the MIC90s were ≥50 µM. For comparison, 

antibiotics currently used for treating Staphylococcus infections show MIC90 values in in vitro 

conditions typically in the range of 0.1–8 µg/mL [30]. However, the MIC value is not the only factor 

to be considered; the significance of the findings may also depend, for example, on the structural 

novelty and selectivity profile of the compound. Thus, in addition to the antimicrobial activity, the 

cellular impacts of the most promising compounds on a hepatocyte cell line, Huh-7, after 24 h of 

exposure were also evaluated to measure the selectivity of the effects between prokaryotic and 

eukaryotic cells. Clearly, most of the antimicrobially active derivatives showed a broad-spectrum 

effect, targeting both prokaryotic and eukaryotic cells (Table 2); however, in general, higher IC50 

values were obtained for mammalian cell cytotoxicity than for antimicrobial activity (Table 1). The 

most active derivatives, 6g and 6h, displayed only modest selectivity towards S. aureus with selectivity 

index (SI) values of 3.5 and 2.9, respectively (Table 1). 

The derivatives that were non-cytotoxic to mammalian cells at the highest tested concentration of 

100 µM had only moderate antibacterial activity (MIC90 ≥ 75 µM and MIC50 ≥ 11.6 µM). The  

4-phenyl-2-aminoimidazole derivative 7 exhibited an eight-fold selectivity between S. aureus and the 

mammalian cell line, but its antibacterial effect (MIC90 = 100 µM) was modest. The selectivity index 

of the 5-chloro-indole derivative 5i was >8.6, due to its non-cytotoxicity against mammalian cells at 

100 µM (the highest tested concentration). An SI value greater than 10 can be regarded as a threshold 

for considering a compounds’ potential for further development [31]; thus, improving the selectivity of 

the most promising analogues found in this study through structural optimization would be justified. 

3. Experimental Section  

3.1. Determination of Antimicrobial Activity 

3.1.1. Microbial Strains 

Clinical control strains of Enterococcus faecalis (Gram-positive, ATCC 29212), Staphylococcus 

aureus (Gram-positive, ATCC 25923), Escherichia coli (Gram-negative, ATCC 25922) and a fungal 

strain, Candida albicans (ATCC 90028), were obtained from Microbiologics Inc. (St. Cloud, MN, 

USA) and used for the antimicrobial screening. Bacterial strains were grown on Mueller Hinton II agar 

(MHA, Becton Dickinson, Franklin Lakes, NJ, USA) slants and Mueller Hinton II broth (MHB, 

Becton Dickinson, Franklin Lakes, NJ, USA) and the Candida strain on Sabouraud dextrose agar 

(SDA, Becton Dickinson, Franklin Lakes, NJ, USA) plates. Media were prepared in MilliQ water, 

according to the manufacturer’s instructions, and autoclaved at 121 °C for 15 min. Prior to the assay, 

bacterial suspensions were prepared in MHB from fresh slant cultures and incubated at 37 °C for  

16–20 h at 100 rpm. The Candida strain was grown on SDA plates at 28 °C for 18–24 h and suspended 

into sterile 0.9% saline for the assay. 

3.1.2. Microdilution Assay 

Antimicrobial assays were performed by the broth microdilution method following the guidelines of 

the Clinical and Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial 
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Susceptibility Testing (EUCAST). Bacterial suspensions were prepared as described above and diluted 

with MHB to obtain a final inoculum of 5 × 10
5
 colony-forming units (CFU)/milliliters in the assay 

(determined on the basis of absorbance values at 620 nm previously calibrated against plate counts). 

The Candida suspension was prepared in sterile 0.9% saline solution, and the suspension was diluted 

in RPMI-1640 media (with L-glutamine, without NaHCO3 and supplemented with 2% glucose and  

0.165 M MOPS, buffered to pH 7; Lonza, Basel, Switzerland) to yield a final inoculum of  

2.5 × 10
3
 CFU/mL in the assay. Assays were carried out in clear 96-well microtiter plates and initiated 

by dispensing an equal volume of microbial suspension and sample solution diluted into the assay 

medium. The plates were incubated for 24 h at 37 °C (for Candida, the incubation was at 28 °C for  

48 h) with agitation. Absorbance was measured at 620 nm with a plate reader at 0, 4 and 24 h with the 

bacteria and at 0, 24 and 48 h with Candida. The antimicrobial activity of the samples was calculated 

from the absorbance values by comparing to untreated controls and expressed as the percentage 

inhibition of growth. Reference antibiotics were used as positive controls on every assay plate (see 

Figure 2 for details). Compounds were initially assayed at a final concentration of 50 µM (n = 3), and 

those that showed >80% inhibition in the primary screen were tested further at several concentrations 

to confirm the activity and to determine the MIC90 and MIC50 values. The MIC90 was defined as the 

lowest concentrations that showed >90% inhibition of growth. MIC50 values were determined from the 

dose-response results by sigmoidal curve fitting with Origin software (OriginLab, Corp., Wellesley 

Hills, MA, USA). 

3.2. Determination of Mammalian Cell Cytotoxicity 

3.2.1. Cell Culture 

Huh-7 cells (originating from human hepatocellular carcinoma) were kindly provided by Prof. Ralf 

Bartenschlager (University of Heidelberg, Heidelberg, Germany). The cells were cultured in 

Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS, 

Gibco, Grand Island, NY, USA), 100 µM non-essential amino acids, 2 mM L-glutamine and  

100 µg/mL of streptomycin and 100 IU/mL of penicillin (Gibco). The cells were incubated at 37 °C in 

a humidified atmosphere with 5% CO2. 

3.2.2. ATP Assay 

The effect of the most promising compounds on the metabolic activity of Huh-7 hepatocytes was 

assessed by intracellular ATP quantitation (Promega’s CellTiter-Glo Cell Viability Assay, Madison, 

WI, USA). In brief, cells were seeded at 20,000 cells/well on white-walled 96-well microplates 

(ViewPlate, PerkinElmer Inc., Wellesley, MA, USA) and incubated at 37 °C, 5% CO2 and 95% 

humidity overnight and then exposed to the compounds for 24 h. Following the exposure, cells were 

washed with 100 µL PBS, and 50 µL of fresh assay media and 50 µL of the CellTiter-Glo reagent were 

added into the wells. After 2 min of shaking and 10 min incubation at rt, luminometric signal was 

measured using a Varioskan Flash plate reader (Thermo Fisher Scientific, Vantaa, Finland). 

Polymyxin-B sulfate (15,000 IU/mL, average cytotoxicity 88%) was used as a positive control on 

every assay plate. Compounds were primarily screened at 100 and 50 µM (n = 3) concentrations, and 
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those that showed >50% cytotoxicity were further subjected to dose-response experiments to 

determine IC50 values (concentration ranging between 150 µM and 1.56 µM, depending on the potency 

of the compound). The IC50 values were calculated by fitting the data into sigmoidal dose-response 

curves with the Origin software. 

3.3. Chemistry: General 

Chemicals were obtained from Acros Organics (Geel, Belgium) and Sigma-Aldrich Corporation 

(St. Louis, MO, USA) and used without further purification. Analytical TLC was performed on silica 

gel Merck 60 F254 plates (0.25 mm), using visualization with UV light and ninhydrin. Column 

chromatography was carried out on silica gel 60 (particle size 240–400 mesh). HPLC analyses were 

performed on an Agilent Technologies 1100 instrument (Agilent Technologies, Santa Clara, CA, USA) 

with a G1365B UV-Vis detector, a G1316A thermostat and a G1313A autosampler using a 

Phenomenex Luna 5-μm C18 column (4.6 × 150 mm or 4.6 × 250 mm) (Phenomenex, Torrance, CA, 

USA) and a flow rate of 1.0 mL/min. The eluent consisted of trifluoroacetic acid (0.1% in water) or 

ammonia (0.1% in water) as solvent A and methanol as solvent B. Microwave-assisted reactions were 

performed using a CEM Discover microwave reactor (CEM Corp., Matthews, NC, USA). Melting 

points were determined on a Reichert hot stage microscope and are uncorrected. 
1
H, 

13
C and 

19
F NMR 

spectra were recorded at 400, 100 and 376 MHz, respectively, on a Bruker AVANCE III 400 

spectrometer (Bruker Corporation, Billerica, MA, USA) in DMSO-d6, MeOH-d4 or acetone-d6 

solutions, with TMS as the internal standard. IR spectra were recorded on a PerkinElmer Spectrum BX 

FT-IR spectrometer (PerkionElmer, Inc., Waltham, MA, USA) or Thermo Nicolet Nexus 470 ESP  

FT-IR spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). Mass spectra were obtained 

using a VG Analytical Autospec Q mass spectrometer (Fisons, VG Analytical, Manchester, UK). The 

purity of the tested compounds was established to be ≥95%. 

3.4. Synthetic Procedures 

3.4.1. General Procedure A: Synthesis of compounds 2a–d 

The corresponding carboxylic acid (0.36 mmol), TBTU (137 mg, 0.414 mmol) and  

N-methylmorpholine (0.08 mL, 0.72 mmol) were dissolved in dry dimethylformamide (2 mL) and 

stirred under argon at rt for 1 h. The prepared mixture was added dropwise to a stirred solution of 

compound 1 (50 mg, 0.36 mmol) and N-methylmorpholine (0.08 mL, 0.72 mmol) in dry 

dimethylformamide (1 mL) at 0 °C. After 1 h, the mixture was warmed to rt and stirred under argon 

for 5 h. The solvent was evaporated under reduced pressure, and the residue was purified by flash 

column chromatography using dichloromethane/methanol saturated with NH3 (6:1) as an eluent. 

(E)-N-(3-(2-amino-1H-imidazol-4-yl)allyl)-1H-pyrrole-2-carboxamide (2a) (see Supplementary 

Information, Figure S1). Yield, 18%; brown solid; mp 95–98 °C; IR (KBr) ν = 3208 (N-H), 2927  

(C-H), 1614 (C=O), 1558, 1520, 1406, 1323, 1197, 1113, 1040, 959, 884, 740 cm
−1

. 
1
H NMR  

(MeOH-d4) δ 4.05 (dd, 2H, J = 6.0 Hz, J = 1.2 Hz, -CH=CH-CH2-), 5.94 (dt,1H, J = 15.8 Hz,  

J = 6.0 Hz, -CH=CH-CH2-), 6.18 (dd, 1H, J = 3.7 Hz, J = 2.6 Hz, Ar-H
4
), 6.32 (td, 1H, J = 15.8 Hz,  

J = 1.2 Hz, -CH=CH-CH2-), 6.51 (s, 1H, imidazole-H), 6.82 (dd, 1H, J = 3.7 Hz, J = 1.4 Hz, Ar-H
3
), 
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6.93 (dd, 1H, J = 2.5 Hz, J = 1.4 Hz, Ar-H
5
); 

13
C NMR (MeOH-d4) δ 42.06, 110.22, 111.78, 117.01, 

121.87, 122.66, 122.89, 126.87, 130.82, 151.66, 163.61; HRMS for C11H13N5O: calculated, 231.1120; 

found, 231.1189. HPLC: Phenomenex Luna 5 μm C18 column (4.6 mm × 150 mm); mobile phase: 

10%–70% of MeOH in NH3(aq) (0.1%) in 20 min; flow rate: 1.0 mL/min; injection volume: 10 μL; 

retention time: 10.11 min (97.9% at 254 nm, 98.2% at 280 nm). 

(E)-N-(3-(2-amino-1H-imidazol-4-yl)allyl)-4,5-dibromo-1H-pyrrole-2-carboxamide (2b) (see 

Supplementary Information, Figure S2). Yield, 25%; yellow solid; mp 201–204 °C; IR (KBr) ν = 3117 

(N-H), 2934 (C-H), 1611 (C=O), 1562, 1515, 1410, 1389, 1320, 1214, 1023, 955, 818, 754 cm
−1

. 
1
H 

NMR (MeOH-d4) δ 4.03 (d, 2H, J = 6.0 Hz, -CH=CH-CH2-), 5.91 (dt, 1H, J = 15.8 Hz,  

J = 6.0 Hz, -CH=CH-CH2-), 6.31 (d, 1H, J = 15.8 Hz, -CH=CH-CH2-), 6.51 (s, 1H, imidazole-H), 6.85 

(s, 1H, Ar-H
3
); 

13
C NMR (MeOH-d4) δ 42.18, 99.96, 106.09, 114.29, 117.00, 122.12, 122.28, 128.88, 

130.94, 151.72, 161.53; HRMS for C11H11Br2N5O: calculated, 386.9330; found, 386.9408. HPLC: 

Phenomenex Luna 5 μm C18 column (4.6 mm × 150 mm); mobile phase: 10%–70% of MeOH in 

NH3(aq) (0.1%) in 20 min; flow rate: 1.0 mL/min; injection volume: 10 μL; retention time: 13.69 min 

(98.7% at 254 nm, 98.5% at 280 nm). 

(E)-N-(3-(2-amino-1H-imidazol-4-yl)allyl)-1H-indole-2-carboxamide (2c) (see Supplementary 

Information, Figure S3). Yield, 26%; white solid; mp ˃ 230 °C; IR (KBr) ν = 3205 (N-H), 2930 (C-H), 

1618 (C=O), 1546, 1418, 1340, 1308, 1258, 1100, 958, 812, 745 cm
−1

. 
1
H NMR (MeOH-d4) δ 4.12 

(dd, 2H, J = 6.2 Hz, J = 1.3 Hz, -CH=CH-CH2-), 5.96 (ddd, 1H, J = 15.8 Hz, J = 6.2 Hz,  

J = 5.8 Hz, -CH=CH-CH2-), 6.36 (td, 1H, J = 15.8 Hz, J = 1.3 Hz, -CH=CH-CH2-), 6.50 (s, 1H, 

imidazole-H), 7.07 (ddd, 1H, J = 8.0 Hz, J = 7.0 Hz, J = 1.0, Ar-H
6
), 7.11 (d, 1H, J = 0.9 Hz, Ar-H

3
), 

7.22 (ddd, 1H, J = 8.3 Hz, J = 7.0 Hz, J = 1.1, Ar-H
5
), 7.45 (ddd, 1H, J = 8.3 Hz, J = 1.8 Hz,  

J = 0.9, Ar-H
4
), 7.61 (td, 1H, J = 8.1 Hz, J = 1.0 Hz, Ar-H

7
); 

13
C NMR (MeOH-d4) δ 41.01, 102.99, 

111.64, 116.17, 119.74, 120.24, 121.27, 121.34, 123.61, 127.62, 129.83, 130.82, 136.90, 150.54, 

162.56; HRMS for C15H15N5O: calculated, 281.1277; found, 281.1344. HPLC: Phenomenex Luna  

5 μm C18 column (4.6 mm × 150 mm); mobile phase: 10%–70% of MeOH in NH3(aq) (0.1%) in 20 

min; flow rate: 1.0 mL/min; injection volume: 10 μL; retention time: 17.29 min (99.2% at 254 nm, 

99.4% at 280 nm). 

(E)-N-(3-(2-amino-1H-imidazol-4-yl)allyl)-5-fluoro-1H-indole-2-carboxamide (2d) (see 

Supplementary Information, Figure S4). Yield, 27%; yellow solid; mp 153–156 °C; IR (KBr) ν = 3227 

(N-H), 2928 (C-H), 1618 (C=O), 1544, 1485, 1420, 1326, 1258, 1226, 1158, 1109, 954, 856, 798, 757, 

730 cm
−1

. 
1
H NMR (MeOH-d4) δ 4.11 (dd, 2H, J = 6.2 Hz, J = 1.3 Hz, -CH=CH-CH2-), 5.95 (td, 1H,  

J = 15.8 Hz, J = 6.2 Hz, -CH=CH-CH2-), 6.36 (td, 1H, J = 15.8 Hz, J = 1.3 Hz, -CH=CH-CH2-), 6.50 

(s, 1H, imidazole-H), 7.02 (ddd, 1H, J = 8.0 Hz, J = 6.9 Hz, J = 0.9, Ar-H
6
), 7.08 (d, 1H, J = 0.9 Hz, 

Ar-H
3
), 7.28 (ddd, 1H, J = 9.6 Hz, J = 2.1 Hz, J = 0.4, Ar-H

4
), 7.43 (tdd, 1H, J = 9.0 Hz, J = 4.5 Hz,  

J = 0.7 Hz, Ar-H
7
); 

13
C NMR (MeOH-d4) δ 40.96, 102.82 (d, 

4
JC-F = 5.2 Hz, C-4), 105.28 (d,  

2
JC-F = 23.2 Hz, C-8), 112.26 (d, 

2
JC-F = 27.0 Hz, C-2), 112.76 (d, 

3
JC-F = 9.6 Hz, C-7), 115.93, 120.71, 

120.96, 127.73 (d, 
3
JC-F = 10.3 Hz, C-3), 129.32, 132.58, 133.51, 150.19, 157.96 (d, 

1
JC-F =234.0 Hz, 

C-1), 162.19; HRMS for C15H14FN5O: calculated, 299.1182; found, 299.1194. HPLC: Phenomenex 

Luna 5 μm C18 column (4.6 mm × 150 mm); mobile phase: 10%–70% of MeOH in NH3(aq) (0.1%) in 
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20 min; flow rate: 1.0 mL/min; injection volume: 10 μL; retention time: 18.61 min (98.8% at 254 nm, 

99.0% at 280 nm). 

3.4.2. General Procedure B: Synthesis of Compounds 5a–l and 10a–c (with 5f as an Example) 

To a suspension of 5-methoxy-indole-2-carboxylic acid (251 mg, 1.31 mmol) and TBTU (456 mg, 

1.42 mmol) in dichloromethane (5 mL), N-methylmorpholine (0.601 mL, 5.47 mmol) was added and 

the mixture stirred at rt for 0.5 h upon which a clear solution formed. Compound 3 (300 mg,  

1.09 mmol) was added and the mixture stirred at 35 °C for 24 h. The solvent was evaporated in vacuo, 

the residue dissolved in ethyl acetate (30 mL) and washed successively with water (2 × 10 mL), 

saturated aqueous NaHCO3 solution (2 × 10 mL) and brine (1 × 10 mL). The organic phase was dried 

over Na2SO4, filtered and the solvent evaporated under reduced pressure. The crude product was 

purified by flash column chromatography using ethyl acetate/petroleum ether or dichloromethane/ 

methanol as an eluent, to afford 5f (305 mg, 62% yield) as a white solid. Analytical and spectroscopic 

data for compounds 5a–e, 5l and 10a–c are reported elsewhere [29]. 

tert-Butyl 2-amino-4-(3-(5-methoxy-1H-indole-2-carboxamido)phenyl)-1H-imidazole-1-carboxylate 

(5f) (see Supplementary Information, Figure S5). Yield, 62%; white solid; mp 173–177 °C; IR (KBr)  

ν = 3415 (N-H), 3299 (N-H), 3115 (C-H), 2991 (C-H), 2831 (C-H), 1739 (C=O), 1639, 1597, 1536, 

1453, 1433, 1354, 1323, 1275, 1238, 1218, 1153, 1117, 1032, 976, 897, 847, 791, 758, 718 cm
−1

. 
1
H 

NMR (DMSO-d6) δ 1.60 (s, 9H, t-Bu), 3.79 (s, 3H, OCH3), 6.64 (s, 2H, NH2), 6.89 (dd, 1H,  
3
J = 9.2 Hz, 

4
J = 2.4 Hz, Ar-H), 7.14 (d, 1H, 

4
J = 2.4 Hz, Ar-H), 7.29–7.38 (m, 4H, 4 × Ar-H), 7.48 

(dd, 1H, 
3
J = 7.6 Hz, 

4
J = 0.8 Hz, Ar-H), 7.72–7.75 (m, 1H, Ar-H), 8.13 (s, 1H, Ar-H), 10.19 (s, 1H, 

NH), 11.57 (s, 1H, NH); 
13

C NMR (DMSO-d6) δ 27.51 (CCH3), 55.25 (OCH3), 84.70 (CCH3), 102.04, 

103.52, 106.07, 113.19, 115.04, 116.55, 118.81, 119.92, 127.35, 128.69, 131.74, 132.08, 133.80, 

136.95, 139.12, 148.88, 150.43, 153.82, 159.61; MS (ESI) m/z (%) = 448.2 (MH
+
, 15), 392.1  

([MH-t-Bu]H
+
, 90), 348.1 ([MH-Boc]H

+
, 100). HRMS for C24H26N5O4: calculated, 448.1985; found, 

448.1983. HPLC: Phenomenex Luna 5 μm C18 column (4.6 mm × 150 mm); mobile phase: 10%–90% 

of MeOH in TFA (0.1%) in 20 min; flow rate: 1.0 mL/min; injection volume: 10 μL; retention time: 

16.515 min (98.2% at 254 nm, 98.9% at 280 nm). 

tert-Butyl 2-amino-4-(3-(5-(trifluoromethoxy)-1H-indole-2-carboxamido)phenyl)-1H-imidazole-1-

carboxylate (5g) (see Supplementary Information, Figure S6). Yield, 76%; white solid; mp 185–187 °C; 

IR (KBr) ν = 3434 (N-H), 3368 (N-H), 3100 (C-H), 3006 (C-H), 1721 (C=O), 1649, 1600, 1548, 1435, 

1364, 1257, 1233, 1217, 1206, 1152, 1119, 1064, 977, 895, 877, 854, 794, 775, 760, 715 cm
−1

. 
1
H 

NMR (DMSO-d6) δ 1.60 (s, 9H, t-Bu), 6.64 (s, 2H, NH2), 7.22 (dd, 1H, 
3
J = 9.2 Hz, 

4
J = 1.6 Hz,  

Ar-H), 7.30 (s, 1H, Ar-H), 7.35 (t, 1H, 
3
J = 8.0 Hz, Ar-H), 7.49–7.57 (m, 3H, 3 × Ar-H), 7.74–7.76 (m, 

2H, 2 × Ar-H), 8.14 (s, 1H, Ar-H), 10.36 (s, 1H, NH), 12.01 (s, 1H, NH); 
13

C NMR (DMSO-d6) δ 

27.51 (CCH3), 84.70 (CCH3), 104.09, 106.13, 113.61, 113.96, 116.63, 117.63, 118.88, 120.15, 120.41 

(q, 1C, 
1
JC-F = 253 Hz, CF3), 127.02, 128.73, 133.56, 133.85, 135.15, 136.89, 138.90, 142.20, 148.87, 

150.43, 159.22; 
19

F NMR (DMSO-d6) δ −59.92 (s, 3F, CF3); MS (ESI) m/z (%) = 502.2 (MH
+
, 10), 

446.1 ([MH-t-Bu]H
+
, 90), 402.1 ([MH-Boc]H

+
, 100). HRMS for C24H23N5O4F3: calculated, 502.1702; 

found, 502.1712. HPLC: Phenomenex Luna 5 μm C18 column (4.6 mm × 150 mm); mobile phase: 
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60%–90% of MeOH in TFA (0.1%) in 20 min; flow rate: 1.0 mL/min; injection volume: 10 μL; 

retention time: 6.886 min (99.5% at 254 nm, 99.2% at 280 nm). 

tert-Butyl 2-amino-4-(3-(5-(benzyloxy)-1H-indole-2-carboxamido)phenyl)-1H-imidazole-1-carboxylate 

(5h) (see Supplementary Information, Figure S7). Yield, 42%; an off-white solid; mp 140–143 °C; IR 

(KBr) ν = 3439 (N-H), 3385 (N-H), 3116 (C-H), 3064 (C-H), 2984 (C-H), 1724 (C=O), 1642, 1624, 

1596, 1539, 1433, 1361, 1274, 1246, 1232, 1210, 1156, 1116, 1067, 1015, 977, 841, 800, 758, 745, 

732, 698 cm
−1

. 
1
H NMR (DMSO-d6) δ 1.60 (s, 9H, t-Bu), 5.13 (s, 2H, OCH2), 6.64 (s, 2H, NH2), 6.97 

(dd, 1H, 
3
J = 8.8 Hz, 

4
J = 2.4 Hz, Ar-H), 7.25–7.51 (m, 11H, 11 × Ar-H), 7.72–7.75 (m, 1H, Ar-H), 

8.14 (s, 1H, Ar-H), 10.18 (s, 1H, NH), 11.59 (s, 1H, NH); 
13

C NMR (DMSO-d6) δ 27.51 (CCH3), 

69.61 (OCH2), 84.70 (CCH3), 103.54, 103.67, 106.07, 113.21, 115.53, 116.51, 118.77, 119.92, 127.30, 

127.68, 128.36, 128.69, 131.84, 132.22, 133.80, 136.95, 137.54, 139.12, 148.88, 150.43, 152.81, 

159.59 (signals for two C atoms overlap); MS (ESI) m/z (%) = 524.2 (MH
+
, 40), 468.2 ([MH-t-Bu]H

+
, 

80), 424.2 ([MH-Boc]H
+
, 100). HRMS for C30H30N5O4: calculated, 524.2298; found, 524.2302. 

HPLC: Phenomenex Luna 5 μm C18 column (4.6 mm × 150 mm); mobile phase: 60%–90% of MeOH 

in TFA (0.1%) in 20 min; flow rate: 1.0 mL/min; injection volume: 10 μL; retention time: 7.723 min 

(96.8% at 254 nm, 98.4% at 280 nm). 

tert-Butyl 2-amino-4-(3-(5-chloro-1H-indole-2-carboxamido)phenyl)-1H-imidazole-1-carboxylate 

(5i) (see Supplementary Information, Figure S8). Yield, 65%; white solid; mp 188–190 °C; IR (KBr)  

ν = 3,414 (N-H), 3,371 (N-H), 3,146 (C-H), 2,981 (C-H), 1,725 (C=O), 1,648, 1,600, 1,544, 1,434, 

1,372, 1,360, 1,317, 1,283, 1,243, 1,223, 1,204, 1,157, 1,117, 1,059, 977, 915, 874, 855, 793, 759, 712 

cm
−1

. 
1
H NMR (DMSO-d6) δ 1.60 (s, 9H, t-Bu), 6.64 (s, 2H, NH2), 7.24 (dd, 1H, 

3
J = 8.8 Hz,  

4
J = 2.0 Hz, Ar-H), 7.30 (s, 1H, Ar-H), 7.35 (t, 1H, 

3
J = 8.0 Hz, Ar-H), 7.45–7.50 (m, 3H, 3 × Ar-H), 

7.72–7.75 (m, 1H, Ar-H), 7.79 (d, 1H, 
4
J = 2.0 Hz, Ar-H), 8.14 (t, 1H, 

4
J = 1.6 Hz, Ar-H), 10.32 (s, 

1H, NH), 11.94 (s, 1H, NH); 
13

C NMR (DMSO-d6) δ 27.51 (CCH3), 84.70 (CCH3), 103.34, 106.11, 

113.96, 116.58, 118.83, 120.11, 120.80, 123.85, 124.36, 128.07, 128.73, 132.97, 133.84, 135.14, 

136.90, 138.95, 148.87, 150.44, 159.28; MS (ESI) m/z (%) = 452.1 (MH
+
, 15), 396.1 ([MH-t-Bu]H

+
, 

100), 352.1 ([MH-Boc]H
+
, 40). HRMS for C23H23N5O3Cl: calculated, 452.1489; found, 452.1487. 

HPLC: Phenomenex Luna 5 μm C18 column (4.6 mm × 150 mm); mobile phase: 60%–90% of MeOH 

in TFA (0.1%) in 20 min; flow rate: 1.0 mL/min; injection volume: 10 μL; retention time: 5.299 min 

(98.3% at 254 nm, 98.6% at 280 nm). 

tert-Butyl 2-amino-4-(3-(5-fluoro-1H-indole-2-carboxamido)phenyl)-1H-imidazole-1-carboxylate 

(5j) (see Supplementary Information, Figure S9). Yield, 76%; white solid; mp 189–192 °C; IR (KBr)  

ν = 3450 (N-H), 3409 (N-H), 3280 (N-H), 3113 (C-H), 2976 (C-H), 1726 (C=O), 1651, 1610, 1597, 

1545, 1489, 1446, 1426, 1356, 1330, 1314, 1259, 1210, 1159, 1146, 1117, 1067, 955, 850, 791, 718 

cm
−1

. 
1
H NMR (DMSO-d6) δ 1.60 (s, 9H, t-Bu), 6.64 (s, 2H, NH2), 7.10 (dt, 1H, 

3
J = 9.2 Hz,  

4
J = 2.4 Hz, Ar-H), 7.30 (s, 1H, Ar-H), 7.34 (t, 1H, 

3
J = 8.0 Hz, Ar-H), 7.45–7.50 (m, 4H, 4 × Ar-H), 

7.72–7.75 (m, 1H, Ar-H), 8.14 (s, 1H, Ar-H), 10.29 (s, 1H, NH), 11.84 (s, 1H, NH); 
13

C NMR 

(DMSO-d6) δ 27.51 (CCH3), 84.70 (CCH3), 103.79 (d, 1C, 
4
JC-F = 5 Hz), 105.88 (d, 1C, 

2
JC-F = 23 Hz), 

106.11, 112.51 (d, 1C, 
2
JC-F = 27 Hz), 113.57 (d, 1C, 

3
JC-F = 9 Hz), 116.58, 118.83, 120.08, 127.09 (d, 

1C, 
3
JC-F = 10 Hz), 128.72, 133.17, 133.50, 133.84, 136.91, 138.98, 148.87, 150.43, 157.19 (d, 1C,  

1
JC-F = 231 Hz), 159.35; 

19
F NMR (DMSO-d6) δ −123.68 (s, 1F); MS (ESI) m/z (%) = 436.2 (MH

+
, 
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100). HRMS for C23H23N5O3F: calculated, 436.1785; found, 436.1780. HPLC: Phenomenex Luna 5 

μm C18 column (4.6 mm × 150 mm); mobile phase: 10%–90% of MeOH in TFA (0.1%) in 20 min; 

flow rate: 1.0 mL/min; injection volume: 10 μL; retention time: 17.233 min (99.2% at 254 nm, 97.3% 

at 280 nm). 

tert-Butyl 4-(3-(4H-thieno[3,2-b]pyrrole-5-carboxamido)phenyl)-2-amino-1H-imidazole-1-carboxylate 

(5k) (see Supplementary Information, Figure S10). Yield, 34%; off-white solid; mp 178–180 °C; IR 

(KBr) ν = 3,402 (N-H), 3,365 (N-H), 3,269 (N-H), 3154 (C-H), 2979 (C-H), 2933 (C-H), 1740 (C=O), 

1635, 1596, 1541, 1519, 1460, 1428, 1352, 1311, 1256, 1239, 1207, 1153, 1118, 977, 895, 843, 827, 

756, 717 cm
−1

. 
1
H NMR (acetone-d6) δ 1.67 (s, 9H, t-Bu), 6.44 (s, 2H, NH2), 7.09 (d, 1H, J = 5.2 Hz,  

Ar-H), 7.29–7.33 (m, 2H, 2 × Ar-H), 7.40–7.43 (m, 2H, 2 × Ar-H), 7.48–7.51 (m, 1H, Ar-H),  

7.76–7.79 (m, 1H, Ar-H), 8.16 (s, 1H, Ar-H), 9.44 (s, 1H, NH), 11.07 (s, 1H, NH); 
13

C NMR  

(acetone-d6) δ 28.10 (CCH3), 85.61 (CCH3), 103.42, 107.05, 112.65, 117.25, 119.36, 120.84, 124.93, 

128.62, 129.52, 132.06, 135.32, 138.56, 140.40, 142.30, 150.40, 151.58, 160.34; MS (ESI)  

m/z (%) = 424.2 (MH
+
, 10), 368.1 ([MH-t-Bu]H

+
, 100), 324.1 ([MH-Boc]H

+
, 50). HRMS for 

C21H22N5O3S: calculated, 424.1443; found, 424.1450. HPLC: Phenomenex Luna 5 μm C18 column 

(4.6 mm × 150 mm); mobile phase: 10%–90% of MeOH in TFA (0.1%) in 20 min; flow rate:  

1.0 mL/min; injection volume: 10 μL; retention time: 16.043 min (95.3% at 254 nm, 95.8% at  

280 nm). 

3.4.3. tert-Butyl 2-Amino-4-(3-(5-hydroxy-1H-indole-2-carboxamido)phenyl)-1 

H-imidazole-1-carboxylate (7) 

Compound 5h (496 mg, 0.947 mmol) was dissolved in a mixture of THF (10 mL) and MeOH  

(15 mL), Pd/C (100 mg) was added and the reaction mixture stirred under hydrogen atmosphere for 10 h. 

The catalyst was filtered off, the solvent removed under reduced pressure and the crude product 

purified by flash column chromatography using ethyl acetate/petroleum ether as an eluent, to afford 7 

(see Supplementary Information, Figure S17) (275 mg, 67% yield) as an off-white solid; mp 192–196 °C; 

IR (KBr) ν = 3399 (N-H, O-H), 3272 (N-H, O-H), 3157 (C-H), 2979 (C-H), 1736 (C=O), 1625, 1597, 

1538, 1432, 1391, 1353, 1319, 1276, 1212, 1154, 1119, 1062, 851, 786, 757, 717 cm
−1

. 
1
H NMR 

(DMSO-d6) δ 1.60 (s, 9H, t-Bu), 6.64 (br s, 2H, NH2), 6.78 (dd, 1H, 
3
J = 8.8 Hz, 

4
J = 2.4 Hz, Ar-H), 

6.93 (d, 1H, 
4
J = 2.4 Hz, Ar-H), 7.26–7.35 (m, 4H, 4 × Ar-H), 7.47 (dd, 1H, 

3
J = 8.0 Hz, 

4
J = 1.6 Hz, 

Ar-H), 7.71–7.73 (m, 1H, Ar-H), 8.13–8.14 (m, 1H, Ar-H), 8.86 (s, 1H, OH), 10.12 (s, 1H, NH), 11.43 

(s, 1H, NH); 
13

C NMR (DMSO-d6) δ 27.51 (CCH3), 84.69 (CCH3), 102.93, 104.35, 106.04, 112.85, 

115.04, 116.45, 118.71, 119.85, 127.73, 128.68, 131.59, 131.60, 133.79, 136.97, 139.18, 148.88, 

150.42, 151.19, 159.69; MS (ESI) m/z (%) = 434.2 (MH
+
, 10), 378.1 ([MH-t-Bu]H

+
, 100), 334.1 

([MH-Boc]H
+
, 50). HRMS for C23H24N5O4: calculated, 434.1828; found, 434.1823. HPLC: 

henomenex Luna 5 μm C18 column (4.6 mm × 150 mm); mobile phase: 10%–90% of MeOH in TFA 

(0.1%) in 20 min; flow rate: 1.0 mL/min; injection volume: 10 μL; retention time: 14.015 min (96.3% at 

254 nm, 96.2% at 280 nm). 
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3.4.4. General Procedure C: Synthesis of Compounds 6a–l, 8 and 11a–c (with 6f as an Example) 

A solution of compound 5f (160 mg, 0.358 mmol) in a mixture of THF and EtOH = 1:2 (15 mL) 

was saturated with gaseous HCl and stirred at rt for 5 h. The solvent was removed under reduced 

pressure, the solid filtered off and washed with diethyl ether and dichloromethane, to afford 6f  

(132 mg, 96% yield) as an off-white solid. Analytical and spectroscopic data for compounds 6a–e, 6l 

and 11a–c are reported elsewhere [29]. 

2-Amino-4-(3-(5-methoxy-1H-indole-2-carboxamido)phenyl)-1H-imidazol-3-ium chloride (6f) (see 

Supplementary Information, Figure S11). Yield, 96%; off-white solid; mp 237–241 °C; IR (KBr)  

ν = 3301 (N-H), 3138 (C-H), 2955 (C-H), 2761 (C-H), 1673 (C=O), 1653, 1625, 1585, 1541, 1452, 

1418, 1336, 1281, 1238, 1208, 1177, 1153, 1132, 1116, 1022, 883, 839, 788, 755 cm
−1

. 
1
H NMR 

(DMSO-d6) δ 3.79 (s, 3H, OCH3), 6.89 (dd, 1H, 
3
J = 9.2 Hz, 

4
J = 2.4 Hz, Ar-H), 7.15 (d, 1H, 

4
J = 2.4 Hz, 

Ar-H), 7.33 (s, 1H, Ar-H), 7.37–7.49 (m, 6H, 4 × Ar-H, NH2), 7.69–7.72 (m, 1H, Ar-H), 8.08 (s, 1H, 

Ar-H), 10.42 (s, 1H, NH), 11.70 (s, 1H, NH), 12.16 (s, 1H, NH), 12.85 (s, 1H, NH); 
13

C NMR 

(DMSO-d6) δ 55.25 (OCH3), 102.02, 104.14, 109.43, 113.23, 115.19, 116.46, 119.74, 120.33,  

126.39, 127.26, 128.12, 129.30, 131.54, 132.16, 139.45, 147.82, 153.84, 159.72; MS (ESI)  

m/z (%) = 348.2 ([M − Cl]
+
, 100). HRMS for C19H18N5O2: calculated, 348.1461; found, 348.1459. 

HPLC: Phenomenex Luna 5 μm C18 column (4.6 mm × 150 mm); mobile phase: 60%–90% of MeOH 

in TFA (0.1%) in 20 min; flow rate: 1.0 mL/min; injection volume: 10 μL; retention time: 3.029 min 

(98.2% at 254 nm, 98.7% at 280 nm). 

2-Amino-4-(3-(5-(trifluoromethoxy)-1H-indole-2-carboxamido)phenyl)-1H-imidazol-3-ium chloride 

(6g) (see Supplementary Information, Figure S12). Yield, 66%; off-white solid; mp 255–260 °C; IR 

(KBr) ν = 3291 (N-H), 3148 (C-H), 3061 (C-H), 1677 (C=O), 1660, 1605, 1545, 1494, 1449, 1406, 

1333, 1319, 1251, 1242, 1214, 1199, 1178, 1158, 1128, 1108, 1096, 970, 897, 868, 800, 788, 733 

cm
−1

. 
1
H NMR (DMSO-d6) δ 7.22–7.25 (m, 1H, Ar-H), 7.34 (s, 1H, Ar-H), 7.41–7.58 (m, 6H, 4 × Ar-H, 

NH2), 7.68–7.71 (m, 1H, Ar-H), 7.74 (s, 1H, Ar-H), 8.07 (t, 1H, 
4
J = 1.6 Hz, Ar-H), 10.55 (s, 1H, NH), 

12.11 (s, 1H, NH), 12.13 (s, 1H, NH), 12.81 (s, 1H, NH); 
13

C NMR (DMSO-d6) δ 104.71, 109.50, 

113.67, 113.95, 116.58, 117.75, 120.00, 120.40 (q, 1C, 
1
JC-F = 253 Hz, CF3), 120.44, 126.34, 126.92, 

128.18, 129.35, 133.36, 135.21, 139.21, 142.21, 147.83, 159.34; 
19

F NMR (DMSO-d6) δ −56.93 (s, 3F, 

CF3); MS (ESI) m/z (%) = 402.1 ([M − Cl]
+
, 100). HRMS for C19H15N5O2F3: calculated, 402.1178; 

found, 402.1171. HPLC: Phenomenex Luna 5 μm C18 column (4.6 mm × 150 mm); mobile phase: 

10%–90% of MeOH in TFA (0.1%) in 20 min; flow rate: 1.0 mL/min; injection volume: 10 μL; 

retention time: 19.439 min (96.3% at 254 nm, 97.0% at 280 nm). 

2-Amino-4-(3-(5-(benzyloxy)-1H-indole-2-carboxamido)phenyl)-1H-imidazol-3-ium chloride (6h) 

(see Supplementary Information, Figure S13). Yield, 51%; off-white solid; mp 175–178 °C; IR (KBr)  

ν = 3253 (N-H), 3145 (C-H), 3032 (C-H), 2773 (C-H), 1678 (C=O), 1624, 1608, 1537, 1487, 1447, 

1426, 1384, 1331, 1287, 1229, 1203, 1160, 1118, 1023, 940, 786, 757, 732 cm
−1

. 
1
H NMR (DMSO-d6) 

δ 5.13 (s, 2H, OCH2), 6.98 (dd, 1H, 
3
J = 9.2 Hz, 

4
J = 2.4 Hz, Ar-H), 7.26 (d, 1H, 

4
J = 2.4 Hz, Ar-H), 

7.32–7.51 (m, 12H, 10 × Ar-H, NH2), 7.67–7.69 (m, 1H, Ar-H), 8.08 (t, 1H, 
4
J = 2.0 Hz, Ar-H), 10.37 

(s, 1H, NH), 11.69 (s, 1H, NH), 12.12 (s, 1H, NH), 12.80 (s, 1H, NH); 
13

C NMR (DMSO-d6) δ 69.61 

(OCH2), 103.67, 103.92, 109.59, 113.27, 115.69, 116.50, 119.85, 120.33, 126.49, 127.23, 127.68, 
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128.15, 128.37, 129.34, 131.59, 132.31, 137.52, 139.38, 147.74, 152.85, 159.72 (signals for two C 

atoms overlap); MS (ESI) m/z (%) = 424.2 ([M − Cl]
+
, 100). HRMS for C25H22N5O2: calculated, 

424.1774; found, 424.1771. HPLC: Phenomenex Luna 5 μm C18 column (4.6 mm × 150 mm); mobile 

phase: 60%–90% of MeOH in TFA (0.1%) in 20 min; flow rate: 1.0 mL/min; injection volume: 10 μL; 

retention time: 7.803 min (95.3% at 254 nm, 95.1% at 280 nm). 

2-Amino-4-(3-(5-chloro-1H-indole-2-carboxamido)phenyl)-1H-imidazol-3-ium chloride (6i) (see 

Supplementary Information, Figure S14). Yield, 71%; white solid; mp 201–204 °C; IR (KBr)  

ν = 3410 (N-H), 3260 (N-H), 3145 (C-H), 3032 (C-H), 2761 (C-H), 1693 (C=O), 1667, 1610, 1542, 

1485, 1442, 1412, 1326, 1301, 1275, 1245, 1224, 1190, 1124, 1056, 914, 854, 798, 782, 754, 725 

cm
−1

. 
1
H NMR (DMSO-d6) δ 7.25 (dd, 1H, 

3
J = 8.8 Hz, 

4
J = 2.0 Hz, Ar-H), 7.33 (s, 1H, Ar-H),  

7.40–7.51 (m, 6H, 4 × Ar-H, NH2), 7.69–7.71 (m, 1H, Ar-H), 7.79 (d, 1H, 
4
J = 2.0 Hz, Ar-H), 8.07 (s, 

1H, Ar-H), 10.53 (s, 1H, NH), 12.05 (s, 1H, NH), 12.14 (s, 1H, NH), 12.84 (s, 1H, NH); 
13

C NMR 

(DMSO-d6) δ 103.87, 109.52, 114.01, 116.53, 119.98, 120.40, 120.82, 123.98, 124.42, 126.37, 127.98, 

128.18, 129.36, 132.75, 135.21, 139.23, 147.80, 159.41; MS (ESI) m/z (%) = 352.1 ([M − Cl]
+
, 100). 

HRMS for C18H15N5OCl: calculated, 352.0965; found, 352.0959. HPLC: Phenomenex Luna 5 μm C18 

column (4.6 mm × 150 mm); mobile phase: 60%–90% of MeOH in TFA (0.1%) in 20 min; flow rate: 

1.0 mL/min; injection volume: 10 μL; retention time: 5.338 min (98.4% at 254 nm, 98.8% at 280 nm). 

2-Amino-4-(3-(5-fluoro-1H-indole-2-carboxamido)phenyl)-1H-imidazol-3-ium chloride (6j) (see 

Supplementary Information, Figure S15). Yield, 77%; off-white solid; mp 202–205 °C; IR (KBr)  

ν = 3443 (N-H), 3275 (N-H), 3145 (C-H), 2764 (C-H), 1662 (C=O), 1628, 1607, 1544, 1486, 1449, 

1411, 1327, 1287, 1244, 1231, 1204, 1145, 1103, 954, 840, 780, 752, 727 cm
−1

. 
1
H NMR (DMSO-d6) 

δ 7.11 (dt, 1H, 
3
J = 9.2 Hz, 

4
J = 2.0 Hz, Ar-H), 7.33 (s, 1H, Ar-H), 7.40–7.50 (m, 7H, 5 × Ar-H, NH2), 

7.69–7.71 (m, 1H, Ar-H), 8.08 (t, 1H, 
4
J = 1.6 Hz, Ar-H), 10.49 (s, 1H, NH), 11.95 (s, 1H, NH), 12.14 

(s, 1H, NH), 12.83 (s, 1H, NH); 
13

C NMR (DMSO-d6) δ 104.34 (d, 1C, 
4
JC-F = 5 Hz), 105.89 (d, 1C, 

2
JC-F = 23 Hz), 109.51, 112.65 (d, 1C, 

2
JC-F = 26 Hz), 113.63 (d, 1C, 

3
JC-F = 9 Hz), 116.52, 119.93, 

120.39, 126.37, 127.00 (d, 1C, 
3
JC-F = 9 Hz), 128.17, 129.35, 132.96, 133.57, 139.28, 147.81, 157.20 

(d, 1C, 
1
JC-F = 231 Hz), 159.47; 

19
F NMR (DMSO-d6) δ −123.59 (s, 1F); MS (ESI) m/z (%) = 336.1 

([M − Cl]
+
, 100). HRMS for C18H15N5OF: calculated, 336.1261; found, 336.1264. HPLC: Phenomenex 

Luna 5 μm C18 column (4.6 mm × 150 mm); mobile phase: 60%–90% of MeOH in TFA (0.1%) in 

20 min; flow rate: 1.0 mL/min; injection volume: 10 μL; retention time: 3.585 min (99.4% at 254 nm, 

99.1% at 280 nm). 

4-(3-(4H-Thieno[3,2-b]pyrrole-5-carboxamido)phenyl)-2-amino-1H-imidazol-3-ium chloride (6k) 

(see Supplementary Information, Figure S16). Yield, 78%; off-white solid; mp 198–202 °C; IR (KBr)  

ν = 3241 (N-H), 3135 (C-H), 3047 (C-H), 2763 (C-H), 1677 (C=O), 1625, 1541, 1488, 1460, 1385, 

1348, 1308, 1231, 1191, 1115, 1084, 963, 877, 827, 748, 711 cm
−1

. 
1
H NMR (DMSO-d6) δ 7.03 (dd, 

1H, 
3
J = 5.2 Hz, 

4
J = 0.8 Hz, Ar-H), 7.31 (s, 1H, Ar-H), 7.36–7.49 (m, 6H, 4 × Ar-H, NH2), 7.66–7.69 

(m, 1H, Ar-H), 8.06 (t, 1H, 
4
J = 1.6 Hz, Ar-H), 10.24 (s, 1H, NH), 11.99 (s, 1H, NH), 12.14 (s, 1H, 

NH), 12.82 (s, 1H, NH); 
13

C NMR (DMSO-d6) δ 103.91, 109.43, 111.90, 116.27, 119.48, 120.15, 

122.94, 126.45, 128.08, 128.28, 129.26, 130.49, 139.64, 141.32, 147.77, 159.41; MS (ESI)  

m/z (%) = 324.1 ([M − Cl]
+
, 100). HRMS for C16H14N5OS: calculated, 324.0919; found, 324.0911. 

HPLC: Phenomenex Luna 5 μm C18 column (4.6 mm × 150 mm); mobile phase: 60%–90% of MeOH 
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in TFA (0.1%) in 20 min; flow rate: 1.0 mL/min; injection volume: 10 μL; retention time: 2.790 min 

(96.5% at 254 nm, 97.0% at 280 nm). 

2-Amino-4-(3-(5-hydroxy-1H-indole-2-carboxamido)phenyl)-1H-imidazol-3-ium chloride (8) (see 

Supplementary Information, Figure S18). Yield, 85%; red solid; mp 248–252 °C; IR (KBr)  

ν = 3262 (N-H, O-H), 3151 (C-H), 3027 (C-H), 2758 (C-H), 1681 (C=O), 1651, 1632, 1586, 1540, 

1446, 1419, 1340, 1316, 1281, 1233, 1204, 1152, 1123, 952, 850, 788, 753 cm
−1

. 
1
H NMR (DMSO-d6) 

δ 6.79 (dd, 1H, 
3
J = 8.8 Hz, 

4
J = 2.0 Hz, Ar-H), 6.94 (d, 1H, 

4
J = 2.0 Hz, Ar-H), 7.26–7.48 (m, 7H,  

5 × Ar-H, NH2), 7.67–7.69 (m, 1H, Ar-H), 8.08 (s, 1H, Ar-H), 8.91 (s, 1H, OH), 10.32 (s, 1H, NH), 

11.52 (s, 1H, NH), 12.12 (s, 1H, NH), 12.80 (s, 1H, NH); 
13

C NMR (DMSO-d6) δ 103.40, 104.34, 

109.51, 112.89, 115.22, 116.39, 119.73, 120.24, 126.46, 127.65, 128.12, 129.31, 131.35, 131.66, 

139.48, 147.77, 151.26, 159.82; MS (ESI) m/z (%) = 334.1 ([M − Cl]
+
, 100). HRMS for C18H16N5O2: 

calculated, 334.1304; found, 334.1296. HPLC: Phenomenex Luna 5 μm C18 column (4.6 mm × 150 mm); 

mobile phase: 60%–90% of MeOH in TFA (0.1%) in 20 min; flow rate: 1.0 mL/min; injection volume: 

10 μL; retention time: 1.923 min (98.0% at 254 nm, 98.3% at 280 nm). 

3.4.5. 1-Benzyl-4-(3-nitrophenyl)-1H-imidazol-2-amine (13)  

To the suspension of compound 12 (0.864 g, 4.00 mmol) in CH3CN (30 mL) were added K2CO3 

(1.38 g, 6.00 mmol) and benzyl bromide (0.713 mL, 6.00 mmol). The mixture was stirred at 50 °C for 

14 h. The solvent was removed under reduced pressure, the brown residue was suspended in ethyl 

acetate (80 mL) and washed with water (2 × 40 mL) and brine (1 × 40 mL). The organic phase was 

dried over Na2SO4, filtered and the solvent removed in vacuo. The crude product was purified by 

column chromatography with dichloromethane/methanol (20:1) as an eluent to afford 13 (see 

Supplementary Information, Figure S19) (539 mg, 44% yield) as a yellow solid; mp 189–193 °C; IR 

(KBr) ν = 3404 (N-H), 3126 (C-H), 1649, 1585, 1523, 1546, 1440, 1342, 1211, 1068, 886, 802, 759, 

717 cm
−1

. 
1
H NMR (DMSO-d6) δ 5.02 (s, 2H, CH2), 5.84 (s, 2H, NH2), 7.26–7.32 (m, 3H, 3 × Ar-H), 

7.35–7.39 (m, 2H, 2 × Ar-H), 7.40 (s, 1H, Ar-H), 7.55 (t, 1H, 
3
J = 8.0 Hz, Ar-H), 7.92–7.95 (m, 1H, 

Ar-H), 7.99–8.03 (m, 1H, Ar-H), 8.41–8.43 (m, 1H, Ar-H); 
13

C NMR (DMSO-d6) δ 47.30, 113.02, 

117.51, 119.60, 127.37, 127.40, 128.54, 129.57, 129.74, 133.49, 137.04, 137.53, 148.23, 150.14; MS 

(ESI) m/z (%) = 295.1 (MH
+
, 100). HRMS for C16H15N4O2: calculated, 295.1195; found, 295.1199. 

HPLC: Phenomenex Luna 5 μm C18 column (4.6 mm × 150 mm); mobile phase: 10%–90% of MeOH 

in TFA (0.1%) in 20 min; flow rate: 1.0 mL/min; injection volume: 10 μL; retention time: 16.113 min 

(99.8% at 254 nm, 98.5% at 280 nm). 

3.4.6. 4-(3-Aminophenyl)-1-benzyl-1H-imidazol-2-amine (14) 

Compound 13 (432 mg, 1.41 mmol) was dissolved in THF (50 mL), Pd/C (44 mg) was added and 

the reaction mixture was stirred under hydrogen atmosphere for 5 h. The catalyst was filtered off and 

the solvent removed under reduced pressure to yield 14 (see Supplementary Information, Figure S20)  

(379 mg, 97% yield) as an off-white solid; mp 192–195 °C; IR (KBr) ν = 3370 (N-H), 3067 (C-H), 

1647, 1616, 1,569, 1545, 1481, 1438, 1363, 1338, 1271, 1202, 1129, 1067, 993, 976, 884, 819, 789, 

732 cm
−1

. 
1
H NMR (DMSO-d6) δ 4.90 (s, 2H, NH2), 4.96 (s, 2H, CH2), 5.57 (s, 2H, NH2),  
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6.30–6.34 (m, 1H, Ar-H), 6.74–6.78 (m, 1H, Ar-H), 6.86 (t, 1H, 
4
J = 2.0 Hz, Ar-H), 6.89 (s, 1H,  

Ar-H), 6.90 (t, 1H, 
3
J = 7.8 Hz, Ar-H),7.23–7.30 (m, 3H, 3 × Ar-H), 7.33–7.38 (m, 2H, 2 × Ar-H); 

13
C 

NMR (DMSO-d6) δ 47.12, 109.56, 110.11, 111.41, 111.86, 127.28, 127.37, 128.47, 128.56, 135.66, 

136.26, 137.89, 148.37, 149.25; MS (ESI) m/z (%) = 265.1 (MH
+
, 100). HRMS for C16H17N4: 

calculated, 265.1453; found, 265.1459. HPLC: Phenomenex Luna 5 μm C18 column (4.6 mm × 150 mm); 

mobile phase: 10%–90% of MeOH in TFA (0.1%) in 20 min; flow rate: 1.0 mL/min; injection volume: 

10 μL; retention time: 11.334 min (95.3% at 254 nm, 96.6% at 280 nm). 

3.4.7. N-(3-(2-Amino-1-benzyl-1H-imidazol-4-yl)phenyl)-1H-pyrrole-2-carboxamide (15) 

To a suspension of pyrrole-2-carboxylic acid (77 mg, 0.69 mmol) in dichloromethane (30 mL) were 

added triethylamine (0.192 mL, 1.38 mmol) and TBTU (244 mg, 0.76 mmol) and the mixture stirred at 

rt for 0.5 h upon which an opalescent solution formed. Compound 14 (190 mg, 0.69 mmol) was added 

and the mixture stirred at rt for 18 h. The reaction mixture was diluted with dichloromethane (20 mL) 

and washed with saturated aqueous NaHCO3 solution (2 × 30 mL) and brine (1 × 40 mL). The organic 

phase was dried over Na2SO4, filtered and concentrated in vacuo. The crude product was purified by 

flash column chromatography using dichloromethane/methanol as an eluent, to afford 15 (see 

Supplementary Information, Figure S21) (105 mg, 41% yield) as an off-white solid; mp 229–232 °C; 

IR (KBr) ν = 3370 (N-H), 3066 (C-H), 1646 (C=O), 1606, 1570, 1545, 1496, 1454, 1437, 1364, 1308, 

1202, 1169, 1130, 1068, 993, 896, 884, 823, 790, 725 cm
−1

. 
1
H NMR (DMSO-d6) δ 5.02 (s, 2H, CH2), 

5.69 (s, 2H, NH2), 6.15–6.18 (m, 1H, Ar-H), 6.95–6.98 (m, 1H, Ar-H), 7.03 (s, 1H, Ar-H),  

7.08–7.12 (m, 1H, Ar-H), 7.21 (t, 1H, 
3
J = 7.8 Hz, Ar-H), 7.26–7.32 (m, 4H, 4 × Ar-H), 7.35–7.40 (m, 

2H, 2 × Ar-H), 7.54–7.58 (m, 1H, Ar-H), 7.94–7.97 (m, 1H, Ar-H), 9.70 (s, 1H, NH) 11.60 (br s, 1H, 

NH); 
13

C NMR (DMSO-d6) δ 47.20, 108.84, 110.73, 111.29, 115.37, 117.14, 118.45, 122.30, 126.18, 

127.35, 127.44, 128.34, 128.52, 135.40, 135.49, 137.76, 139.34, 149.52, 158.99; MS (ESI)  

m/z (%) = 358.2 (MH
+
, 100). HRMS for C21H20N5O: calculated, 358.1668; found, 358.1661. HPLC: 

Phenomenex Luna 5 μm C18 column (4.6 mm × 150 mm); mobile phase: 10%–90% of MeOH in TFA 

(0.1%) in 20 min; flow rate: 1.0 mL/min; injection volume: 10 μL; retention time: 16.868 min (97.4% at 

254 nm, 96.9% at 280 nm). 

3.4.8. 4-(3-(((1H-Pyrrol-2-yl)methyl)amino)phenyl)-1-benzyl-1H-imidazol-2-amine (16) 

To a suspension of compound 14 (190 mg, 0.69 mmol) in dichloromethane (30 mL) were added 

pyrrole-2-carboxaldehyde (208 mg, 1.04 mmol) and glacial acetic acid (40 μL, 0.69 mmol) upon 

which the mixture became clear. NaBH(OAc)3 (208 mg, 1.04 mmol) was added and the mixture stirred 

at rt for 13 h. Red opalescent solution was diluted with dichloromethane (20 mL) and washed with 

saturated aqueous NaHCO3 solution (2 × 30 mL) and brine (1 × 30 mL). The organic phase was dried 

over Na2SO4, filtered and concentrated in vacuo. Crude product was recrystallized from ethyl acetate 

to give 16 (see Supplementary Information, Figure S22) (̧120 mg, 49% yield) as red crystals;  

mp 165–168 °C; IR (KBr) ν = 3370 (N-H), 3066 (C-H), 1646, 1602, 1570, 1495, 1454, 1364, 1271, 

1201, 1183, 1130, 1096, 993, 860, 790, 729 cm
−1

. 
1
H NMR (DMSO-d6) δ 4.14 (d, 2H, 

3
J = 5.5 Hz, 

CH2) 4.97 (s, 2H, CH2), 5.56–5.62 (m, 3H, NH, NH2), 5.91–5.96 (m, 2H, 2 × Ar-H), 6.40–6.44 (m, 

1H, Ar-H), 6.62–6.65 (m, 1H, Ar-H), 6.80–6.84 (m, 1H, Ar-H), 6.93–6.98 (m, 3H, 3 × Ar-H),  
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7.23–7.31 (m, 3H, 3 × Ar-H), 7.33–7.39 (m, 2H, 2 × Ar-H), 10.70 (br s, 1H, NH); 
13

C NMR  

(DMSO-d6) δ 40.44, 47.12, 105.71, 107.11, 107.66, 110.20, 110.33, 112.09, 116.70, 127.27, 127.32, 

128.47 (2 signals overlapped), 128.68, 135.62, 136.30, 137.90, 148.70, 149.29; MS (ESI)  

m/z (%) = 344.2 (MH
+
, 100). HRMS for C21H22N5: calculated, 344.1875; found, 344.1873. HPLC: 

Phenomenex Luna 5 μm C18 column (4.6 mm × 150 mm); mobile phase: 10%–90% of MeOH in TFA 

(0.1%) in 20 min; flow rate: 1.0 mL/min; injection volume: 10 μL; retention time: 11.474 min (97.9% 

at 254 nm, 97.4% at 280 nm). 

4. Conclusions 

In the present study, we have prepared the natural pyrrole-2-aminoimidazole alkaloids, clathrodin 

and oroidin, originally isolated from Agelas sponges and four families of their synthetic analogues. In 

total, 36 compounds were screened against a panel of laboratory strains, representing Gram-positive 

(Enterococcus faecalis and Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli) and 

fungi (Candida albicans). Starting from the molecule of oroidin, with structural optimization using 

medicinal chemistry strategies, we have succeeded to prepare analogues with improved antimicrobial 

activities against all of the microbial strains tested. Twelve active compounds were selected, and their 

minimum inhibitory concentrations (MIC50, MIC90), as well as selectivities against mammalian cells 

were further determined. The most promising results were obtained for indole-based derivatives 6h 

with MIC90 of 12.5 µM against the Gram-positive bacteria and 50 µM against E. coli and 6g with 

MIC90 of 25 µM against all the bacteria and 50 µM against C. albicans. Although the effects were 

shown to be mostly broad-spectrum, targeting both prokaryotic and eukaryotic cells, in general, the 

IC50 values for mammalian cell cytotoxicity were slightly higher. Our results provide valuable 

information for future optimization towards a more selective antimicrobial compound. 
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