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THEBIGGERPICTURE Modern technologies have enabled biologists to construct enormous datasets con-
tainingmillions of observations of thousands ofmeasurements. These datasets push the limits of traditional
analysis techniques, leaving doubts about the quality and fidelity of thesemethods. In this work, we present
a sort of meta-algorithm, called EMBEDR, which seeks to evaluate when a certain class of methods, known
as dimensionality reduction methods, are generating high-quality representations of data. We show that
EMBEDR allows for visualizations of even large datasets to be interpreted with confidence. Furthermore,
we show how asking about themethod quality itself can lead to improved analyses of data. These improved
analyses may directly impact our understanding of cellular biology, including how cells behave, grow, and
respond to stimuli.

Concept: Basic principles of a new
data science output observed and reported
SUMMARY
Single-cell ‘‘omics’’-based measurements are often high dimensional so that dimensionality reduction (DR)
algorithms are necessary for data visualization and analysis. The lack of methods for separating signal
from noise in DR outputs has limited their utility in generating data-driven discoveries in single-cell data.
In this work we present EMBEDR, which assesses the output of any DR algorithm to distinguish evidence
of structure from algorithm-induced noise in DR outputs. We apply EMBEDR to DR-generated representa-
tions of single-cell omics data of several modalities to show where they visually show real—not spurious—
structure. EMBEDR generates a ‘‘p’’ value for each sample, allowing for direct comparisons of DR algorithms
and facilitating optimization of algorithm hyperparameters. We show that the scale of a sample’s neighbor-
hood can thus be determined and used to generate a novel ‘‘cell-wise optimal’’ embedding. EMBEDR is avail-
able as a Python package for immediate use.
INTRODUCTION

Advances in high-throughput measurement techniques are

revolutionizing biology. The advent of single-cell omics ap-

proaches, in particular, promises to illuminate the processes of

cellular differentiation, multicellular patterning, signaling, and

variation at single-cell resolution.1–13 However, omics data are

high dimensional—each measured gene adds a dimension to

the sample space—leading to an explosive increase in the vol-

ume occupied by the data due to the curse of dimensionality

(see Figure S1 for an illustration).14 In addition, single-cell meth-

odologies generate significant technical noise due to the small
This is an open access article under the CC BY-N
amount of material being measured.15–19 Thus, despite the great

promise that single-cell omics approaches hold, it remains a

challenge20 to separate signal from noise in these datasets or

make data-driven inferences.14

Faced with the challenges posed by high-dimensional data-

sets, a host of methods have been developed to help make

quantitative inferences from the data. One such class of

methods, termed dimensionality reduction (DR) methods, at-

tempts to reduce the size (dimensionality) of the data by identi-

fying a reduced set or combination of features (genes) on which

further qualitative or quantitative analysis can be applied with

more inferential power. Significant effort has been put into the
Patterns 3, 100443, March 11, 2022 ª 2022 The Authors. 1
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development and application of DR algorithms, such as prin-

cipal-component analysis (PCA),21 t-SNE,22 UMAP,23 and

others.24–38 Each of these methods attempts to find a lower-

dimensional (usually 2D or 3D) representation, or embedding,

of the data that preserves important aspects of the original

data structure (for a review, see Van der Maaten et al.,39 Gracia

et al.,40 and Espadoto et al.41; in application to omics data, see

Fanaee-T and Thoresen42).

Ideally, a researcher would prefer a reduced representation of

their data for gaining biological insight as it may avoid spurious

conclusions caused by the curse of dimensionality. These repre-

sentations can then be used to ask biologically relevant ques-

tions; for example, if cells from a tissue are sequenced, to what

extent canwe say that two clusters in the embedding correspond

to distinct, differentiated, cell types? If clusters in such a view are

connected by a bridge of cells, does this imply the existence of a

path along which cells are differentiating? If cells subjected to

different treatments of a drug are processed through a DR

method, how is the strength of the treatment effect correlated

with distance in the lower-dimensional space? Experimentally,

one might be concerned with the depth of sequencing or the

number of samples; how does this information get transformed

into a dimensionally reduced representation of the data? Put

more plainly, DR methods produce an approximate picture of

the data, and we would like to knowwhat parts display biological

signal, and what parts are simply algorithmic distortions.

In traditional data analyses, statistics provides a rigorous

framework with which to answer these questions, but DR

methods confound the statistical distinction between signal and

noise. Specifically, DR methods generically produce distortions

in their representations of data, and these distortions are inhomo-

geneous across a representation;30,40,43–47 are often stochastic

and non-linear, meaning that the robustness and reproducibility

of results is hard to assess;41 and often require user specification

of hyperparameters, where this specification is often based on

heuristics rather than quantitative principles.10,48–50 Addressing

these issues provides the motivation for this work, as recovering

the ability to separate signal and noise inDRoutput is essential for

their utilization in quantitative analyses.

These difficulties with DR methods can be insidious. As an

illustration, consider a sample dataset that populates the tips

(vertices) of a regular tetrahedron in three dimensions. (A slightly

more complicated example can be found in Figure S2.) The

vertices of this tetrahedron are all equidistant in the original three

dimensions of the data, but any squashing of the pyramid into

two dimensions will necessarily result in the distances between

some pairs of vertices being distorted. For example, flattening

the pyramid onto its base will make the top vertex look artificially

close to the other three. Alternatively, moving the top to a point

outside the bottom triangle will make it artificially far from one

of the base vertices. Real data are more complicated than a tet-

rahedron: cells are arranged in gene expression space in un-

known geometric relationships with heterogeneous densities.

But if in even simple cases one cannot match nearby regions

in the original data to nearby in the DR output—or far as far—

any interpretation of the dimensionally reduced representations

of real single-cell data must proceed with caution.

To address the distortive effect of reducing dimensions, DR al-

gorithms often employ stochastic or non-linear techniques,
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which work with remarkable success in a variety of contexts.41

Using these techniques, however, alsomeans that the exact out-

puts of a DR method will rarely look similar, whether comparing

across methods, different parameter choices with the same

method, or even across separate runs of the same method

with identical choices of parameters. As an example, consider

Figure 1, where scRNA-seq data from nearly 4,800 bone marrow

cells from the Tabula Muris Cell Atlas8 have been embedded in

2D using t-SNE51 and UMAP23 each at two different user-pre-

scribed settings. (Throughout this work, we use kEff to parame-

terize t-SNE instead of perplexity. See section S3 for more infor-

mation.) In each panel of this figure, the lower-dimensional

representations demonstrate some apparently clustered struc-

tures, but the number, size, and shape of these clusters vary

dramatically between the representations. As an example, the

B cells in groups 2, 4, and 5 appear to be two to four distinct

’’clusters’’ depending upon the panel that is considered. More

extremely, the representation in (A) separates the granulocytes

into two clusters, and both (A) and (B) separate the granulocytes

from their progenitor cells. Without more information then, it is

not obvious which of these panels best represents the high-

dimensional structure of the data. An assessment of the ‘‘error’’

in these representations would allow for such a determination.

Together, these observations strongly motivate the need for

methods to assess the size of dimensionality reduction (DR)-

induced ‘‘error’’ associated with representing high-dimensional

data in lower-dimensional spaces.Weemphasize that evennoise-

less data will be distorted during the DR process, making error

assessment a necessary component in applying these methods.

However, it is also worth emphasizing that, despite these diffi-

culties, DR for analysis and visualization is obviously useful. Our

goal here is to develop a scheme that guides the user based on

the data rather than merely advising the user to ‘‘be careful.’’

That is, an error-quantification scheme that can assess and quan-

tifywhere aDR-generated representation is showing structure that

is consistent with structure in the original, high-dimensional space

(signal) as opposed to spurious structures that may be due to sto-

chastic and non-linear methods (noise), would be immensely use-

ful to the average analyst. Moreover, we specifically assert that a

successful error-quantification scheme should do the following:

1. Assess quality locally: since the errors incurred in reducing

the dimensionality of data are not distributed homoge-

neously across the lower-dimensional representation,45,46

a quality-assessment scheme should provide local (per

cell) estimates of DR-induced error as opposed to a single

global estimate.

2. Assess variability in quality: to account for changes in

quality thatmay be due to variation across different execu-

tions of a stochastic DR algorithm, a quality-assessment

scheme should consider the distribution of errors

across runs.

3. Assess quality statistically: a robust quality-assessment

scheme should employ a null hypothesis to establish a

‘‘ruler’’ or baseline against which errors in data can be

compared.

Others have addressed the problem of DR quality assess-

ment: work has been done to provide heuristic guidelines on



Figure 1. Features of dimensionally reduced

data are sensitive to the choice of algorithm

and algorithmic settings

(A and C) Four dimensionally reduced representa-

tions of RNA-seq measurements from 4,771 bone

marrow cells collected by the Tabula Muris Con-

sortium8 generated by t-SNE at kEff z15 (A) and 150

(C) (perplexity = 10 and 120, respectively; custom

variation of the openTSNE implementation51,52) and

by UMAP23 at n_neighbors = k = 15 and 150. Ten

previously annotated cell types provided by

Schaum et al.8 are colored and labeled. The same

cells are colored and labeled in each panel.

(B) The number of nearest neighbors, k, is set to its

default value, 15, in UMAP. Following the method in

supplemental section S3, we use t-SNE with a

similar number of nearest neighbors (kEff = 15) in (A).

(C and D) We visualize the data using t-SNE and

UMAP, respectively, at a much larger number of

nearest neighbors: kEff z 150 in (C) and k = 150

in (D).
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how to appropriately use DR algorithms10,48–50 and to make im-

provements to the algorithms themselves.51–57 Several efforts to

characterize the quality of DR methods have been pur-

sued,41,46,58 which can roughly be categorized as being

global30,58–65 or local29,45,46,66,67 in scope, and either based on

preserving distances,65 neighborhoods,30,46,58–60,62,68,69 or to-

pology,64,70,71 but in all cases they attempt to summarize the

extent to which a given DR algorithm preserves some aspect

of the original data’s structure. In surveying this literature, and

considering our basic principles, we find that what is still missing

is an approach that not only assesses quality quantitatively and

locally,45,47,60,67–70,72 but also statistically in that it seeks to char-

acterize the part of the natural and expected variability in quality

that is due to noise.

It is with this in mind that we have developed the empirical

marginal resampling better evaluates dimensionality reduction,

or EMBEDR, algorithm to locally and statistically evaluate DR er-

ror. EMBEDR is a general approach that addresses the several

unique concerns that arise with high-dimensional, noisy data,

such as single-cell omics measurements, while also adhering

to our motivating principles for a quality-assessment scheme.

RESULTS

The EMBEDR algorithm
In this sectionwe describe the heuristic structure of the EMBEDR

algorithm, as well as specific implementation details that are re-

flected in the figures throughout this work. Considered generally,

EMBEDR is based on measuring the local, per cell, distortion of

the DRmethod as a ‘‘quality’’ statistic. We then use empirical re-

sampling methods to generate a null distribution for these statis-

tics so that we may quantitatively assess whether a dimension-

ally reduced view of a cell’s local neighborhood has more

structure (signal) than we expect to be generated by random

chance. We re-emphasize that the EMBEDR framework is
agnostic to the DR method being em-

ployed and the ways in which quality is

assessed. That is, while we focus on eval-
uating the accuracy of t-SNE and UMAP in representing single-

cell omics data, EMBEDR is not specifically designed for these

algorithms or datasets, but more generally to assess the quality

of any DR method applied to high-dimensional data, as can be

seen in Figure S12. Furthermore, to emphasize EMBEDR’s

most direct application, we focus on evaluating t-SNE and

UMAP at the point where they are most commonly used in sin-

gle-cell omics analyses: after initial data preprocessing for visu-

alization of quality control, cell-type identification, and other

results.

The EMBEDR algorithm consists of three steps: (1) the

repeated embedding of the data (the repeated generation of

low-dimensional representations of the data), (2) the construc-

tion and embedding of null datasets generated in a data-driven

manner, and (3) the calculation of the quality statistics and the

performance of a hypothesis test. These are illustrated in Figures

2A–2C, respectively. We elaborate on each of these three steps

below. As suggested by the motivating principles, these steps

focus on the calculation of a local quality statistic, the empirical

embedding statistic (EES), for each sample (cell) in the dataset.

We then go on to describe how our algorithm characterizes the

distribution of the EES in a meaningful and useful way.

To clarify the notation throughout the rest of this paper:

consider a datamatrixX to be a collection ofNcells vectors, where

each cell contains measurements for each of Nfeatures genes (for

scATAC-seq data, this may be peaks instead of genes). Noting

that, for stochastic DR algorithms, the data can be embedded

multiple times to yield different lower-dimensional representa-

tions, we denote the position of the ith cell in the nth embedding

by y!i;n, where the number of embeddings is Nembed, and y!i;n is

usually a 2D or 3D vector. For each cell, in each embedding, we

calculate the quality statistic, which we denote EESi;n. An

asterisk (*) is used to indicate quantities that correspond to

‘‘null data’’ generated by resampling, so that a resampled high-

dimensional data vector is x!�
i and its position in the embedded
Patterns 3, 100443, March 11, 2022 3



Figure 2. A schematic of the EMBEDR algo-

rithm

(A) The data (5,037 FACS-sorted marrow cells from

Schaum et al.8 shown as a heatmap) are embedded

in 2D using a DRmethod several times (here: UMAP

with k = n_neighbors = 100). For each sample, the

distances to neighboring samples are calculated in

both the original data, x!i/ x!j , and the low-

dimensional embedding, y!i/ y!j . An example cell

is illustrated by a red star in each of the embeddings.

These distance distributions are compared to

calculate EESi;n, a quality score for each cell in each

embedding.

(B) The same procedure as in (A) is conducted using

null datasets constructed via marginal resampling

(see Figure 3). A purple star indicates a sample point

in each null embedding.

(C) The individual EESi;n values are compared with

the null distribution of EES� to estimate a p value for

each cell’s embedding quality. This p value corre-

sponds to the empirical likelihood that the null data

could generate an observed or better embedding

quality.

(D) The UMAP embedding of the data from (A) is

shown. Cells in this embedding are colored ac-

cording to the p values calculated in (C) , so that

embedding quality can easily be visualized across

an embedding. The light purple cells are those

whose neighborhoods are better preserved than

expected by random chance.
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space would be y!�
i . The final step of the hypothesis test process

involves calculating a p value, pi;n = ProbðEES� %EESi;nÞ, using
an empirically generated EES* distribution. (EES* refers to the set

of EES�
i;n across all cells in the null data and all N�

embed embed-

dings of the null data.)

1. Embedding the data: the first part of the EMBEDR algo-

rithm is to use a candidate DR algorithm to embed high-

dimensional data in lower dimensions. For stochastic al-

gorithms, such as t-SNE or UMAP, this embedding may

be performed multiple times with differing results as the

quality of a specific sample’s location can vary dramati-

cally between embeddings (see Figures S4 and S9). The

multiple embedding process is illustrated in Figure 2A us-

ing UMAP. In the final step of the algorithm, the effect of

these multiple embeddings is summarized into a single

quantity, so that the choice of Nembed is not critical to the

interpretation of the output, and instead mostly impacts

the resolution of the output p values (see section S4 and

Figures S9 and S10) For all datasets shown, the data

were embedded 25 times (except for the Allen Brain

data, which were embedded 12 times), but in practice

we find that �3 embeddings is sufficient to get broad pat-

terns in embedding quality.

Next, an affinity between pairs of cells in the high-dimen-

sional space is calculated by applying a Gaussian kernel

with fixed entropy to the pairwise distances (as in Van
4 Patterns 3, 100443, March 11, 2022
Der Maaten and Hinton22). This is

repeated in the lower-dimensional

embedding except that a Student’s
t distribution is used to calculate affinities. The affinity dis-

tributions for each cell in high and low dimensions are

compared using the Kullback-Leibler divergence, DKL,
73

which constitutes our quality measurement. If the DKL is

small, it indicates that the two distributions are similar,

suggesting that the neighborhood of the embedded cell

looks similar to its neighborhood in the original, high-

dimensional, gene expression space. This calculation is

illustrated in Figure 2A. The use of DKL as a quality metric

has also been used in other contexts.30,74 For more details

on how this is calculated, see section S1.

2. Null construction and embedding: the most crucial step

in the EMBEDR algorithm is the data-driven construction

of biologically realistic ‘‘null’’ datasets that can be used

to generate an expectation for embedding quality from

data devoid of biological signal. EMBEDR achieves this

via marginal resampling, which is a resampling procedure

where each gene’s expression levels in the null data are

independently drawn from the distribution for that gene in

the original data. Figure 3 illustrates this process.

Computationally, if X is an Ncells3Nfeatures data matrix of

single-cell omics observations, X� can be generated by

independently drawing Ncells samples from each column

in X with replacement (the resulting X� has the same

shape as X). In this way, the null data contain biologically

realistic, marginal distributions of individual features

(genes, peaks, principal components, etc.)—Figure 3B



Figure 3. An overview of marginal resampling for generating null datasets

(A) Gene expression data for real and resampled scRNA-seq data (FACS-sorted marrow cells8) are shown as heatmaps.

(B) The first and second principal component of the data in (A) are plotted against each other, and the corresponding marginal distributions are shown to the top

and right. Kernel density estimates are also plotted on the marginal distributions.

(C and D) The effect of marginal resampling to generate null distributions is shown, where the data and a null dataset are embedded using UMAP at k = 15 and

t-SNE at kEffz60, respectively, which correspond to the default parameters for those algorithms.
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shows that genes in an scRNA-seq dataset have nearly

identical marginal distributions in both datasets—but

the joint distribution of genes is altered. More technically,

the null dataset comprises a joint probability distribution

constructed from the explicit product of the individual

marginal distributions—guaranteeing statistical indepen-

dence of the features in the null data. This property of in-

dependence generates a more diffuse distribution of cells
relative to the real data, allowing for the assessment of

whether real cells populate higher-density regions in

expression space than expected. Any clustering that

manifests in the null dataset is therefore a consequence

of the properties of the original data’s marginal distribu-

tions and the specific DR algorithm employed. In addi-

tion, in this work, the null generation takes place after

normal data preprocessing (including normalization) so
Patterns 3, 100443, March 11, 2022 5
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that the cellular library size distributions are similar be-

tween the null and data samples.

As with the original data, we recommend that the null-

generation and embedding process be repeated several

times so that the distribution of null quality statistics,

EES�
i , is well resolved. In the examples shown in this pa-

per, we have generated and embedded ten null datasets

(three in the case of the Allen Brain data). However, we

have also found that, in practice, a single null dataset is

sufficient to characterize the distribution of EES�
i , and

that additional nulls mostly add improved resolution to

the p value calculation outlined in the next step of the al-

gorithm.

We note that the use of marginal resampling has been used

successfully in several other contexts where the signal under ex-

amination was assumed to be a result of correlations in the

data75–77 and is similar to methods used for selecting statistically

significant principal components.78 It is reasonable to assume

that correlation structures are discoverable by DR methods, as

these methods leverage the covariance (PCA) or pairwise dis-

tance (t-SNE, UMAP) matrices to generate embeddings. Con-

structing null data via marginal resampling is also a model-free

and a parameter-free process. In the context of scRNA-seq

data, these resampled datasets correspond to the hypothesis

that all cells are sampling a common distribution of gene expres-

sion, which is a useful and generic null hypothesis for many bio-

logically interesting problems, such as cell-type identification,

where the hypothesis would be that gene distributions depend

on cell identity.

Figures 3C and 3D serve to underscore why we should

generate these null data empirically: uncorrelated data are not

necessarily uniform, meaning that clusters and structures can

appear in DR representations of signal-less data! This is not

necessarily intuitive, as one might naively expect clustering to

be a consequence of cells having similar expression profiles,

but clusters will be generated by many DR methods even

when no such signal is present.52 Furthermore, there are no

theoretical results that describe the application of arbitrary DR

methods to arbitrary data, so that marginal resampling is also

a practical approach to this problem.

3. Empirical hypothesis test: the final step in the EMBEDR

framework is to perform an empirical hypothesis test.

Once the null data have been created and the null embed-

ding statistics EES* have been calculated for many sam-

ples over several embeddings, each of the sample statis-

tics, EESi;n, can be compared with the aggregated

distribution of null statistics, as illustrated for a sample

point in Figure 2C. The fraction of null statistics, EES*,

that are smaller than EESi;n can be used to estimate the

likelihood that null data would be embedded as well by un-

correlated data. This likelihood is interpreted as an empir-

ical p value, and can be summarized across the Nembed

embeddings79,80 to give a single quality metric, pi, for

each cell. For the sake of interpretability, we make an es-

timate of the likelihood that a cell’s quality is better than

that of the null across the Nembed embeddings by calcu-

lating PðEESi %EES�Þ, which amounts to averaging the in-
6 Patterns 3, 100443, March 11, 2022
dividual embeddings’ p values. See section S4 for more

details.

The EMBEDR p values can then be used, as in Figure 2D,

to color each cell within an embedding indicating regions

of higher or lower amounts of embedding quality. When

using DKL as the quality statistic, lower p values indicate

that a cell’s neighbors are similarly distanced in the original

and low-dimensional spaces, with closer neighbors (in the

original space) weighted more than those further away.

The use of other quality metrics30,45,46 would require an

appropriate adjustment to this interpretation, but the inter-

pretation of the p value as a measure of better or worse

than algorithmically induced distortions does not. We

demonstrate the interpretation of these p values in our

results.

In practice, the EMBEDR algorithm operates in conjunction

with, not as a substitute for, any DR algorithm, requiring little

user input beyond what the DR method would require on its

own. The algorithm has been implemented as a ready-to-use Py-

thon package on Github for t-SNE and UMAP. The rest of this

section describes specific observations resulting from the appli-

cation of EMBEDR to single-cell datasets.
EMBEDR reveals where DR output shows signal
versus noise
Now that we have a local and statistical approach to separating

signal and noise in DR output, we can start to address the diffi-

culties introduced by DR methods in a principled way. For

example, we used the tetrahedron thought experiment (Fig-

ure S2) to intuitively show how DR methods introduce heteroge-

neous distortions in the dimensionally reduced embeddings, but

the problem here is not that thesemethods generate such errors,

it is that they are not systematic or predictable. That is, if there

were a pattern to misrepresentations in the lower-dimensional

embedding, then any of its features, such as the relative separa-

tion of two clusters or a cell’s similarity to its neighbors, could be

inferred by taking into account that pattern. Of course, single-cell

data are not as well structured as a tetrahedron, so that a hetero-

geneity of quality can be expected biologically: a single-cell da-

taset from a mature tissue does not always have equal numbers

of distinct cell types, or the cell types might have different levels

of gene expression variability. What this means practically is that

the distortions in a cell’s placement in the lower-dimensional

representation vary in a manner that is impossible to discern

‘‘by eye.’’ Thus, a first step toward helping researchers use DR

methods confidently is to identifywhere a dimensionally reduced

view of data is preserving high-dimensional structure and where

it is not.

In Figures 4A–4C we present lower-dimensional embeddings

of the Tabula Muris marrow dataset at three different values of

effective nearest neighbors, kEff, in t-SNE (see section S3 for a

discussion on how kEff is calculated), which is a monotonic func-

tion of its perplexity parameter. We utilize kEff instead of perplex-

ity to enable direct comparisons to UMAP and to provide a more

intuitive parameterization of t-SNE. The cells in these represen-

tations are colored according to the level at which the DR

method was able to preserve the high-dimensional neighbor-

hood structure relative to noise (see the color bar in Figure 4D).



Figure 4. Optimizing DR algorithm hyperparameters generates high-quality embeddings

A total of 4,771 bone marrow cells from several mice8 were embedded with t-SNE 5 times at several values of kEff and the EMBEDR p value was calculated using

10 null embeddings.

(A–C) Embeddings generated at three interesting values of kEff; each cell is colored by the EMBEDR p value (shown by the color bar) in (D). In (A), kEffz 40

corresponds to the default t-SNE parameter (perplexity = 30) in most implementations of t-SNE.22,51 (C) An embedding generated using kEffz1200 (perplexity =

1,000), which corresponds to the largest fraction of cells being well represented in the lower-dimensional embedding. Similarly, (B) shows the results at kEffz 150

(perplexity = 100), which corresponds to a second, smaller minimum in the p values.

(D) The distributions of p values are shown as box-and-whisker plots over each value of kEff and the median of the boxplot at kEffz 1,200 indicates that a

substantial fraction of cells are best embedded at that hyperparameter value.
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In this color map, green is used to illustrate cells whose quality is

better than 99.9%of embedded cells from a null dataset. Orange

then indicates cells that have a 99% chance of being better than

the null, and blue indicates cells that are better represented than

90% of null cells. Pink cells are those whose neighborhoods in

the lower-dimensional space are just as distorted as those

generated by embedding signal-less data. As a result, this color-

ing allows a researcher to quantitatively understand where DR
output is actually showing signal: regions of pink should not be

closely interpreted since the illustrated shapes and distances

are not representative of the original data. On the other hand,

green regions suggest the presence of a biological signal, as

the structures in those parts of the embedding are unlikely to

have been generated by applying the DR method to signal-less

data—i.e., they are unlikely to be due to the vagaries of the DR

method. More quantitatively, a user can examine these quality
Patterns 3, 100443, March 11, 2022 7



ll
OPEN ACCESS Article
levels separately, as in Figure S11, to illuminate regions that are

well embedded or poorly embedded.

Generally speaking, there are some immediate patterns worth

pointing out. For example, at many values of kEff, cells that are

clustered together appear to have a similar quality of embed-

ding—there are blue (poorly embedded) clusters and green

(well embedded) clusters. We will elaborate on this further in

the next section. In addition, we observe that cells that are iso-

lated from the center of mass of any cluster tend to be poorly

embedded. However, we will see in the next results that such

poor embedding may be largely due to the improper specifica-

tion of DR method hyperparameters. More specifically, we find

no correlation between the size of a cluster and its members’ p

values at their optimal specification, shown in Figures S16, so

that both rare and common cell types are able to be assessed

with EMBEDR.

It is also worth highlighting that Figure 4A employs the default

parameters for t-SNE (perplexity = 30), but results in a low-qual-

ity dimensionally reduced representation of the data. Figures 4B

and 4C are then a potentially surprising contrast, as large por-

tions of the data are well represented when using hyperpara-

meter values that are very different from common recommenda-

tions.49 The difference in quality between these embeddings

underscores the potential pitfalls of employing complex DR algo-

rithms that require user-prescribed parameters without a quality-

assessment methodology. We elaborate on this more in the next

section.

In this way, EMBEDR’s most immediate contribution is to pro-

vide a DR user with an intuitive map of their reduced-dimension

data so that spurious structures can be separated from putative

biological signals. A utility for generating plots like Figures 4A–4C

is included in the Python package.

EMBEDR allows for optimization of algorithm
hyperparameters
As expected, Figures 4A–4C clearly illustrate that the quality of a

dimensionally reduced view of data can vary from cell to cell

across the lower-dimensional space, but Figure 4D shows that

quality can also depend strongly on values of DR hyperpara-

meters. In this panel, each cell’s p value is summarized as box-

plots that change as we sweep across kEff, the effective number

of nearest neighbors used by t-SNE to place cells in two dimen-

sions. This figure thus allows for the detection of a ‘‘globally

optimal’’ kEff based on where the largest fraction of cells are

best embedded. For the Tabula Muris marrow tissue, setting

kEffz1200 corresponds to the largest fraction of minimal p

values, as indicated by the shaded box in Figure 4. Interestingly,

this is a far larger value for the perplexity parameter than is typi-

cally advised (perplexity = 1,000), even in some multiscale

methods.49,57 This is interesting in a practical sense, as EMBEDR

provides a hyperparameter tuning scheme that differs from

typical heuristics.

This result also emphasizes two important considerations.

First, many DR methods—t-SNE and UMAP included—have a

hyperparameter that corresponds to setting the size of ‘‘neigh-

borhoods’’ in the high-dimensional data. (In section S3 we

show how t-SNE’s perplexity can be mapped to such a size,

kEff, which we use throughout this paper.) This neighborhood

size then acts like a low-pass filter in electronic circuits, in that
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information about cells that are further than a certain ‘‘scale’’ is

neglected. Regardless of whether a ‘‘neighborhood’’ is defined

as a distance or as a number of nearest neighbors, however,

the scale felt by the data is always mediated by the density of

the data in the high-dimensional space. What this means most

directly is that the interpretation of the neighborhood size param-

eter must involve the size of the dataset. Telling a DR method to

use 15 nearest neighbors will have a very different effect when

applied to a dataset of 15 cells versus one with 15,000. In the

former case, the effective scale is the entirety of the data, in

the latter it may be the entire data or—more likely—it may be re-

gions that differ in size for each cell depending on the data den-

sity around that cell. As a result, these DR hyperparametersmust

be set and interpreted uniquely for each dataset; in this paper we

consider values for these parameters across their entire possible

ranges. Furthermore, EMBEDR’s data-sensitive statistical test

means that Figure 4D can be constructed and interpreted

consistently across datasets of different sizes.

Second, the fact that large sections of cells are best

embedded when t-SNE considers kEffz1200 nearest neighbors

in Figure 4C means that utilizing fewer neighbors for these cells

may result in spurious groupings,52 which can be seen in the

relatively poor quality of Figure 4A. As a result, the detection

and interpretation of structures in low-dimensional representa-

tions need to account for whether the DR scale matches the

‘‘native’’ scale of the cells. The plateau in the curve in Figure 4D

at kEffz150 and the dip in the curve at kEffz1200 means that

most cells need to consider the positions of their 150 or 1,200

nearest neighbors to accurately position themselves in two di-

mensions, suggesting that kEffz 150 and 1,200 correspond to

native scales for these data. EMBEDR facilitates this assessment

by permitting comparisons between hyperparameter choices

and by assessing quality locally.

The salient features of Figure 4D in the context of the Tabula

Muris marrow dataset are preserved across the datasets we

have analyzed. For a list of datasets considered, see Table

S1. A global p value sweep and a cell-optimal embedding

for each dataset can be found in Figures S14 and S20–S24.

In all cases, EMBEDR illustrates that (1) the quality of features

in dimensionally reduced data varies in a manner that is diffi-

cult to discern ’’by eye,’’ and that (2) the quality varies as a

function of algorithmic hyperparameters and DR methods.

Our ability to discern the local quality of dimensionally

reduced data results from posing the problem statistically

and the generation of data-driven null hypotheses. In addition,

while it may be concerning that large portions of some DR

outputs are consistent with spurious DR distortions, EMBEDR

provides a quantitative tool with which to examine and

improve these results.

EMBEDR allows for comparisons of DR algorithms
Novel DR algorithms are constantly being developed or adapt-

ed, so that their incorporation into single-cell analysis requires

quantitative analyses of their performance. While assessments

of these methods on select case studies have been performed

in many studies,10,11,13,41,48,49,81 there are no theoretical results

that guarantee high-performance of any of these methods on

a given dataset. Instead, our results and observations

suggest that different methods will generate lower-dimensional



Figure 5. EMBEDR facilitates direct compar-

isons of DR methods

(A–D) A total of 4,711 cells from the Tabula Muris

marrow tissue8 are embedded by t-SNE and UMAP

at default (A and B) and EMBEDR-optimized (C and

D) numbers of nearest neighbors. Each cell in each

embedding is colored by the EMBEDR p value ac-

cording to the color bars on the right. The p values

are calculated as in Figure 2 and in supplemental

Section S4 using Nembed = 25 applications of t-SNE/

UMAP to the data and N�
embed = 10 embeddings of

null data. In the boxes below each panel, the num-

ber (percentage) of cells at each p value threshold

are shown (indicated by the corresponding color),

with the threshold containing a plurality of cells

shown in bold.
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embeddings with different quality for different datasets. As a

result, EMBEDR’s data-driven quality assessment provides a

natural tool for the comparison of DR methods applied to a

common dataset.

Figure 5 illustrates this approach in action, as the quality of t-

SNE and UMAP embeddings of the Tabula Muris marrow data

are compared side-by-side. In the top row, we show embed-

dings generated at t-SNE’s and UMAP’s default parameters,

while the bottom row sets k or kEff based on the optima identified

in Figure 4. Below each embedding, the number of cells that

meet a quality threshold are indicated, showing that at default

hyperparameters neither t-SNE nor UMAP generate well-

matched neighborhoods for most cells. However, the effect of

optimizing t-SNE can now be seen in Figure 5C, as more than

50% of the cells have a neighborhood that is far more ordered

than the random null. When UMAP uses the same number of

neighbors in Figure 5D, the results are improved over the de-

faults (Figure 5B), but to a lesser extent than t-SNE. In Figure 5B,

the null was generated by reducing the dimensionality of the re-

sampled data using UMAP at k = 15. That is, the p values for

each cell are determined based on how often UMAP randomly

preserves structure in resampled data. In addition, the represen-

tations in Figure 5 are coloredwith p values generated by running

t-SNE/UMAP on the data 25 times and on marginally resampled

data 10 times, so that the p value indicates a consistency of qual-

ity as well, even though t-SNE and UMAP are stochastic and

non-linear methods.

We emphasize that this should not be taken to mean that

UMAP is not appropriate for the analysis of single-cell data,

but only that t-SNE preserves structure better than UMAP in

this case. We apply EMBEDR to other DRmethods in Figure S12

and find similar differences in methods. Crucially, this direct,

quantitative comparison of DR algorithms is an immediate

consequence of our casting the quality-assessment problem

as a statistical problem and by generating the null hypothesis

empirically.
EMBEDR allows for a single-cell
analysis of single-cell data
While our results in Figures 4 and 5 show

that EMBEDR can be used to push forward

global analyses of DR method quality, our

earlier observations that quality is hetero-
geneous within a dataset suggest that we should bemore careful

and consider how embedding quality changes more locally.

More directly, the existence of global optima in embedding qual-

ity at kEffz150 and 1,200 does not imply that all cells are individ-

ually best embedded at those scales. Indeed, our expectation is

that single-cell data will contain myriad densities, cell types, and

expression patterns, meaning that we should expect to observe

multiple scales in data generically. As a result, current methods

are likely under-leveraging the information in our single-cell

data by ignoring single-cell patterns.

EMBEDR provides a natural route to performing a single-cell

resolution analysis of single-cell omics data as it already deter-

mines DR quality on a cell-wise basis. In Figures 6 and S13,

we illustrate previously annotated cell types in the Tabula Muris

marrow dataset to empirically demonstrate the existence of mul-

tiple scales in the data. Inspired by these observations, we pro-

pose to use a single-cell resolution analysis of single-cell data to

produce a locally optimal dimensionally reduced view of data

(Figure 7).

In Figure 6A, the EMBEDRp values for cells in six cell types from

the Tabula Muris marrow dataset are shown as a function of kEff.

Notice that each cell’s p value ’’trajectory’’ can be followed as

kEff changes, giving a cell-specific ‘‘spectrum’’ of quality. Consid-

ering the statistics of these spectra for each cell type shows that,

indeed, some cell types are better represented at different scales

than others. For example, macrophages (green) appear to be well

embedded for kEff z 150, but the granulocytes and B cells are

best embedded in a region around kEff z 1,200. In Figures 6B

and 6C, two examples of embeddings at different kEff are shown

to illustrate the features of these spectra. In Figure 6B, the neigh-

borhoodsofmore than80%ofmacrophages are better structured

than noise, but in Figure 6C none of their neighborhoods are. The

opposite happens for the granulocytes and B cells: using too few

neighbors results in spurious clustering and over-fracturing of

these cell populations; increasing to 1,200 neighbors captures

that they are parts of large, diffuse regions of data space.
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Figure 6. Different cell types are best

embedded at a variety of scales

Using annotations from the Tabula Muris project,8

the embedding quality of different cell types in the

Marrow data can be examined individually across

values of kEff.

(A) Six identified cell types from the bone marrow

tissue are shown, where each cell with a given

annotation is shown as an individual line. The

colored boxes indicate themedian p value across all

cells with that annotation, and the solid lines indi-

cate the 90th percentiles. Similar plots for all cell

types are shown in Figure S13. Embeddings at kEff
z 150 and 1,200 are shown in (B and C), respec-

tively.

(B and C) The cells corresponding to each cell type

are highlighted with the same color as in (A). Cells

with an EMBEDR p value below 10�3 (the gray line in

A) are opaque, while other cells with a highlighted

annotation are lightly shaded. The fractions of such

cells in an annotation are shown in the colored

boxes below the embeddings. Other cell types are

shown in gray for context.
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More generally, in the context of datasets that may contain

distinct cell types, we expect this to be reflected in these

spectra, as members of the same cell type may have neighbor-

hoods at a common scale. We observe this empirically in Fig-

ure S15, where cell annotations with more cells are best repre-

sented when t-SNE uses more neighbors. This makes sense,

because if a cell is truly part of a cluster of N other cells, then

incorporating spatial information from those N cells should be

necessary to place that cell in an embedding. Conversely, cells

from less-populous cell types may be poorly placed at high kEff
because they are being positioned using cells that are not truly

their neighbors. For example, the basophils are best embedded

at a smaller scale (kEff z 30), which is likely because their neigh-

borhoods are best described by only including those 25 cells.

In this way, Figure 6 demonstrates the existence of multiple

scales in the data. The differences in the spectra of cells in

different cell types illustrates the sizes of different neighbor-

hoods in the data. In this figure, the cell annotations were a given,

but the relationship between EMBEDR spectra and cluster sizes

(Figure S15) suggests that EMBEDR may be useful for unsuper-

vised cluster identification. The development of such amethod is

beyond the scope of this work and will be pursued in the future.

Instead, in Figure 7 we show how adapting t-SNE to allow for

scales to be set per cell results in an improved, scale-sensitive

embedding that is easily interpreted biologically.

Specifically, using the spectra fromFigures 4 and 6 for eachcell,

the value for kEff atwhich eachcell was best embeddedwasdeter-

mined (see section S5 for details). These values for kEff were used
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to generate a new similarity matrix where

eachcell used itsown ‘‘preferred’’ neighbor-

hood size to determine similarities between

itself and its neighbors. This similaritymatrix

was thenused tofinda representationof the

data via t-SNE. The resulting embedding is

shown in Figure 7. We emphasize that this

representation was determined in a
completely unsupervised manner that involved no specification

of t-SNE’s perplexity parameter. In fact, this procedure eliminates

the perplexity parameter from the embedding process!

Examination of this cell-wise optimized embedding using our

established quantities in Figures 7B and 7C illustrates interesting

patterns. In Figure 7B we see that the larger clusters are best

embedded when the effective neighborhood size is large, while

the smaller clusters only use kEff z 100 or fewer nearest neigh-

bors. In this way, allowing the scales to vary locally facilitates

the construction of specific and detailed structures in the

embedding. These structures are robust, as reinforced by Fig-

ure 7C, where the minimal p value achieved by each cell across

the parameter sweep is indicated, illustrating that all clusters

were extremely well embedded at some value of kEff. In addition,

Figure S19 shows that this cell-wise optimal embedding has a

better average quality than default t-SNE.

In Figure 7D,we show the results of using an unsupervised clus-

tering algorithm, DBSCAN,82 on the cell-wise optimal embedding.

That is, we took the unlabeled positions in (A), generated cluster

labels, and in (D) and (E) we cross-reference these labels with

the expert annotations generated by the Tabula Muris Con-

sortium. Comparing these labels and annotations illustrates that

the structures in this embedding are biologically relevant. Each

of the seven clusters in Figure 7D clearly correspond to a class

of bone marrow cell types, with almost no overlap between cell

annotations except for granulocyte-monocyte progenitor cells.

Similarly, the structure and arrangement of the clusters is biolog-

ically consistent: the annotated B cells (cluster 1, blue) are all



Figure 7. A cell-wise optimized embedding

reveals clear biological signals

Adapting t-SNE to use a different scale for each

sample in the Tabula Murismarrow data8 generates

a well-structured representation of the data.

(A) The unlabeled embedding is presented.

(B and C) To generate this embedding, the scale at

which a cell’s p value was minimized was used to

set kEff for that cell. This kEff is shown in (B) and the

minimal p value achieved by a cell across the sweep

is shown in (C).

(D) Applying DBSCAN with eps set based on the

pairwise distance (PWD) distribution of cells in the

embedding (specifically, the 1.5th percentile of

PWDs) detected the seven indicated clusters. Any

Tabula Muris cell-type annotation for which more

than 20 cells overlapped with a DBSCAN label was

given a different shade of the cluster color.

(E) These cell annotations and colors are shown as a

confusion table.
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aligned according to their developmental trajectory from pro-B

cells to naive B cells. At the same time, there is no differentiation

pathway in the progenitor cells (cluster 2, orange), reflecting their

common multipotent state. Furthermore, in Figures S17 and S18

we show that, regardless of how cluster labels are applied to

this embedding, the distances between clusters in the cell-wise

optimal embedding aremore correlatedwith distances in the orig-

inal data than those in a regular t-SNE representation. That is, dis-

tances between clusters in Figure 7D are actually correlated with

distances between cells in gene space.

We can also see that smaller cell types, such as macrophages

and basophils, are clearly separated from the larger clusters.

This is another benefit of generating cell-optimal embeddings:

cells that actually have small neighborhoods will be allowed to

keep those small neighborhoods, even in the presence of larger

clusters, which require larger scale parameters to be robustly

resolved. That is, setting a DR hyperparameter large enough to

resolve the structures in more populous cell types would nor-

mally squish or hide smaller, ‘‘rare’’ cell types, but this cell-

wise optimization process protects against this. We also find

that most cells have a scale at which they are well resolved, as

shown in Figure S16, so that preserving these scales for each

cell generates a better embedding.

We find that these results hold across other datasets. In Fig-

ures S25–S27 we recreate the process from Figure 7 for the Tab-

ula Muris diaphragm and brain tissues and the MNIST digits. In

each we find that structures are generated that obviously display

biological (scRNA data) or visual (MNIST) meaning and that rare
cell types are robustly represented in these

embeddings even in the context of larger

clusters.

DISCUSSION

Single-cell omics offers a path toward un-

told biological discovery, but its high-

dimensional nature and inherent stochas-

ticity requires the careful application of
DR algorithms tomake progress. The promise of DR approaches

to single-cell omics data is not just to gain a visual intuition for the

structure of the data, but to mitigate the curse of dimensionality

and perform additional downstream quantitative analyses. As of

now, the state of the art in DR currently rests on ever-changing

heuristics to a degree that limits data analysis and data-driven

discovery. A researcher cannot perform a comprehensive algo-

rithm review for each new dataset, ensuring that the lack of a

general approach to evaluating the quality of a DRmethod is pre-

venting the community from making the most of the single-cell

omics revolution. In the context of scRNA-seq, which has been

the omic technology of focus in our study, cell-type classifica-

tion,8 lineage reconstruction,48 RNA-velocity analysis,83 and

countless other approaches rely on the fidelity of dimensionally

reduced data, or are limited by their inability to confidently

employ DR.

The statistical approach presented in this work via the EM-

BEDR algorithm addresses these concerns by providing a

rigorous framework for the evaluation of DR quality that can

also reveal information about the data itself. The EMBEDR algo-

rithm is relatively simple (Figure 2) and is available as a ready-to-

use Python package. EMBEDR performs its quality assessment

in a data-driven manner, meaning that it can be used to rigor-

ously compare DR methods’ performance (Figure 5). Perhaps

more importantly, EMBEDR’s local and statistical approach

promises to reveal previously hidden structures in single-cell

datasets while also facilitating hyperparameter optimization

(Figure 4).
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The EMBEDR method as proposed thus addresses the impor-

tant question: ‘‘how much can I trust this dimensionally reduced

view of the data?’’ Embedding quality is made available as a

cell-wise, interpretablepvalue thathasmeaningacrossalgorithms

anddatasets. Thisqualitymetric canbeused toset algorithmichy-

perparameters globally or locally, and can be leveraged to make

inferences about the data itself. The method is robust and does

not require the user to carefully specify parameters, in fact, the

cell-wise optimal embedding process in Figure 7 effectively re-

moves the perplexity parameter from the t-SNE algorithm.

This paper presents a broad view of the algorithm and its ap-

plications, but there are a few limitations that require further

consideration. Most practically, the code as written rests on

the speed of current implementations of DR algorithms that

can be chained together to generate many (null) embeddings

of the same data. Timings for various hyperparameter sweeps

to generate figures like Figure 4 are shown in Table S2. As noted

earlier, while there are benefits in principle to usingmany embed-

dings and many hyperparameter values, we find that as few as

three data embeddings and a single null embedding can be suf-

ficient. Furthermore, the recent extension of common

DR methods to GPUs84,85 or quadratic rate optimization

schemes55,86 promises drastic improvements to these runtimes,

but their inclusion here was beyond the scope of this work.

The efficiency concerns also imply that there is a finite resolution

to the calculatedp values since the null distributions are calculated

empirically. This means that the number of nulls that can be

embedded determines the lower bound on the p values. Other

than improved computational efficiency, remedies may include

theoretical work to describe the tails of these null distributions or

a principled method for parameterizing the null distribution.

Moving forward, it is clear that the natureof information that EM-

BEDRprovidescanbe leveraged inavarietyofwaysnotpresented

in this work. Several such directions are suggested in Figure 5,

wheremore comprehensive efforts could be undertaken to assess

the quality of DR algorithms generically, as in other studies.40,41

Alternately, as suggested by Figure 6, a ‘‘spectral’’ viewof embed-

ding quality may provide an avenue for unsupervised clustering

more directly. More simply, removing cells that never achieve a

certain standard of quality may also be useful in improving tradi-

tional quality control processes. An extension of our null-genera-

tion process to non-normalized datasets may also permit EM-

BEDR to perform quality analyses of entire data-processing

pipelines.

Non-computationally, Figure 4 suggests that this approach

may be of widespread utility in the analysis of high-dimensional

biological datasets to detect and to assess the stability of biolog-

ically relevant structures. Protecting samples with small neigh-

borhoods from being subsumed by large-scale parameters sug-

gests that EMBEDR’s cell-wise optimal embeddings may be

reliably used to detect rare cell types. In addition, the ability of

the method to form model-free, non-parametric-scale spectra

presents a new way to look at these datasets that may reveal

heretofore unseen phenomena.

In all cases, high-dimensional and heterogeneous datasets,

such as single-cell RNA-seq, require analysis techniques that

account for and leverage the expected noise in the data to iden-

tify real biological signal. EMBEDR provides a robust statistical

framework to achieve just that.
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EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should be

directed to and will be fulfilled by the lead contact, Madhav Mani (madhav.

mani@gmail.com).

Materials availability

This study did not generate new unique materials or reagents.

Data and code availability

No new data were generated in this work. For a full list of references for the da-

tasets considered in this work, see Table S1.

The code used to generate the results in this work is available here. Updates

to the code, as well as examples and documentation, are available at our Gi-

thub repository.

Single-cell data preprocessing

At this point, the EMBEDR algorithm has been designed and tested as a tool

for assessing the quality of a specific DR algorithm when applied to a quality

filtered and normalized dataset. DR algorithms are usually found at this point

of an analysis pipeline, where they are used for visualization or confirmation

of other results. In targeting EMBEDR at this stage of the process, our method

allows researchers to assess the extent to which structures in their data are

present or detectable in a 2D or 3D embedding. We do not, however, consider

here the extent to which different data-processing steps affect a dataset’s

embedding quality in this work, although EMBEDR could also be utilized to

evaluate this.

As a result, each of the datasets investigated in this work have been

filtered and normalized following a standard protocol before we apply DR

methods, such as t-SNE or UMAP. Specifically, all single-cell datasets

were obtained pre-aligned from their sources. The scRNA-seq data were

filtered so that each cell contained at least 500 genes and 50,000 reads.

These cells were also filtered so that no cell contained more than 10%

spike-ins, 10% ribosomal genes, or 40% Rn45s. The data were then

normalized to account for each cell’s library size and they were then log-

transformed. The number of genes was then reduced to only the highly var-

iable genes according to Satija et al.87 before centering and scaling the

data to have uniform variance. PCA was then applied and the first 50 com-

ponents were kept (100 components were kept for the Allen Brain Insti-

tute data).

The scATAC-seq data from 103 genomics was also filtered so that each

peak was found in at least 10 cells and each cell contained at least 1,000

peaks. Cells were also filtered so that their TSS enrichment score was at least

2. The cells were normalized using TF-IDF and then an SVD was applied and

the first 50 components were retained.
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Supplemental information can be found online at https://doi.org/10.1016/j.
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40. Gracia, A., González, S., Robles, V., andMenasalvas, E. (2014). Amethod-

ology to compare dimensionality reduction algorithms in terms of loss of

quality. Inf. Sci. 270, 1–27. https://doi.org/10.1016/j.ins.2014.02.068.

41. Espadoto, M., Martins, R.M., Kerren, A., Hirata, N.S.T., and Telea, A.C.

(2021). Toward a quantitative survey of dimension reduction techniques.

IEEE Trans. Vis. Comput. Graph. 27, 2153–2173. https://doi.org/10.

1109/TVCG.2019.2944182.

42. Fanaee-T, H., and Thoresen, M. (2019). Performance evaluation of

methods for integrative dimension reduction. Inf. Sci. 493, 105–119.

https://doi.org/10.1016/j.ins.2019.04.041.
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