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Antibody Response to Severe Acute 
Respiratory Syndrome- Corona Virus 2, 
Diagnostic and Therapeutic Implications
Yuval Ishay, Asa Kessler, Asaf Schwarts, and Yaron Ilan

The immune response against severe acute respiratory syndrome-corona virus 2 (SARS-CoV-2) is comprised of both 
cellular and humoral arms. While current diagnostic methods are mainly based on polymerase chain reaction, they 
suffer from insensitivity. Therefore, antibody-based serologic tests are being developed to achieve higher sensitiv-
ity and specificity. Current efforts in treating SARS-CoV-2 infection include blocking of viral entry into the host 
cells, prohibiting viral replication and survival in the host cells, and reducing the exaggerated host immune response. 
Administration of convalescent plasma containing antiviral antibodies was proposed to improve the outcome in severe 
cases. In this paper, we review some of the aspects associated with the development of antibodies against SARS-CoV-2 
and their potential use for improved diagnosis and therapy. (Hepatology Communications 2020;4:1731-1743).

Severe acute respiratory syndrome-corona virus 
2 (SARS-CoV-2) is an infectious RNA virus 
responsible for causing corona virus disease 

2019 (COVID-19).(1) While current diagnostic 
methods for COVID-19 diagnosis are mainly based 
on polymerase chain reaction (PCR), they suffer from 
insensitivity. Widespread reports of both false-positive 
and false-negative tests have been reported. Therefore, 
serologic tests are being developed to identify patients 
suffering from COVID-19 and to assist in identify-
ing subjects who have been diseased and may now be 
immune to reinfection or to severe disease.

The host immune response mounted toward the 
virus contributes to disease severity. The immune 
response toward SARS-CoV-2 is comprised of both 
the cellular and humoral arms. Current evidence 
points to the severe manifestation of COVID-19 dis-
ease as being driven by inappropriate hyperactivation 
of the immune system, associated cytokine storm, 
and end-organ damage.(2,3) Current efforts for the 

treatment of COVID-19 include blocking viral entry 
into the host cells, prohibiting viral replication and 
survival in the host cells, or reducing the exaggerated 
host immune response. However, these strategies have 
shown limited efficacy.(4) Administration of conva-
lescent plasma was proposed to improve patient out-
comes in severe cases. In this paper, we review some of 
the aspects associated with the development of anti-
bodies against SARS-CoV-2, their biology, potential 
uses, expected advantage, and disadvantages.

SARS-CoV-2 Epitopes as 
Potential Targets for the 
Humoral Immune Response

SARS-CoV-2 is an enveloped single-stranded 
RNA virus. The viral genome encodes four structural 
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proteins, including the spike (S), envelope, membrane, 
and nucleocapsid (N), as well as other nonstructural 
proteins. The S protein of SARS-CoV-2 consists of 
two subunits, S1 and S2. Several distinctive elements 
of SARS-CoV-2 are compared with other coronavi-
ruses in Fig. 1.

Acting as a homotrimer, the heavily glycosylated 
S protein binds its cellular receptor, angiotensin con-
verting enzyme 2 (ACE2), present on the pneumo-
cytes and enterocytes, by the C-terminal domain of 
the S1 subunit in the receptor binding domain (RBD) 
region.(5,6) Extending from the viral membrane, the S 
protein extends outward from the virion. While the 
S1 subunit extends furthest from the virus membrane, 
the inner S2 subunits consist of a mostly helical struc-
ture, leading toward the viral membrane. The interac-
tion of the S1–ACE receptor leads to conformational 
changes in the helical S2 subunit. The next event in 
viral binding and entry includes cleavage of the S1/S2 
protein subunits by cellular proteases. This proteolytic 
activity may be performed by furin protease, a feature 
not unique to SARS-CoV-2 among the coronaviruses 
but absent in SARS-CoV.(7) The cleaving protease, 
dictating the exact exposed viral amino acid sequence, 
also determines the pattern of viral–cell fusion.(8,9) 
The release of newly constructed virions and the later 
activities of these new virions are also dependent on 
specific protease activity.(6)

Among the sites enumerated in this description, 
several appear as attractive targets for biologically 
active antibodies. Of note, while new data are contin-
uously and vigorously obtained, specifically regarding 
SARS-CoV-2, much of the functional data regard-
ing coronavirus activity and mechanisms come from 

research on SARS-CoV and Middle East respiratory 
syndrome-corona virus (MERS-CoV). This appears 
particularly poignant where homologies in the struc-
ture and function between these viruses are sought. 
While sequence and biological similarities are com-
mon, major differences exist, influencing virus func-
tion and antibody biology. These range from matters 
such as cleavage by similar proteases (although SARS-
CoV-2 shows unique furin sensitivity) to receptor 
binding where it shares the affinity toward ACE2 
with SARS-CoV through highly conserved RBD 
residues.(10)

Development of Antibodies 
Against SARS-CoV-2

The final event of protective and effective antibody 
production is the differentiation of B cells into plasma 
cells, a change accompanied by robust antibody pro-
duction. A fraction of these cells will differentiate 
into memory B cells, allowing for an early antibody 
response following reinfection; this differentiation has 
been demonstrated after SARS-CoV infection.(11) 
Presumably, the "first contact" of SARS-CoV-2 with 
the immune system occurs following introduction 
of viable viral particles into the airways. The first 
responding part of the immune system may be the epi-
thelial cells, both acting as antigen-presenting cells(12) 
and internally expressing antiviral proteins, specifi-
cally type-I interferons.(13) Type-I interferon signal-
ing is usually initiated by toll-like receptors (TLRs). 
Variance in the vulnerability to the virus, namely men 
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being more vulnerable, has been attributed partially to 
superior TLR7 signaling in women, possibly result-
ing in enhanced antibody production.(14) Notably, 
TLR7 functions in B cells as well and may contribute 
to enhanced function and differentiation of plasma 
cells.(15) Following initial contact with epithelium, 
innate immune cells come in contact with the virus 
and with infected cells. Superficial intraepithelial den-
dritic cells (DCs) in the lungs adjacent to the airways 
are required for antibody production.(16) After anti-
gen encounter, they move to the regional lymph nodes 
and help trigger robust antibody production by acti-
vation of cluster of differentiation (CD)4 “follicular 
helper” T cells, supporting B-cell function.(17) Some 
DC functions, including type-I interferon secretion 
in response to viral stimulation, is also dependent on 
TLR signaling.(18)

While existing research is focused on the endog-
enic immune response to SARS-CoV-2 and its possi-
ble beneficial manipulations, isolation of neutralizing 

antibodies (NAbs) from infected persons or laboratory 
manufacturing of these antibodies is another subject 
of intense interest. Monoclonal antibodies (mAbs) 
with some neutralizing activities were demonstrated 
to occur in infected human sera.(19) NAbs may be 
defined in various ways and commonly as the anti-
body concentration required to prevent or decrease 
infectivity.(20) The most attractive antibodies are those 
targeting the S protein, whether in the RBD or other 
regions, including the S1/S2 proteolytic cleavage 
site.(21) It is plausible that antibodies targeting these 
sites will block essential viral functions, including viral 
antigen binding (expected from S1-RBD antibodies), 
and/or interfere with S protein-mediated viral fusion 
or cell entry.(21-23)

Multiple specific regions in SARS-CoV-2 show 
high homology to the SARS-CoV virus, suggesting 
potential B- and T-cell epitopes for SARS-CoV-2.(24) 
A set of B-cell and T-cell epitopes were derived from S 
and N proteins, which (excluding notable differences) 

Fig. 1. Several distinctive elements of SARS-CoV-2 compared with other coronaviruses. Abbreviation: DPP4, dipeptidyl peptidase 4.
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are generally conserved between SARS-CoV and 
SARS-CoV-2. The lack of mutations in these iden-
tified epitopes allows assessment of possible SARS-
CoV-2 immune targets.(25) This study showed that no 
mutations occurred between SARS-CoV and SARS-
CoV-2 in these sequences, confirming the possibility 
of antibody cross-reactivity and humoral immunity.

In spite of this high homology, cross-reactivity of 
SARS-CoV antibody is limited between two viral S 
proteins.(26,27) Murine polyclonal SARS-CoV anti-
bodies directed against the S protein inhibited SARS-
CoV-2 entry into cells, indicating that cross-NAbs 
targeting conserved S epitopes can be produced.(6) 
S1-targeting mAbs from immunized transgenic mice 
expressing human immunoglobulin (Ig) variable 
heavy and light chains can neutralize SARS-CoV-2 
and SARS-CoV infections.(28,29) In a previously men-
tioned trial, 206 SARS-CoV-2 RBD-specific mAbs 
were generated, among which only two clones showed 
significant blocking of viral entry; this was associ-
ated with a high competitive capacity against ACE2 
receptor binding.(19) Similar results were observed 
in studies using sera from patients recovered from 
SARS and COVID-19 where limited cross-neu-
tralization occurred, suggesting that cross-NAbs are 
either incompletely reactive or insufficient for disease 
prevention.(28)

Before and concurrently with the isolation of spe-
cific antibodies, SARS-CoV S1-specific serum from 
patients convalescing from SARS or from animals was 
proposed to cross-neutralize the SARS-CoV-2 infec-
tion by reducing S protein-mediated SARS-CoV-2 
entry.(8) Cross-reactivity of the antibodies from 
patients with SARS-CoV-2 against the S proteins 
but not against the RBD of SARS-CoV and MERS-
CoV has been documented.

The roles played by the RBD in the invasion of 
SARS-CoV-2 into host cells make the RBD a poten-
tial target for NAbs. Blocking binding between the 
RBD and its respective receptor may restrict the 
conformational change of S or hamper S2-mediated 
membrane fusion, thereby inhibiting viral infection of 
host cells.(21) The human NAbs S230.15 and m396 
were isolated from patients infected with SARS-CoV. 
They neutralize SARS-CoV infection by interact-
ing with the RBD and by blocking binding between 
the viral RBD and ACE2 receptor.(30) The SARS-
CoV RBD-specific human NAb, CR3022, binds the 
SARS-CoV-2 RBD with high affinity and recognizes 

an epitope on the RBD that does not overlap with 
the ACE2-binding site.(27) The S109.8 and S227.14 
mAbs can neutralize the infectious clones of SARS-
CoV and protect mice against four different homol-
ogous and heterologous SARS-CoV strains.(31,32) Of 
note, such mAbs produced in the chimeric mouse 
cells and originating from patients with SARS-CoV 
were shown to neutralize SARS-CoV-2 virus particles 
by an ACE2-independent mechanism; this probably 
has to do with S protein fusion or proteolysis and pre-
venting viral fusion.(28)

While these studies hold both promise and inter-
est, isolation and analysis of neutralizing antibod-
ies remain a difficult task. A majority of 26 patients 
recovered from COVID-19 showed high titers of 
SARS-CoV-2 S1-specific IgG antibodies when tested 
by enzyme-linked immunosorbent assay (ELISA).(29) 
However, only 3 out of these 26 patients manifested 
an effective blockade of SARS-CoV-2 RBD binding 
to human (h)ACE2 when tested in vitro.(29) The tran-
sient and dynamic conformational states of the S pro-
tein have been suggested to provide a narrow window 
for exposure of the immunogenic epitopes of RBD to 
B lymphocytes.(33) Early and transient peak levels of 
anti-S antibody response were associated with a less 
favorable outcome for patients compared with a more 
delayed and sustained response.(34)

The phage display method, allowing rapid and wide 
display of proteins directly correlated to their asso-
ciated genes, can detect NAbs against SARS-CoV 
from both naive and immune antibody libraries that 
are capable of blocking the binding of the S1 domain, 
thereby showing virus neutralization and prophylaxis 
capability either in vitro or in animal models.(30,32,35) 
Another method, possibly allowing the production 
and use of existing NAbs, may include the use of 
Epstein-Barr virus transformation of human B cells 
to improve the isolation of NAbs from the memory 
B cells harvested from patients infected with SARS-
CoV.(11) Transgenic mice with human Ig genes that 
are effective for virus prophylaxis in animal models 
are being developed to produce NAbs against SARS-
CoV by antigen immunization.(36,37)

Cloning of human mAbs using samples from 
patients recovered from COVID-19 whose sera 
showed hACE2 receptor binding inhibition has been 
reported.(38) Following antibody cloning, three pairs 
of IgG variable heavy-chain and light-chain inserted 
expression plasmids were expressed and named as 
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311mAb-31B5, 311mAb-32D4, and 311mAb-31B9. 
All three mAbs bind to the RBD protein. While 
mAb-31B5 and 311mAb-32D4 blocked SARS-
CoV-2 RBD-hACE2 interaction and neutralized a 
SARS-CoV-2 S pseudotyped lentiviral particle,(28) 
311mAb-31B5 and 311mAb-32D4 neutralized 
pseudovirus entry into host cells ectopically express-
ing hACE2.(29) Several NAbs, such as B1, 1F8, and 
5E9, toward epitopes on SARS-CoV S2 manifested 
neutralization properties.(39,40)

N-specific antibodies have also been demonstrated 
in the sera of infected patients. Most studies assessing 
N antibodies have not differentiated these antibodies 
from other antibodies directed against SARS-CoV-2 
in studies that seem to show similar kinetics to that 
of the general antibody response.(41) No studies have 
shown the occurrence of definitive NAbs directed at 
the N protein or the nature of the immune response 
triggered by such antibodies.

Antibody-Based Diagnosis 
of COVID-19

Serum IgG, IgM, and IgA antibodies against 
SARS-CoV appeared in patients after primary SARS 
infection.(42) Data on the production of IgG and IgM 
is important for improved diagnosis of COVID-19.(43) 
Several studies have described the dynamics of antibody 
production in these patients. While it is too early to 
definitively summarize the characteristics of antibody 
dynamics, certain conclusions seem consistent across 
these studies. Broadly, antibody titers increase and the 
prevalence of viral RNA decreases as time progresses 
from the onset of symptomatic disease.(44,45)

ELISA-based diagnostic kits often report a speci-
ficity of ~ 90%,(46) with some trials reporting a higher 
percentage.(44) While this is an impressive figure by 
itself, it may yield a relatively poor positive predictive 
value when employed on a large scale to a disease with 
relatively low prevalence. ELISA tests were argued to 
be efficient when trying to augment the sensitivity of 
testing of close contacts(45,47) or deciding to allow a 
person to leave from quarantine. This specificity may 
be further reduced when testing a person recently 
exposed to the milder coronaviruses circulating within 
humans and livestock. However, to our knowledge, 
this question has not been directly assessed.

IgG and IgM antibodies may appear simultaneously 
or sequentially, with cases of IgM antibodies appear-
ing last being described in one study.(47) Conversion 
from seronegativity to seropositivity is likely to occur 
between 14 and 21 days after the onset of symptoms. 
Data from some of these studies show that patients 
with more severe illness were more likely to mount a 
high-titer and high-affinity antibody response, which 
was not necessarily associated with a reduction in the 
viral RNA assayed from their blood.(48) This is sup-
ported by reports of recurring PCR positivity after 
IgG seroconversion.(49) If these studies become the 
prevalent findings, they may stand in stark contrast 
to well-established viral disease behaviors where high 
IgG levels are thought to denote virtual immunity 
to the disease, allowing at most a mild manifestation 
following re-exposure. It seems that in COVID-19, 
as our current understanding stands, antibody titers 
should be thought of as disease markers and not as 
definitive markers of immunity or disease resolution 
in the actively ill.

In antibody detection, different ELISA kits show 
variable results based on recombinant SARS-CoV-2 
N protein (rN) and recombinant S protein (rS). In 
a study of 214 patients with confirmed COVID-19, 
68% were diagnosed with rN-based IgM, 70% with an 
IgG, 77% with rS-based IgM, and 74% with IgG tests. 
The positive rates for rN-based and rS-based ELISA 
detections were 80% for IgM and 82% for IgG. The 
sensitivity of the rS-based ELISA for IgM was higher 
than that of the rN-based test. Here also, antibody 
positivity increased as disease time progressed.(50)

Another stratum of results expected from anti-
bodies is the identification of immune and recovered 
persons who may be able to work in critical locations 
during the times of pandemic. The ability to defini-
tively identify specific NAbs in the serum of recovered 
patients could also allow identifying potential plasma 
donors for the development of passive immunization 
and may assist in evaluating the effectiveness of vari-
ous treatments in addition to assisting in determining 
prognosis.(51)

Most convalescent plasmas obtained from individ-
uals who recover from COVID-19 do not contain 
high levels of NAbs. A recent analysis of plasma from 
149 individuals convalescing from COVID-19 that 
was collected an average of 39  days after the onset 
of symptoms showed variable half-maximal pseudo-
virus neutralizing titers below 1:50 in 33% and below 
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1:1,000 in 79%. Only 1% showed titers above 1:5,000. 
Expanded clones of RBD-specific memory B cells 
expressing closely related antibodies in different indi-
viduals were identified. The antibodies were directed 
against three distinct epitopes on the RBD. Rare but 
recurring RBD-specific antibodies with potent antivi-
ral activity were identified in all recovered subjects.(52) 
The relevance of the titers for clinical effect has yet to 
be determined.

A recent review analyzed the diagnostic accuracy of 
antibody tests for SARS-CoV-2 infection, for assess-
ing past infections, and for use in seroprevalence sur-
veys.(53) A total of 57 publications reporting cohorts 
with 15,976 samples, of which 8,526 were from cases 
of SARS-CoV-2 infection, were evaluated. These 
showed substantial heterogeneity in sensitivities of 
IgA, IgM, and IgG Abs or combinations thereof for 
results aggregated across different time periods post-
symptom onset. Pooled results for IgG, IgM, IgA, 
total antibodies, and IgG/IgM showed low sensitivity 
during the first week since onset of symptoms, rising 
in the second week, and reaching their highest val-
ues in the third week. The sensitivity of antibody tests 
was proposed to be too low in the first week since 
symptom onset to have a primary role for diagnosis 
but was suggested to have a role complementing other 
testing in individuals presenting later, when real-time 
PCR tests are negative. Antibody tests are useful for 
detecting previous SARS-CoV-2 infection if used 15 
or more days after the onset of symptoms.(53)

Several currently available COVID-19 antibody 
tests that are used in diagnostics and epidemiology, 
with a focus on their strengths and weaknesses, are 
summarized in Table 1.

Using Convalescent Plasma 
as a Therapy for COVID-19

The lack of specific SARS-CoV-2-targeted treat-
ments and vaccines poses great challenges for the 
management of patients with severe illness. IgG lev-
els against SARS-CoV, drawn from affected patients, 
reach peak serum concentration during the conva-
lescent phase and are reduced following recovery.(54) 
While the capacities of antibodies to neutralize the 
virus were highly variable in the required concentra-
tion, some of them indeed showed such capability and 
have been shown to provide protection against reinfec-
tion in a mouse model.(11) Use of convalescent plasma 
and development of NAbs are attractive methods for 
the treatment of viral infections.(55,56) Blocking mAbs 
with high antigen specificity have been proposed as 
potential candidates for neutralizing infections.(57-59)

Convalescent plasma has intermittently emerged 
during the last few decades as a treatment for various 
infectious diseases,(60-62) enjoying attention whenever 
diseases prove resistant to more conventional treatment 
methods. Plasma-derived NAbs can provide passive 
immune responses to viral infections and were effec-
tive in patients with severe illnesses caused by other 
viruses.(63,64) A meta-analysis showed that mortality 
was reduced after receiving various doses of convales-
cent plasma in patients with severe acute respiratory 
infections, with no adverse events or complications after 
treatment.(65) Antibodies from convalescent plasma 
were proposed to reduce viremia by enhancing viral 
clearance, blocking infection of new cells, and contrib-
uting in the clearance of infected cells.(56,66,67)

taBle 1. seVeRal CoViD-19 antiBoDy tests tHat aRe useD in DiagnostiCs anD epiDemiology

Technology Used Sensitivity Specificity Strengths Weaknesses

IgG CGIA(96) 29.7%-88.2% 98.8%-99.5% - High specificity
- LFA available kits low cost

- Low early sensitivity
- Scarce data after 35 days
- Neutralizing effect N/A

CLIA(124)

ELISA(125)

LFA(126)

IgM CGIA(96) 23.2%-75.4% 97.3%-99.6% - High specificity
- LFA available kits low cost

- Low early sensitivity
- Scarce data after 35 days
- Neutralizing effect N/A

CLIA(124)

ELISA(125)

LFA(126)

IgG/IgM CGIA(44) 30.1%-91.4% 94.1%-99.4% - High specificity
- LFA available kits low cost

- Low early sensitivity
- Scarce data after 35 days
- Neutralizing effect N/A

CLIA(127)

ELISA(128)

LFA(96)

Abbreviations: CGIA, colloidal gold immunoassay; CLIA, chemiluminescence immunoassay; LFA, lateral flow assay; N/A not applicable.
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During the 2003 SARS epidemic, severely ill 
patients who deteriorated despite treatment with 
methylprednisolone were given convalescent plasma 
at around the fourteenth day of disease onset. Earlier 
plasma administration correlated with a better progno-
sis and higher rate of hospital discharge at day 22.(63) 
Convalescent plasma or Igs were effective in patients 
with SARS whose condition continued to deteriorate. 
Some studies suggested a shorter hospital stay and 
lower mortality rate following convalescent plasma 
administration.(56,63,68-72) A similar trend for treat-
ment timing was described for 27 patients with Lassa 
fever in Nigeria treated with convalescent plasma.(73) 
The empirical use of convalescent plasma for Ebola 
virus disease showed some positive results.(64,74,75)

Experimental and clinical data on the use of con-
valescent plasma products and humanized monoclo-
nal antibodies for H5N1 influenza infection have also 
shown positive outcomes, and this treatment was pro-
posed as a means for overcoming antiviral drug resis-
tance.(61,76,77) In a study involving 20 patients with 
severe pandemic influenza A virus subtype H1N1 
2009 virus infection, administration of convalescent 
plasma reduced respiratory tract viral load, serum cyto-
kine response, and mortality.(59) A prospective cohort 
study during the 2009 pandemic showed reduction in 
the relative risk of mortality in patients treated with 
convalescent plasma, demonstrating reduction of viral 
loads without any adverse effects.(59) A randomized 
trial of convalescent plasma failed to achieve its pri-
mary endpoint, a reduction of mortality; however, a 
subgroup multivariate analysis performed on 22 of 
the 35 patients enrolled in the trial demonstrated that 
human intravenous Ig treatment was the only factor 
independently associated with reduced mortality.(78)

Development of NAbs against SARS-CoV-2 was 
proposed as a method for developing therapeutic agents 
for COVID-19.(10,23,35,79) Several SARS-CoV-2 pro-
teins (discussed above) prove attractive targets for NAbs. 
The SARS-CoV-2 S protein is a target for developing 
NAbs to block its binding and fusion.(35) Currently, no 
SARS-CoV-2-specific NAbs have been reported.(21) 
However, polyclonal antibodies from patients recovered 
from SARS-CoV-2 are being used to treat patients with 
severe infections. While many patients will develop an 
antibody response following their illness, specific char-
acterization of these antibodies and their properties as 
NAbs have yet to be determined.(47,48) Early adminis-
tration of convalescent plasma was advised in order to 
maximize its viral clearance effect.(80)

Plasma collection is done by apheresis. In order 
to qualify for donation, the donor must meet several 
conditions: diagnosis of prior COVID-19 infection 
confirmed by PCR, donation needs to take place 
14-28 days after resolution of the symptoms followed 
by two consecutive negative PCR results, donors need 
to be tested for absence of transmissible pathogens, 
and donation should be done from male or nul-
liparous female donors, with no previous exposure 
to blood products in order to minimize the risk of 
transfusion-associated acute lung injury. Plasma (200-
600 mL) is donated according to ABO compatibility. 
Pathogen inactivation measures need to be under-
taken.(81) It is advised to administer up to 2 units of 
plasma, possibly from two different donors.(81)

Several studies that described the administration 
of convalescent plasma to patients critically ill with 
COVID-19 suggested posttransfusion viral elimina-
tion and clinical improvement. A study of critically 
ill patients (N  =  5) reported clinical improvement in 
patients’ status and laboratory indication of viral clear-
ance for up to 12 days posttransfusion of two consecutive 
doses of convalescent plasma (total 400 mL).(82) Three 
of the patients were on mechanical ventilation and 2 on 
extracorporeal membrane oxygenation; treatment was 
provided between 10 and 20 days after hospitalization, 
following which improvements in fever, the ratio of arte-
rial oxygen partial pressure to fractional inspired oxygen, 
and viral clearance were noted. Three patients were dis-
charged from the hospital and 2 were in stable condition 
at the end of the follow-up period. Although a clinical 
effect was obtained, the delay of up to 3 weeks in admin-
istration and the concurrent use of other therapies make 
it difficult to assess the effect of plasma.(83)

Administration of convalescent plasma in 6 critically 
ill patients was followed by discontinued viral shedding 
3 days after infusion, without reducing mortality.(84) 
A study of 6 patients with COVID-19 showed clin-
ical, radiologic, and laboratory improvement follow-
ing administration of ABO-compatible convalescent 
plasma, indicating that this therapy is effective and spe-
cific.(85) In a study of 10 patients with severe disease, 
administration with 200  mL of convalescent plasma 
showed improved clinical, laboratory, and radiologic 
status without severe adverse effects.(86) In this study, 
the antibody titers of donors’ plasma were assessed and 
found to be elevated in the majority of donors, along 
with a concurrent increase in NAb titers in the patients’ 
sera following transfusion. Treatment within 2 weeks of 
initial symptoms improved the response.(86) Differences 
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in outcomes between the studies may reflect tempo-
ral variations of administration, including the time lag 
between plasma donation and administration as well as 
the time from disease detection to treatment.

Safety evaluation of candidate antibodies must not 
be overlooked. Although antibodies are generally pro-
tective, the antibody-dependent enhancement (ADE) 
phenomenon of viral infections is documented for 
dengue virus and other viruses.(87) In SARS- CoV 
infection, ADE is mediated by the engagement of Fc 
receptors (FcRs) expressed on various immune cells, 
including monocytes, macrophages, and B cells.(88) 
Preexisting SARS-CoV-specific antibodies were pro-
posed to promote viral entry into FcR-expressing 
cells. Internalization of virus–antibody immune com-
plexes may induce inflammation and tissue injury by 
activating myeloid cells through FcRs.(88)

Several putative and proven NAb interactions in 
COVID-19, such as antibody targets and functions, 
including those associated with disruption and non-
disruption binding mechanisms and those target-
ing the virus itself, are shown in Fig. 2. In addition, 
non-neutralizing antibodies, cross-reactive antibodies, 

and antibodies with low specificity or low titers, which 
are unable to act as Nabs, are also generated.

Several large trials using convalescent plasma are 
being conducted.(89) Identifying and cloning mAbs 
that target viral proteins to block entry into host 
cells is being explored for preventing and treating 
COVID-19.(29,35) Computational simulation of anti-
body–antigen complexes can improve the design of 
these therapies. Key residues between RBD and NAbs 
can be identified, and models are being used to assess 
the interaction between S protein and human ACE2 
or antibodies.(27,35,90-93)

Methods for Improving 
Potential Use of Antibodies 
for COVID-19 Treatment

Several methods for improving the effectiveness 
of convalescent plasma or NAbs are being consid-
ered. The outcomes of passive convalescent plasma 

Fig. 2. Several putative and proven NAbs in COVID-19 antibody targets and functions. Abbeviation: Abs, antibodies.
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therapy from recovered donors are unpredictable 
due to variability among donors in both the levels 
and types of antibodies.(94) Appropriate selection of 
donors is required for improving the quality of col-
lected plasma. Assessment of antibody titers needs 
to be performed before harvesting due to marked 
variability in titers among donors. Titers correlate 
with disease severity, timing of donation, use of ste-
roids during acute illness,(95,96) and quality of anti-
bodies (i.e., whether they are NAbs or not). Timing 
of plasmapheresis is a major factor as lower levels 
of antibodies are detected within the first 2 weeks 
following recovery.(47) More data are required on the 
amount of virus neutralization by antibodies follow-
ing exposure to convalescent plasma. In vitro testing 
for neutralizing and/or cross-neutralizing activity 
and in vivo evaluation in available COVID-19 ani-
mal models for protective efficacy along with pre-
clinical studies and clinical trials testing safety and 
efficacy are needed for optimizing this therapeutic 
option.(21)

The sex of the donor also plays a role in mount-
ing a significant response. The degree of activation of 
immune cells is higher in women than in men, which 
correlates with triggering of TLR7 and production 
of proinflammatory cytokines. TLR7 is expressed in 
innate immune cells, which recognize single-strand 
RNA virus by promoting production of viral antibod-
ies and the generation of interleukin (IL)-6 and IL-1 
inflammatory cytokines. TLR7 is higher in women 
than in men, and its expression may lead to better 
immune responses and increased resistance to viral 
infections.(14) Pairing human leukocyte antigen typing 
with COVID-19 was proposed to improve the assess-
ment of disease severity and assist in preferred donor 
selection.(97)

The use of hyperimmune globulin rather than 
whole plasma was proposed for improving the efficacy 
and validity of the therapy. The main advantages are 
associated with an ability to provide patients with con-
trolled quantities of antibodies in lower volumes.(82) 
Similar techniques for concentrating antibodies are 
being used for the treatment and prevention of other 
diseases.(98) This is similar to the concept of using 
hyperimmune globulin for various indications, includ-
ing viral diseases in immunocompetent and immu-
nocompromised hosts.(99-101) A “cocktail antibody 
approach” for SARS-CoV-2 was proposed based on 
studies suggesting that the combination of antibodies 

from diverse donors may exert a synergistic neutral-
ization effect.(35) A mixture of two antibodies showed 
a synergistic neutralization effect due to recognition 
of different epitopes on the RBD.(102)

Use of immune adjuvants may also improve the 
response to the antibodies.(103) Sphingolipid-based 
adjuvants, when administered with antibodies, aug-
mented the antiviral response(104) and improved 
the systemic anti-inflammatory effects of antibod-
ies.(105) Use of hyperimmune bovine colostrum com-
prised of antibodies and sphingolipids was effective 
in reducing systemic inflammation.(106-108) Mode of 
antibody administration may also have an impact on 
the effect of antibody-based therapy. Oral admin-
istration of antibodies ameliorated viral-mediated 
chronic inflammation by promotion of regulatory T 
cells,(109) and oral administration of viral antigens 
augmented an antiviral immunity while reducing 
inflammation.(110,111)

Data on the possible harmful effects of antibody- 
mediated immune response in the development of 
pulmonary complications of SARS-CoV is controver-
sial. Several patients who died of SARS manifested 
strong NAb responses and pulmonary inflammation, 
suggesting that the NAbs could be associated with 
deterioration of the lung disease.(35,112) Similar notions 
have been proposed for explaining the more severe 
phenotype of COVID-19 prevalent in China. This 
may be related to the higher degree of exposure to 
milder coronaviruses and a "priming" of the immune 
system by preexisting antibodies, leading to immune 
dysfunction and overfunction.(113) This notion is sup-
ported by mild disease manifestations in patients with 
agammaglobulinemia.(114) Previous exposure to coro-
naviruses may also explain a relatively high prevalence 
of S protein-reactive CD4 cells in healthy donors in 
a study.(115)

A major obstacle for implementing immune-based 
therapies for the viruses, including the administra-
tion of mAbs, is associated with development of viral 
resistance due to immune evasion mechanisms, which 
the virus generates in response to the immune pres-
sure imposed on it by immunomodulatory agents.(116) 
Prolonged exposure to antiviral drugs is associated 
with drug resistance, leading to persistent viremia 
or severe disease. In cases where antiviral treatment 
is highly effective, leading to viral elimination, resis-
tance is less likely to occur. However, immunotherapy, 
including administration of antibodies, is associated 
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with selective pressure that may result in rapid viral 
and host adaptations leading to resistance to the ther-
apy.(117) Both host and viral factors are associated with 
development of resistance. Viral-related tools include 
mechanisms of viral replication, genomic inference, 
and high rates of viral mutations.(117-119)

An immune adaptation process toward antibody- 
induced pressure on the virus or on antiviral humoral 
and cellular responses may limit the efficacy and lon-
gevity of these therapies. A combination of several 
potent NAbs could improve the sensitivity to neu-
tralization.(35) Methods for overcoming resistance by 
implementing host-tailored variability are being devel-
oped based on data generated from the use of these 
methods for improving the effects of other immuno-
modulatory drugs.(120-123) These include implement-
ing artificial intelligence methods for overcoming host 
compensatory responses in sepsis and its sequel(120) and 
for improving the effects of adjuvants.(122) Algorithm-
controlled treatment regimens are now being used in 
several clinical trials for overcoming drug resistance 
(NCT03843697; NCT03747705).

Concluding Remarks
The lack of accurate diagnostic and effective 

therapeutic methods for patients infected with 
SARS-CoV-2 led to the need to develop humor-
al-based approaches. While this approach holds 
promise, more data are needed for optimizing 
antibody-based diagnosis and for improving the 
implementation of convalescent plasma and other 
antibody-based therapies. The potential develop-
ment of effective vaccines will benefit from the 
results achieved from these diagnostic and thera-
peutic attempts. Immunotherapeutic methods are 
expected to require targeting the cellular arm of the 
immune system either in addition to or as part of 
the design of antibody-based approaches, mainly for 
alleviating immune-mediated target organ damage 
in COVID-19.
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