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Different applications of near-infrared fluorescence-guided surgery are very
promising, and techniques that help surgeons in intraoperative guidance
have been developed, thereby bridging the gap between preoperative
imaging and intraoperative visualization and palpation. Thus, these
techniques are advantageous in terms of being faster, safer, less invasive,
and cheaper. There are a few fluorescent dyes available, but the most
commonly used dye is indocyanine green. It can be used in its natural form,
but different nanocapsulated and targeted modifications are possible, making
this dye more stable and specific. A new active tumor-targeting strategy is
the conjugation of indocyanine green nanoparticles with antibodies, making
this dye targeted and highly selective to various tumor proteins. In this mini-
review, we discuss the application of near-infrared fluorescence-guided
techniques in thoracic surgery. During lung surgery, it can help find small,
non-palpable, or additional tumor nodules, it is also useful for finding the
sentinel lymph node and identifying the proper intersegmental plane for
segmentectomies. Furthermore, it can help visualize the thoracic duct,
smaller bullae of the lung, phrenic nerve, or pleural nodules. We summarize
current applications and provide a framework for future applications and
development.
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Introduction

Surgery is the frontline treatment for most types of solid tumors (1). Obtaining

negative margins of excision is essential to improve the patients’ survival rate and

quality of life. Complete removal of tumor tissue is critical for prolonged survival (2–

4). Despite various advancements in preoperative imaging, the rate of positive

resection margins has not decreased in recent years (4). While preoperative imaging
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modalities, such as computed tomography (CT), magnetic

resonance imaging (MRI), and positron emission

tomography-CT, have shown significant development within

the past decades, the intraoperative evaluation of the resection

margins is still based on surgeon’s inspection and finger

palpation. Radiography or ultrasound imaging can be used as

additional tools for intraoperative guidance, but these tools

are often insufficient and highly operator-dependent (5),

mainly in thoracic surgery. Intraoperative MRI and CT can

also play a significant role; however, these systems are very

complex and expensive and are used mainly for neurosurgery

at major, selected, leading centers (6).

During the last 2 decades, the intraoperative use of invisible

near-infrared (NIR) fluorescence imaging has started to find its

role in the surgical theater, filling the gap between preoperative

imaging and intraoperative findings (7). NIR fluorescence

imaging systems use a special camera to detect the infrared

light emitted by a fluorescent dye after excitation by a

specified infrared light. All these systems can be integrated

into a camera used during open surgery or within

laparoscopic or robotic instruments. Nowadays, different NIR

systems have been developed, such as „Novadaq SPYTM

system, Hamamatsu’s Photodynamic Eye, ArtemisTM,

Fluoptics’ Fluobeam, functional intraoperative FMI systems:

FLARETM imaging system” etc (7).

There are several advantages to using NIR light-imaging

systems. While visible light can travel to the tissue only a few

microns, NIR light (700–900 nm) can penetrate even up to

centimeters through different tissues (8). As the tissue shows

minimal autofluorescence in the infared spectrum, the so-

called signal-to-background ratio can be maximized, when

using NIR fluorescent dyes, creating “white stars in a black

sky” (9), achieving optimal contrast during imaging. In

addition, using this technique there is no use of ionizing

radiation, making it basically safe. Furthermore, as NIR light

is not visible to the human eye, it does not affect the

surgeon’s vision (7).
Fluorophores used for NIR
fluorescence guided surgery

Indocyanine green (ICG)

Indocyanine green (ICG) is the dye that is used most

frequently for NIR guidance (Supplementary Table S1). It is

a water-soluble, amphiphilic, tricarbocyanine fluorophore with

a molecular weight of approximately 775 D and an absorption

and fluorescence spectrum in the NIR region (10). When

administered systemically, the ICG forms nanoparticles by

rapidly binding to plasma proteins and lipoproteins. The liver

takes up and excretes more than 80% of the available ICG

into the bile within 18 h of administration (10). ICG is safe at
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systemic doses as high as 5 mg/kg, although some cases of

anaphylaxis have been reported (11). Wavelengths of

excitation and emission are approximately 805 and 830 nm,

when ICG is dissolved in blood (11). The 830 nm wavelenght

of emission spectrum of ICG shows tissue penetration to up

to 15 mm, and there is almost no autofluorescence from

endogenous tissues (12). Having of the amphiphilic features

and protein-binding attributes of ICG, it is able to migrate

within lymphatic veins. Furthermore, ICG is quite cheap,

non-toxic, Food and Drug Adminsitration (FDA)-approved,

and readily available, making it an optimal dye for NIR

fluorescence guidance. Currently, the FDA specifically

approves of using ICG for cardiac output tests, hepatic

function tests, and ophthalmic angiography (11).

However, ICG also has some disadvantages, such as

moderate photostability, a relatively narrow fluorescence

quantum yield, a high propensity to bind plasma proteins and

aggregation in water solutions (13). Most of all, ICG is not

able to bind specifically to tumor cells and accumulates only

aspecifically in tumor tissue (14).

However, there is a way to utilize the advantageous features

of ICG and offset its disadvantages, that is, to design NIR

nanocomplexes created with ICG, highly selective for tumors,

showing high tumor-to-background ratios, and negligible

toxicity (15–19). The targeting of ICG with nanocomplexes

provides its protection and extends its circulation time, while

the connection of the appropriate target proteins leads to

tissue-specific labeling. Using nanoparticles, objects between 5

and 200 nm in size have increased efficacy, specificity, and

biostability, especially in terms of the fluorescent agent. The

second generation so-called stealthy nanoparticles underwent

surface changes allowing them to avoid the immune cells;

therefore, the plasma half-life is significantly increased (20).

Third-generation nanocomplexes are stealthy and targeted,

and their surfaces are functionalized with biologically active

proteins that recognize specific tumor molecules (20).
Passive tumor targeting

Passive targeting of tumor tissue by nanocomplexes is based

on the enhanced permeability and retention (EPR) effect. The

EPR effect is derived from incomplete and pokey vessel

formation in solid tumors with relatively hugh gaps between

endothelial cells, resulting in accumulation of nanomolecules

(21–23). Tumor-induced neovascularization is poorly

structured, leading to increased extravasation of molecules

that can go through the discontinuities of the endothelial

layer, ranging from 200 to 2,000 nm. After extravasation,

larger particles are preferentially retained in the tumor, thanks

to the absence of functioning lymphatic system (24).

However, due to the variability of the vascular system, tumor

stroma, and lymphatic drainage, the EPR effect depends on
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the tumor type and location. Thus nanoparticles are useful

methods of tumor targeting, but can be used only in certain

cases. For example, EPR is more pronounced in small tumors,

which is probably due to the higher density of vessels than

that in large tumors with frequently necrotic areas (25).

There are two main types of ICG nanoparticles: inorganic

nanoparticles and mesoporous silica nanoparticles, which have

excellent biocompatibility and easy functionalization with

different compounds (26). Calcium phosphate nanocomplexes

can be applied during in vivo tumor imaging and drug, gene,

or small interference RNA delivery (27). In addition, these

nanoparticles are non-toxic (27). Furthermore, a magnetic

carbon nanoparticle with ICG was developed for combined

fluorescence and MRI imaging (28). Some organic

nanoparticles have been developed over the years, such as

poly (lactic-co-glycolic acid) (PLGA) carriers, liposomes, and

nanoparticles, in which ICG was encoated in the centre of a

polymeric micelle, self-assembled from amphiphilic

polyethylene glycol (PEG)-polypeptide hybrid triblock

copolymers of poly(ethylene glycol)-b-poly(L-lysine)-b-poly

(L-leucine) (PEG-PLL-PLLeu), with PLLeu as the hydrophobic

core and PEG as the hydrophilic shell, which has been

effective in mice for targeting non-small cell lung carcinoma

(29). Studies have demonstrated that encapsulation of ICG

into polymer-based nanocomplexes positively affects the

nature of ICG (30–32). Organic nanocomplexes show great

passive tumor-targeting feature and extended circulation time.

They are released gradually and slowly, which does not allow

the strong binding of ICG to nonspecific proteins and the

rapid elimination via the kidneys ((30–32)
Active tumor targeting

The use of nanocomplexes loaded with ICG for active

tumor targeting is based on two elements: the target molecule

and recognition of the target. The target protein must be

present on the cell surface, be characteristic to the tumor, or

leastwise be expressed more pronounced in tumors (33, 34).

Numerous tumors, mainly breast and brain tumors,

overexpress folate receptors, which makes folic acid an

adequate ligand active targeting of these tumors (33, 34). ICG

nanocomplexes with hyaluronic acid allow passive targeting

by the EPR effect due to nanoparticles. And these

nanocomplexes make possible active targeting as well, thanks

to the affinity of hyaluronic acid for CD44 (33, 34).

The new active tumor-targeting strategy involves the

conjugation of ICG nanoparticles with antibodies. Antibodies

against human epidermal growth factor receptor 2 (HER-2)

are in the center of interest for the imaging of active tumor

targeting (35, 36). For example, HER-2 plays role in the

developement of different tumors such as non-small cell lung

cancer. Different forms of nanocomplexes have been
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examined, such as nanocapsules, erythrocytederived

transducers (37), and silica nanocomplexes (36). All these

forms have showed significantly higher fluorescence in cells

overexpressing HER-2 than in tumor cells underexpressing

HER-2 (36). ICG can be conjugated with other antibodies

such as daclizumab, trastuzumab, and anti-integrin αvβ6

antibodies. Furthermore, ICG can be conjugated with

antibody fragments with desirable pharmacokinetic

characteristics. Because of this, Sano et al. published an

activatable optical imaging molecule made of a PSMA-

targeted cys diabody joined with ICG (38). This probe is

activated solely when connects to the tumor, which results

significant signal-to-background ratios. Finally, ICG can be

conjugated with other ligands, such as chlorotoxin (39), which

is a scorpion venom derivate and has binding proteins in

several solid tumors (40).
5-Aminolevulinic ACID

5-Aminolevulinic acid (5-ALA) is the main substrate for

protoporphyrin synthesis and has been used during fluorescence

imaging for tumor detection and during photodynamic therapy

for several years. 5-ALA is transformed into heme by the

ferrochelatase enzyme. The expression and density of this

enzyme is low in tumor cells, leading to the accumulation of

Pp-IX. The differences in concentration and pharmacokinetics

between normal and tumor cells unburden the use of 5-ALA

for diagnosis and treatment of malignant tumors (41).
EC17

EC17 is one of the folate analoges joined with fluorescein

isothiocyanate with absorption and fluorescence spectrum in

the near-infrared and visible-light (42). EC17 is a good choice

because the folate receptor-alpha (FRα) is highly expressed in

some epithelial carcinomas, including pulmonary

adenocarcinomas (43, 44). The main disadvantage of EC17 in

preclinical studies are its poor penetration depth and

significant tissue autofluorescence thanks to the fluorescence

in the visible-light spectrum (42).
OTL38

OTL38, another folate analog, owes the major advantages of

NIR dyes, like good penetration depth into solid tissue and

slight autofluorescence in the NIR spectrum due to the

decreased light dispersion and absorption in the blood. This

promotes the differentiation between dye-rich tumor tissues and

normal tissues that do not accumulate this folate analog, thereby

the signal-to-noise ratio is significantly increased (45, 46).
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Other fluorophores

Other experimental fluorescence dyes, such as C700-OMe,

have been found effective in NIR fluorescence imaging of

costal cartilage in certain mice and pigs (47). Park et al.

produced a series of oxazine derivates and found that oxazine

4 (Ox4) likely binds to the myelin sheath (48). Unfortunately,

these dyes are still in the experimental phase, and no

fluorophores have been successfully developed to specifically

target the thymus.
NIR fluorescence-guided surgery of
the lung

Identifying small nodules and performing adequate

lymphadenectomy while performing parenchyma-preserving

radical surgery without complications are challenging for

thoracic surgeons (48–50).
TABLE 1 Different applications of near-infrared fluorescence-guidance in th

LUNG

Study Year Dose

Intersegmental plane Misaki (56) 2009 25 mg
Mun (57) 2017 0,25 mg/kg
Guigard (58) 2017 25 mg
Meacci (59) 2018 12,5–17,5 mg
Pschlik (60) 2018 0,15 mg/kg
Bedat (61) 2018 12,5 mg
Chen (62) 2019 25 mg
Jin (63) 2019 0,5 mg/kg
Motono (64) 2019 5 mg
Yotsukura (65) 2021 0,25 mg/kg
Sun (66) 2021 5 mg
Oh (67) 2013 25 mg
Wada (68) 2020 10–15 mg
Sekine (55) 2012 10 mg

Pulmonary nodule identification Doo (69) 2015 0,2 ml
Ujie (70) 2017 0,15 ml
Wen (71) 2018 0,5 ml
Wu (72) 2021 1–2,5 mg
Jiang (73) 2015 0,7–10 mg/kg
Okusanya (74) 2014 5 mg/kg
Predina (78) 2017 OTL38:0,025 mg/kg iv.
Kim (79) 2016 1 mg/kg
Hamaji (80) 2019 0,25 mg/kg
Predina (81) 2019 5 mg/kg

Sentinel lymph node Yamashita (84) 2011 10 mg
Gilmore (87) 2021
Hachey (88) 2017 0,5 ml
Digesu (90) 2018 0,5 ml

Thoracic duct Kamiya (91) 2009 7,5 mg
Matsutani (92) 2014 7,5 mg
Vecchiato (93) 2020 1,5 mg/kg
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Segmentectomy-intersegmental plane
identification

Traditionally, the inflation and deflation technique has been

used for intersegmental plane identification, owing to difficulties

in emphysematous lungs and obstruction of the surgical view

mainly during VATS procedures. To avoid these problems,

other techniques have been developed, such as selective

bronchoscopic ventilation of the affected bronchus, inflation

of the selected bronchus by instilling oxygen through a

butterfly needle, slip-knot ligation of the bronchus, or

selective dye administration into the segmental pulmonary

bronchus or artery (51–55).

In 2009, Misaki et al. conducted an experimental study on

dogs and demonstrated the feasibility of intersegmental plain

identification using near-infrared imaging after intravenous

administration of ICG (56). During the surgery, immediately

after the identification and division of the segmental arteries,

ICG was injected through a peripheral vein (56–63). The

practical details are listed in Table 1. In emphysematous and

bullous lungs, the blood flow is lower than that in the normal
oracic surgery.

Administration route Interval Number of patients

iv. 30–90s dogs
30–90s 22

24

86
67
19
21
22
209
198

Intrabronchial 40
Intrabronchial 15
iv. 10

Intratumoral inj. 34
Intratumoral inj. 20
Intratumoral inj. 26
Intratumoral inj. 32
iv. 1 min-72 h mice
iv. 24 h 16

3–6 h 20
24 h 11

iv. 12–24 h 22
iv. 24 h 30

Peritumoral 10 min 31
Peritumoral before surgery 29
Peritumoral (bronchoscopy) before surgery 20
Peritumoral 42

Bilateral inguinal 14 min 1 (case report)
Bilateral inguinal 10 min 1 (case report)
Bilateral inguinal lymph nodes 10,5 min 19
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lung; therefore, visualization is more problematic, requiring a

repeat and a higher dose of ICG (64). All authors emphasized

the importance of proper preoperative evaluation with

multiplanar CT and 3D reconstruction to identify segmental

arterial branches because anatomical variations are quite

frequent. Bedat et al. reported that NIR angiography results

modified the surgical technique in 10% of patients. Additional

arterial branch ligation or more extensive parenchymal

resection has been indicated (61). In conclusion, NIR

angiography is a safe, easy-to-reproduce, effective, and

inexpensive method to improve the quality of VATS

segmentectomy (Figure 1). Altough there is an animal study

of intersegmental plane identification by direct injection of

the dye into the segmental pulmonary arteries (54), there has

been no study about using the fluorescence dye by this

technique among clinical circumstances, and all authors have

used the previously summarized the negative staining method.

ICG can also be injected into the segmental bronchi. Oh

et al. reported about a segmentectomy technique (67). In

their prospective study during video-assisted open lung

segmentectomy, after ligation or stapling of the segmental

artery, vein, and bronchus, they injected ICG into the

peripheral bronchus; thus, they were able to visualize the

intersegmental border not only at the lung surface but also

in the deep lung parenchyma. This technique has not

become popular, perhaps because it first requires the

division of all hilar structures. Wada et al. used an

ultrathin bronchoscope to inject ICG into the targeted

segmental or subsegmental bronchus immediately after

intubation (68).
FIGURE 1

Intersegmental plane identification using ICG during VATS segmentectomy.
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Pulmonary nodule identification

In clinical practice, the intraoperative identification of small

nodules during VATS is often difficult because of the loss of

tactile feedback. Different methods have been developed to

localize these lesions, such as preoperative microcoils,

hookwire implantation, and dye injection (55, 69). Several

authors have reported the use of ICG injection into the tumor

preoperatively, with promising results (70–72). Uije et al.

injected ICG and deployed a coil into the tumor, and after

fluoroscopic localization, VATS resection was performed as a

standard procedure (70). The NIR signal was detected in 90%

of cases, and this method was found to be problematic when

the tumor was deeply located (4.8 cm of the pleura) or when

they had difficulties in deflating the lung.

Jiang et al. showed that ICG can be used for NIR imaging of

lung tumors owing to the EPR effect (73). Okusenya et al. also

used this method and performed open thoracotomy (74). They

identified all 18 primary pulmonary nodules and no additional

lesions by palpation and inspection. Intraoperative NIR imaging

was able to discover 16 of the 18 primary nodules and

discovered five additional nodules (74). NIR imaging could

detect nodules as small as 0.2-cm and a wide histological

range of primary tumors, independent of metabolic activity,

tumor grade, and vascularity. The only important factor was

the depth of tumor localization; subcentimeter nodules were

detectable when they were not deeper than 1 cm in the

collapsed lung, and larger nodules could have been imaged

slightly deeper in the lung. The same group investigated the

use of EC17, a folate analog, as folate receptor alpha is highly
frontiersin.org

https://doi.org/10.3389/fsurg.2022.919739
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


Géczi et al. 10.3389/fsurg.2022.919739
expressed in lung adenocarcinoma cells (75). In their study, they

were able to detect 92% of proven lung adenocarcinomas using

EC17 after resection, and the undetected tumors did not express

folate receptors (76). Using OTL38, they reported improved

specificity compared with that of ICG, improved depth of

penetration compared with that of EC17, and presence of

small, malignant additional nodules not seen on preoperative

imaging (78). In a pilot study, Kim et al. used a lower dose

(1 mg/kg) of ICG administration 24 h before surgery and after

resection, and all specimens were examined for fluorescence

signalling (77–80). In most patients, fluorescence signals could

have been detected even in tumors as small as 3 mm.

Fluorescence intensity was independent of the size, depth,

metabolic activity, and pathology of the tumor; however,

because of the passive accumulation of ICG, it was not

possible to distinguish between a tumor and a inflammatory

lesion.

By administering high doses (5 mg/kg of ICG)

intravenouslythe day before surgery, Predina et al. could

detect 89.1% of pulmonary sarcoma metastases and NIR

imaging aided in detecting 24 additional and otherwise

undetectable nodules in 20 patients (81). Nodule

fluorescence did not depend on the histologal type but was

best suited for tumorss at a maximum distance of 2 cm

from the pleura.
Sentinel lymph node identification

The concept of sentinel lymph node mapping has been

successfully incorporated into the treatment of many solid

tumors; but unfortunately, there is no fully reliable method

available for sentinel lymph node evaluation in non-small cell

lung cancer. An estimated 20% of sentinel lymph nodes

bypass the closest lymph node station and skip to the

mediastinal nodes. By failing to sample the hilar and

mediastinal nodes, we can easily miss these skip metastases,

and untreated occult micrometastatic disease results decrease

in survival and an increase in recurrent tumor (82, 83). The

use of blue dye and isotopes was not successful because of the

anthracotic nodes and procedural feasibility.

Yamashita et al. were the first to report a series of NIR

fluorescence-guided lung cancer sentinel lymph node mapping

using ICG (84). ICG (10 mg) was administered peritumorally

and sentinel lymph nodes were detectable in 80.3% of the

patients; ICG leakage was the main reason for the failure. In

an animal study, Soltesz et al. examined the feasibility of

intraparenchymally injected NIR quantum dots (85, 86) and

successfully identified sentinel lymph nodes in 100% of

injections.

ICG is the most extensively investigated fluorophore for

sentinel lymph node mapping. Gilmore et al. investigated the

safety and feasibility of NIR imaging by administering
Frontiers in Surgery 06
peritumoral and subpleural injections of ICG in 29 patients

who underwent thoracotomy and VATS lung resection (87).

After the ICG injection, a short interval of lung ventilation

was necessary to improve lymphatic drainage and at least

5 min for up to 20 min of lymphatic mapping was satisfactory

in most cases. In a prospective study published by the same

group, to avoid ICG spillage and other technical problems, 20

patients underwent navigational bronchoscopy-guided

marking with ICG of lung lesions and achieved an 80%

sentinel lymph node detection rate (88). The sentinel lymph

node pathologic status was 100% sensitive and specific for

overall nodal status. Hachey et al. also proved that NIR-

guided sentinel lymph node status is 100% concordant with

the final overall pathological nodal status, and extensive

analysis of the sentinel lymph node can improve the

detectabilty of micrometastasis (88–90). Thus NIR

fluorescence guided sentinel lymph node mapping leads to

upstaging of the tumor and initiate adjuvant therapy (88–90).
Thoracic duct and chyle fistula
identification

Thoracic duct and chyle fistula identification is often

problematic because of inflammation and edema of the

operative field after thoracic surgery. Several case reports

(Ashite, Matsumati) have shown that inguinally

administered ICG-guided fluorescence lymphography aided

in successful visualization of the thoracic duct; thus, chyle

fistula closure and thoracic duct ligation could have been

performed by VATS, open, or even through the

transabdominal approach (91–93). Vecchiato et al. reported

that the identification rate of the thoracic duct was 100%,

with a clear visualization of the duct, tributaries, and an

aberrant duct (93). Fluorescence could have been detected

until the end of the operation in all patients. They used

ultrasound guidance for inguinal lymph node injection of

0.5 mg/kg if diluted ICG was used. They also stated that

fluorescence guidance allows safe dissection and could help

surgeons preserve the thoracic duct integrity.
Conclusion and future perspectives

NIR fluorescence-guided imaging is an emerging new

technique that provides various new methods in several fields

of thoracic surgery. ICG is the most extensively used

fluorophore and has the potential to improve patient

management. Almost immediately after intravenous injection,

it can identify intersegmental planes of the lung, making

segmentectomies more accurate. After peritumoral injection, it

can help identify sentinel lymph nodes and visualize the

lymphatic drainage route during lung resections, thus
frontiersin.org

https://doi.org/10.3389/fsurg.2022.919739
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


Géczi et al. 10.3389/fsurg.2022.919739
providing proper lymphadenectomy and N staging or can help

to treat complications such as chylorrhea by identifying the

thoracic duct. NIR fluorescence-guided sentinel lymph node

mapping can identify the sentinel lymph node correctly,

facilitating the identification of micrometastases, thus

providing correct staging and potentially better survival. Using

the so-called EPR, a passive targeting effect, 24 h after high-

dose administration of ICG, can visualize even small

pulmonary nodules, filling the vacuum after the loss of tactile

feedback during VATS. Other fluorescent dyes, such as

OTL38, are more specific to adenocarcinomas but are not

widely used.

In the future, it is expected that NIR will be more widely

accepted and used worldwide and will improve patient care.

Fluorescence dye development is an active area of research,

and active targeting molecules and dyes will be developed that

are specific to tumor cells; thus, NIR imaging will be more

accurate. NIR fluorescence guided surgery is safety and easy,

thus learning curve of this new method is smooth and quick

and can be inserted into educational programes easily, which

will help its worldwide spreading.
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