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Abstract: Pneumonia is an acute respiratory infectious disease caused by bacteria, fungi, or viruses.
Fluid-filled lungs due to the disease result in painful breathing difficulties and reduced oxygen intake.
Effective diagnosis is critical for appropriate and timely treatment and improving survival. Chest
X-rays (CXRs) are routinely used to screen for the infection. Computer-aided detection methods
using conventional deep learning (DL) models for identifying pneumonia-consistent manifestations
in CXRs have demonstrated superiority over traditional machine learning approaches. However,
their performance is still inadequate to aid in clinical decision-making. This study improves upon the
state of the art as follows. Specifically, we train a DL classifier on large collections of CXR images
to develop a CXR modality-specific model. Next, we use this model as the classifier backbone in
the RetinaNet object detection network. We also initialize this backbone using random weights and
ImageNet-pretrained weights. Finally, we construct an ensemble of the best-performing models
resulting in improved detection of pneumonia-consistent findings. Experimental results demonstrate
that an ensemble of the top-3 performing RetinaNet models outperformed individual models in
terms of the mean average precision (mAP) metric (0.3272, 95% CI: (0.3006,0.3538)) toward this task,
which is markedly higher than the state of the art (mAP: 0.2547). This performance improvement is
attributed to the key modifications in initializing the weights of classifier backbones and constructing
model ensembles to reduce prediction variance compared to individual constituent models.

Keywords: chest X-ray; deep learning; modality-specific knowledge; object detection; RetinaNet;
ensemble learning; pneumonia; mean average precision

1. Introduction

Pneumonia is an acute respiratory infectious disease that can be caused by various
pathogens such as bacteria, fungi, or viruses [1]. The infection affects the alveoli in the
lungs by filling them up with fluid or pus, thereby resulting in reduced intake of oxygen
and causing difficulties in breathing. The potency of the disease depends on several factors
including age, health, and the source of infection. According to the World Health Organi-
zation (WHO) report (https://www.who.int/news-room/fact-sheets/detail /pneumonia,
accessed on 11 December 2021), pneumonia is reported to be an infectious disease that
results in a higher mortality rate, particularly in children. About 22% of all deaths in
pediatrics from 1 to 5 years of age are reported to result from this infection. Effective
diagnosis and treatment of pneumonia are therefore critical to improving patient care and
survival rate.

Chest X-rays (CXRs) are commonly used to screen for pneumonia infection [2,3]. Anal-
ysis of CXR images can be particularly challenging in low and middle-income countries
due to a lack of expert resources, socio-economic factors, etc. [4]. Computer-aided detection
systems using conventional deep learning (DL) methods, a sub-class of machine learning
(ML) algorithms can alleviate this burden and have demonstrated superiority over tradi-
tional machine learning methods in detecting disease regions of interest (ROIs) [5,6]. Such
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algorithms (i) automatically detect pneumonia-consistent manifestations on CXRs; and
(ii) can support clinical-decision making by facilitating swift referrals for critical cases to
improve patient care.

1.1. Related Works

A study of the literature reveals several studies that propose automated methods
using DL models for detecting pneumonia-consistent manifestations on CXRs. How-
ever, DL models vary in their architecture and learn discriminative features from dif-
ferent regions in the feature space. They are observed to be highly sensitive to data
fluctuations resulting in poor generalizability due to varying degrees of biases and vari-
ances. An approach to achieving a low bias and variance and ensuring reliable out-
comes is using ensemble learning which is an established ML paradigm that combines
predictions from multiple diverse DL models and improves performance compared to
individual constituent models [7]. The authors of [8] proposed an ensemble of Faster-
RCNN [9], Yolov5 [8], and EfficientDet [8] models to localize and predict bounding
boxes containing pneumonia-consistent findings in the publicly available VinDr-CXR [8]
dataset and reported a mean Average Precision (mAP) of 0.292. The following meth-
ods used ensembled object detection models to detect pneumonia-consistent findings
using the CXR collection hosted for the RSNA Kaggle pneumonia detection challenge
(https:/ /www.kaggle.com/c/rsna-pneumonia-detection-challenge accessed on 3 March
2022). The current state-of-the-art method according to the challenge leaderboard (https:
/ /www.kaggle.com/competitions/rsna-pneumonia-detection-challenge /leaderboard ac-
cessed on 3 March 2022) has a mAP of 0.2547. In [10], an ensemble of RetinaNet [11]
and Mask RCNN models with ResNet-50 and ResNet-101 classifier backbones delivered a
performance with a mAP of 0.2283 using the RSNA Kaggle pneumonia detection challenge
CXR dataset. Another study [12] proposed a weighted-voting ensemble of the predic-
tions from Mask R-CNN and RetinaNet models to achieve an mAP of 0.2174 in detecting
pneumonia-consistent manifestations. These studies used the randomized test set split
from the challenge-provided training data. This is a serious concern since the organizers
have not made the blinded test set used during the challenge available for further use. This
cripples follow-on research, such as ours, from making fair comparisons.

1.2. Rationale for the Study

All above studies used off-the-shelf DL object detection models with ImageNet [13]
pretrained classifier backbones. However, ImageNet is a collection of stock photographic
images whose visual characteristics, including shape and texture among others, are distinct
from CXRs. As well, the disease-specific ROIs in CXRs are relatively small and many go
unnoticed which may result in suboptimal predictions [14]. Our prior works and other
literature have demonstrated that the knowledge transferred from DL models that are
retrained on a large collection of CXR images is shown to improve performance on relevant
target medical visual recognition tasks [15-17]. To the best of our knowledge, we observed
that no literature discussed the use of CXR modality-specific backbones in object detection
models, particularly applied to detecting pneumonia-consistent findings in CXRs.

1.3. Contributions of the Study
Our study improves upon the state-of-the-art as follows:

(i). To the best of our knowledge, this is the first study that studies the impact of using
CXR modality-specific classifier backbones in a RetinaNet-based object detection
model, particularly applied to detecting pneumonia-consistent findings in CXRs.

(if). We train state-of-the-art DL classifiers on large collections of CXR images to develop
CXR modality-specific models. Next, we use these models as the classifier backbone
in the RetinaNet object detection network. We also initialize this backbone using
random weights and ImageNet-pretrained weights to compare detection performance.


https://www.kaggle.com/c/rsna-pneumonia-detection-challenge
https://www.kaggle.com/competitions/rsna-pneumonia-detection-challenge/leaderboard
https://www.kaggle.com/competitions/rsna-pneumonia-detection-challenge/leaderboard
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Finally, we construct an ensemble of the aforementioned models resulting in improved
detection of pneumonia-consistent findings.

(iii). Through this approach, we aim to study the combined benefits of various weight ini-
tializations for classifier backbones and construct an ensemble of the best-performing
models to improve detection performance. The models” performance is evaluated in
terms of mAP and statistical significance is reported in terms of confidence intervals
(CIs) and p-values.

Section 2 discusses the datasets, model architecture, training strategies, loss functions,
evaluation metrics, statistical methods, and computational resources, Section 3 elaborates
on the results and Section 4 concludes this study.

2. Materials and Methods
2.1. Data Collection and Preprocessing

The following data collections are used for this study:

(). CheXpert CXR [18]: The dataset includes 223,648 frontal and lateral CXR images that
are collected from 65,240 patients at Stanford Hospital, California, USA. The CXRs are
labeled for 14 cardiopulmonary disease manifestations, the details are extracted from
the associated radiology reports using an automated labeling algorithm.

(if). TBX11K CXR [19]: This collection includes 11,200 CXRs collected from normal pa-
tients and those with other cardiopulmonary abnormalities. The abnormal CXRs
are collected from patients tested with the microbiological gold standard. There
are 5000 CXRs showing no abnormalities and 6200 CXRs showing other abnormal
findings including those collected from sick patients (n = 5000), active Tuberculosis
(TB) (n = 924), latent Tuberculosis (n = 212), active and latent TB (n = 54), and other
uncertain (n = 10) cases. The regions showing TB-consistent manifestations are labeled
for the abnormal regions using coarse rectangular bounding boxes.

(iii). RSNA CXR [20]: This CXR collection is released by RSNA for the RSNA Kaggle
Pneumonia detection challenge. The collection consists of 26,684 CXRs that include
6012 CXR images showing pneumonia-consistent manifestations, 8851 CXRs showing
no abnormal findings, and 11,821 CXRs showing other cardiopulmonary abnormal-
ities. The CXRs showing pneumonia-consistent findings are labeled for abnormal
regions using rectangular bounding boxes and are made available for the detec-
tion challenge.

We used the frontal CXRs from the CheXpert and TBX11K data collection during
CXR image modality-specific retraining and those from the RSNA CXR collection to train
the RetinaNet-based object detection models. All images are resized to 512 x 512 spatial
dimensions to reduce computation complexity. The contrast of the CXRs is further increased
by saturating the top 1% and bottom 1% of all the image pixel values. For CXR modality-
specific retraining, the frontal CXR projections from the CheXpert and TBX11K datasets are
divided at the patient level into 70% for training, 10% for validation, and 20% for testing.
This patient-level split prevents the leakage of data and subsequent bias during model
training. For object detection, the frontal CXRs from the RSNA CXR dataset that shows
pneumonia-consistent manifestations are divided at the patient level into 70% for training,
10% for validation, and 20% for testing. Table 1 shows the number of CXR images across
the training, validation, and test sets used for CXR modality-specific retraining and object
detection, respectively.
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Table 1. Patient-level dataset splits show the number of images for CXR modality-specific retraining
and object detection. Note: TBX11K and RSNA datasets have one image per patient.

Dataset Train Validation Test
Abnormal Normal Abnormal Normal Abnormal Normal
CXR Modality-specific retraining
CheXpert 13,600 13,600 1700 1700 1700 1700
TBX11k 3040 3040 380 380 380 380
RetinaNet-based object detection
Dataset Train Validation Test
RSNA 4212 600 1200

2.2. Model Architecture
2.2.1. CXR Modality-Specific Retraining

The ImageNet-pretrained DL models, viz., VGG-16, VGG-19, DenseNet-121, ResNet-50,
EfficientNet-B0, and MobileNet have demonstrated promising performance in several medical
visual recognition tasks [14,19,21-23]. These models are further retrained on a large collection
of CXR images to classify them as showing cardiopulmonary abnormal manifestations or no
abnormalities. Such retraining helps the models to learn CXR image modality-specific features
that can be transferred and fine-tuned to improve performance in a relevant task using CXR
images. The best-performing model with the learned CXR image modality-specific weights is
used as the classifier backbone to train the RetinaNet-based object detection model toward
detecting pneumonia-consistent manifestations. Figure 1 shows the block diagram illustrating
the steps involved in CXR image modality-specific retraining.

Preprocessing

, - i . .

r : ul Contrast : ImageNet-pretrained
1y —» —+— >

CXRs i s adjustment | DL models

CXR modality-specific
retraining

e

CXR modality-
specific models

Figure 1. Steps illustrating CXR image modality-specific retraining of the ImageNet-pretrained models.

2.2.2. RetinaNet Architecture

We used RetinaNet as the base object detection architecture in our experiments. The
architecture of the RetinaNet model is shown in Figure 2. As a single-stage object de-
tection structure, RetinaNet shares a similar concept of “anchor proposal” with [24]. It
used a feature pyramid network (FPN) [25] where features on each of the image scales are
computed separately in the lateral connections and then summed up through convolu-
tional operations via the top-down pathways. The FPN network combines low-resolution
features with strong semantic information, and high-resolution features with weak seman-
tics through top-down paths and horizontal connections. Thus, feature maps with rich
semantic information are obtained that would prove beneficial for detecting relatively
smaller ROIs consistent with pneumonia compared to the other parts of the CXR image.
Furthermore, when trained to minimize the focal loss [5], the RetinaNet was reported to
deliver significant performance focusing on hard, misclassified examples.
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Figure 2. Method flowchart for the RetinaNet network.

2.2.3. Ensemble of RetinaNet Models with Various Backbones

We initialized the weights of the VGG-16 and ResNet-50 classifier backbones used in
the RetinaNet model using three strategies: (i) Random weights; (ii) ImageNet-pretrained
weights, and (iii) CXR image modality-specific retrained weights as discussed in Sec-
tion 2.2.1. Each model is trained for 80 epochs and the model weights (snapshots) are
stored at the end of each epoch. Varying modifications of the RetinaNet model classifier
backbones and loss functions are mentioned in Table 2.

Table 2. RetinaNet model classifier backbones with varying weight initializations and loss functions.
The loss functions mentioned are used for classification. For bounding box regression, only the
smooth-L1 loss function [26] is used in all cases.

ResNet-50 Backbone and Classification
Loss Functions

VGG-16 Backbone and Classification
Loss Functions

ResNet-50 with random weights + focal loss

VGG-16 with random weights + focal loss

ResNet-50 with random weights + focal
Tversky loss

VGG-16 with random weights + focal
Tversky loss

ResNet-50 with ImageNet pretrained
weights + focal loss

VGG-16 with ImageNet pretrained
weights + focal loss

ResNet-50 with ImageNet pretrained
weights + focal Tversky loss

VGG-16 with ImageNet pretrained
weights + focal Tversky loss

ResNet-50 with CXR image modality-specific
weights + focal loss

VGG-16 with CXR image modality-specific
weights + focal loss

ResNet-50 with CXR image modality-specific
weights + focal Tversky loss

VGG-16 with CXR image modality-specific
weights + focal Tversky loss

We adopted the non-maximum suppression (NMS) in the RetinaNet training with an

IoU threshold of 0.5 and evaluated the models using all the predictions with a confidence
score over 0.9. A weighted averaging ensemble is constructed using (i) the top-3 performing
models from the 12 RetinaNet models mentioned in Table 2, and (ii) the top-3 performing
snapshots (model weights) using each classifier backbone. We empirically assigned the
weights as 1, 0.9, and 0.8 for the predictions of the 1st, 2nd, and 3rd best performing models.
A schematic of the ensemble procedure is shown in Figure 3. An ensembled bounding box
is generated if the IOU of the weighted average of the predicted bounding boxes and the
ground truth (GT) boxes is greater than 0.5. The ensembled model is evaluated based on
the mean average precision (mAP) metric.
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Figure 3. Method Schematic of the ensemble approach.

2.2.4. Loss Functions and Evaluation Metrics
CXR Image Modality-Specific Retraining

During CXR image modality-specific retraining, the DL models are retrained on a
combined selection of the frontal CXR projections from the CheXpert and TBX11K datasets
(details in Table 1). The training is performed for 128 epochs to minimize the categorical
cross-entropy (CCE) loss. The CCE loss is the most commonly used loss function in
classification tasks, and it helps to measure the distinguishability between two discrete
probability distributions. It is expressed as shown in Equation (1).

output size

CCEpss =— Y. wilogy, 1)
k=1

Here, y,; denotes the kth scalar value in the model output, y; denotes the corresponding
target, and the output size denotes the number of scalar values in the model output. The
term y; denotes the probability that event k occurs and the sum of all y; = 1. The minus sign
in the CCE loss equation ensures the loss is minimized when the distributions become less
distinguishable. We used a stochastic gradient descent optimizer with an initial learning
rate of 1 x 10~% and momentum of 0.9 to reduce the CCE loss and improve performance.
Callbacks are used to store the model checkpoints and the learning rate is reduced after
a patience parameter of 10 epochs when the validation performance ceased to improve.
The weights of the model that delivered a superior performance with the validation set are
used to predict the test set. The models are evaluated in terms of accuracy, the area under
the receiver-operating characteristic curve (AUROC), the area under the precision-recall
(PR) curve (AUPRC), sensitivity, precision, F-score, Matthews correlation coefficient (MCC),
and Kappa statistic.

RetinaNet-Based Detection of Pneumonia-Consistent Findings

Considering medical images, the disease ROIs span a relatively smaller portion of the
whole image. This results in a considerably high degree of imbalance in the foreground ROI
and the background pixels. These issues are particularly prominent in applications such
as detecting cardiopulmonary manifestations like pneumonia where the number of pixels
showing pneumonia-consistent manifestations is markedly lower compared to the total
number of image pixels. Generalized loss functions such as balanced cross-entropy loss do
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not take this data imbalance into account. This may lead to a learning bias and subsequent
adversity in learning the minority ROI pixels. Appropriate selection of the loss function is
therefore critical for improving detection performance. In this regard, the authors of [11]
proposed the focal loss for object detection, an extension of the cross-entropy loss, which
alleviates this learning bias by giving importance to the minority ROI pixels while down-
weighting the majority background pixels. Minimizing the focal loss thereby reduces the
loss contribution from majority background examples and increases the importance of
correctly detecting the minority disease-positive ROI pixels. The focal loss is expressed as
shown in Equation (2).

Focal loss(pt) = —ar(1 — pe) " log(pr) )

Here, p; denotes the probability the object detection model predicts for the GT. The pa-
rameter y decides the rate of down-weighting the majority (background non-ROI) samples.
The equation converges to the conventional cross-entropy loss when y = 0. We empirically
selected the value of 7y = 2 which delivered superior detection performance.

Another loss function called the Focal Tversky loss function [27], a generalization
of the focal loss function, is proposed to tackle the data imbalance problem and is given
in Equation (3). The Focal Tversky loss function generalizes the Tversky loss which is
based on the Tversky index that helps achieve a superior tradeoff between recall and
precision when trained on class-imbalanced datasets. The Focal Tversky loss function uses
a smoothing parameter 7 that controls the non-linearity of the loss at different values of the
Tversky index to balance between the minority pneumonia-consistent ROI and majority
background classes. In Equation (3), TI denotes the Tversky index, expressed as shown in
Equation (4).

FTlossc = 21 - TI;Y 3)
Cc

sz'\il ticg ict €
211‘\11 tic&ic T Z{\il ticSic + B Z{\il ticgict €

Here, g;c and t;. denote the ground truth and predicted labels for the pneumonia
class ¢, where g;. and t;. € {0,1}. That is, t;. denotes the probability that the pixel i belongs
to the pneumonia class ¢ and t;: denotes the probability that the pixel i belongs to the
background class c. The same holds for g;. and g;:. The term M denotes the total number of
image pixels. The term € provides numerical stability to avoid divide-by-zero errors. The
hyperparameters & and § are tuned to emphasize recall under class-imbalanced training
conditions. The Tversky index is adapted to a loss function by minimizing } . 1 — TI.. After
empirical evaluations, we fixed the value of ¥y =4/3, 2« = 0.7 and § = 0.75.

As is known, the loss function within RetinaNet is a summation of a couple of loss
functions, one for classification and the other for bounding box regression. We left the
Smooth-L1 loss that is used for bounding box regression unchanged. For classification, we
explored the performance with focal loss and focal Tversky loss functions individually for
training the RetinaNet models with varying weight initializations. We used the bounding
box annotations [20] associated with the RSNA CXRs showing pneumonia-consistent
manifestations as the GT bounding boxes and measured its agreement with that generated
by the models initialized with random weights, ImageNet-pretrained, and CXR image
modality-specific retrained classifier backbones. Let TP, FP, and FN denote the true positives,
false positives, and false negatives, respectively. Given a pre-defined IOU threshold, a
predicted bounding box is considered to be TP if it overlaps with the GT bounding box by
a value equal to or exceeding this threshold. FP denotes that the predicted bounding box
has no associated GT bounding box. FN denotes the GT bounding box has no associated
predicted bounding box. The mAP is measured as the area under the precision-recall curve
(AUPRC) as shown in Equation (5). Here, P denotes precision which measures the accuracy
of predictions, and R denotes recall which measures how well the model identifies all the

TIC -

4)
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TPs. They are computed as shown in Equations (6) and (7). The value of mAP lies in the
range [0, 1].

1
mean average precision (nAP) = / P(R)dR ()

0

. TP
Precision (P) = TP+ FD (6)
TP

Recall = ——— 7
= TP+ EN) @

We used a Linux system with 1080Ti GPU, the Tensorflow backend (v. 2.6.2) with
Keras, and CUDA/CUDNN libraries for accelerating the graphical processing unit (GPU)
toward training the object detection models that are configured in the Python environment.

2.3. Statistical Analysis

We evaluated statistical significance using the mAP metric achieved by the models
trained with various weight initializations and loss functions. The 95% confidence intervals
(CIs) are measured as the binomial interval using the Clopper-Pearson method.

3. Results and Discussion

We organized the results from our experiments into the following sections: Evaluating
the performance of (i) CXR image modality-specific retrained models and (ii) RetinaNet
object detection models using classifier backbones with varying weight initializations and
loss functions.

3.1. Classification Performance during CXR Image Modality-Specific Retraining

Recall that the ImageNet-pretrained DL models are retrained on the combined selec-
tion of CXRs from the CheXpert and TBX11K collection. Such retraining is performed to
convert the weight layers specific to the CXR image modality and let the models learn CXR
modality-specific features to improve performance when the learned knowledge is trans-
ferred and fine-tuned for a related medical image visual recognition task. The performance
achieved by the CXR image modality-specific retrained models using the hold-out test set
is listed in Table 3 and the performance curves are shown in Figure 4. The no-skill line in
Figure 4 denotes the performance when a classifier would fail to discriminate between the
normal and abnormal CXRs and therefore would predict a random outcome or a specific
category under all circumstances.

1.0 - ——— ] 10 =
/ -

0.8 ,
-8 ----- No Skill
ol
o —_— YGG-16
v 0.6 50.8 — v6G-19
=z i —— DenseNet-121
= o
G 9] ResNet-50
o Qo —— EfficientNet-B0
404 . & -
o -- Mo Skill MobileNet o
E —_— VGG-16 Optimal threshold
= —— VGG-19 #  Optimal threshold ‘\

0.2 —— DenseNet-121 0.6- Optimal threshold N

ResNet-50 # Optimal threshold )
—— EfficientNet-B0 # Optimal threshold
0.0 MabileNet #  Optimal threshold '
0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate Recall
(a) (b)

Figure 4. The collection of performance curves for the CXR image modality-specific retrained models.
The performance is recorded at the optimal classification threshold measured with the validation
data. (a) ROC and (b) PR curves.
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Table 3. Performance of the CXR image modality-specific retrained models with the hold-out test set.
Bold numerical values denote superior performance. The values in parenthesis denote the 95% CI for
the MCC metric.

Models Accuracy AUROC AUPRC  Sensitivity Precision  F-Score MCC Kappa
0.5693
VGG-16 0.7834 0.8701 0.8777 0.8303 0.7591 0.7931 (0.5542, 0.5844) 0.5668
VGG-19 0.7743 0.8660 0.8727 0.8389 0.7429 0.7880 0-5532 0.5486
’ ’ ' ' ' ' (0.5380, 0.5684) '
DenseNet-121 0.7738 0.8582 0.8618 0.8264 0.7477 0.7851 0-5507 0.5476
’ ’ ' ' ’ ’ (0.5355, 0.5659) '
ResNet-50 0.7685 0.8586 0.8646 0.8207 0.7431 0.7800 0-5400 0.5370
’ ’ ' ' ' ' (0.5248, 0.5552) '
EfficientNet-BO 0.7553 0.8568 0.8612 0.8678 0.7084 0.7800 0-5240 0.5106
' ’ ' ' ' ' (0.5088, 0.5392) '
MobileNet 0.7584 0.8609 0.8655 0.8726 0.7104 0.7832 0.5309 0.5168
’ ’ ' ) ' ’ (0.5157, 0.5461) '

We could observe from Table 3 that the CXR image modality-specific retrained VGG-
16 model demonstrates the best performance compared to other models in terms of all
metrics except sensitivity. Of these, the MCC metric is a good measure to use because
unlike F-score because it considers a balanced ratio of TPs TNs, FPs, and FNs. We noticed
that the differences in the MCC values achieved by the various CXR image modality-
specific retrained models are not significantly different (p > 0.05). Based on its performance,
we used VGG-16 as the backbone for the RetinaNet detector. However, to enable fair
comparison with other conventional RetinaNet-based results, we included the ResNet-50
backbone for detecting pneumonia-consistent manifestations. The VGG-16 and ResNet-50
classifier backbones are also initialized with random and ImageNet-pretrained weights for
further comparison.

3.2. Detection Performance Using RetinaNet Models and Their Ensembles

Recall that the RetinaNet models are trained with different initializations of the clas-
sifier backbones. The performance achieved by these models using the hold-out test set
is listed in Table 4. Figure 5 shows the PR curves obtained with the RetinaNet model
using varying weight initializations for the selected classifier backbones. These curves
show the precision and recall value of the model’s bounding box predictions on every
sample in the test set. We observe from Table 4 that the RetinaNet model with the CXR
image modality-specific retrained ResNet-50 classifier backbone and trained using the focal
loss function demonstrates superior performance in terms of mAP. Figure 6 shows the
bounding box predictions of the top-3 performing RetinaNet models for a sample CXR
from the hold-out test set.

We used two approaches to combine the bounding box predictions. They are (i) using
the bounding box predictions from the top-3 performing RetinaNet models, viz., ResNet-
50 with CXR image modality-specific weights + focal loss, ResNet-50 with CXR image
modality-specific weights + focal Tversky loss, and ResNet-50 with random weights + focal
loss; and, (ii) using the bounding box predictions from the top-3 performing snapshots
(weights) within each model. The results are presented in Table 5 and Figure 7. A weighted
averaging ensemble of the bounding boxes is generated when the IoU of the predicted
bounding boxes is greater than the threshold value which is set at 0.5. Recall that the
models are trained for 80 epochs and a snapshot (i.e., the model weights) is stored at the
end of each epoch. We observed that the ensemble of the top-3 performing RetinaNet
models delivered superior performance in terms of mAP metric compared to other models
and ensembles. Figure 8 shows a sample CXR image with GT and predicted bounding
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boxes using the weighted averaging ensemble of the top-3 individual models and the top-3
snapshots of the best-performing model.

Table 4. Performance of RetinaNet with the varying weight initializations for the classifier backbones
and training losses. The values in parenthesis denote the 95% CI for the mAP metric. Bold numerical

values denote superior performance.

Models AUPRC (mAP)
ResNet-50 with random weights + focal loss 0.2763 (0.2509, 0.3017)
ResNet-50 with random weights + focal Tversky loss 0.2627 (0.2377,0.2877)

ResNet-50 with ImageNet pretrained
weights + focal loss

ResNet-50 with ImageNet pretrained weights + focal Tversky loss  0.2737 (0.2484, 0.2990)

0.2719 (0.2467, 0.2971)

ResNet-50 with CXR image modality-specific

weights + focal loss 0.2865 (0.2609, 0.3121)

ResNet-50 with CXR image modality-specific

weights + focal Tversky loss 02859 (0.2603, 0.3115)
VGG-16 with random weights + focal loss 0.2549 (0.2302, 0.2796)
VGG-16 with random weights + focal Tversky loss 0.2496 (0.2251, 0.2741)
VGG-16 with ImageNet pretrained weights + focal loss 0.2734 (0.2481, 0.2987)

VGG-16 with ImageNet pretrained weights + focal Tversky loss ~ 0.2666 (0.2415, 0.2917)
VGG-16 with CXR image modality-specific

weights + focal loss 0.2686 (0.2435, 0.2937)
VGG—16 with CXR image modality-specific 0.2648 (0.2398, 0.2898)
weights + focal Tversky loss
mMAP: 28.5%% mMAP: 28.65%
10 1.0
0.8 0.8
506 5 0.6
g 0.4 g 04
0.2 0.2
0.0+ 0.0+
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Recall MAP: 27.63% Recall
{a) Lo {b)
[1X:]
gos
g 0.4
0.2
0.0
0.0 0.2 0.4 0.6 0.8 1.0

Recall

{0)
Figure 5. PR curves of the RetinaNet models initialized with varying weights for the classifier
backbones. (a) ResNet-50 with CXR image modality-specific weights + focal Tversky loss; (b) ResNet-
50 with CXR image modality-specific weights + focal loss, and (c) ResNet-50 with random weights +
focal loss.
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(c) (d)

Figure 6. Bounding box predictions of the RetinaNet models initialized with varying weights for the

classifier backbones. Green boxes denote the model predictions and red boxes denote the ground
truth. (a) A sample CXR with ground truth bounding boxes. (b) ResNet-50 with CXR image modality-
specific weights + focal Tversky loss; (c) ResNet-50 with CXR image modality-specific weights + focal
loss, and (d) ResNet-50 with random weights + focal loss.

Table 5. Ensemble performance with the top-3 performing models (from Table 4) and the top-3
snapshots for each of the models trained with various classifier backbones and weight initializa-
tions. Values in parenthesis denote the 95% CI for the mAP metric. Bold numerical values denote

superior performance.

Ensemble Method

mAP

Top-3 model ensemble (ResNet-50 with CXR image
modality-specific weights + focal loss,

ResNet-50 with CXR image modality-specific weights + focal
Tversky loss, and ResNet-50 with random weights + focal loss

0.3272 (0.3006, 0.3538)

Ensemble of the top-3 snapshots for each model

ResNet-50 with random weights + focal loss 0.2777 (0.2523, 0.3031)
ResNet-50 with random weights + focal Tversky loss 0.2630 (0.2380, 0.2880)
ResNet-50 with ImageNet pretrained weights + focal loss 0.2788 (0.2534, 0.3042)
ResNet-50 with ImageNet pretrained weights + focal Tversky loss  0.2812 (0.2557, 0.3067)
ResNet-50 with CXR image modality-specific weights + focal loss ~ 0.2973 (0.2714, 0.3232)

ResNet-50 with CXR image modality-specific weights + focal
Tversky loss

0.2901 (0.2644, 0.3158)

VGG-16 with random weights + focal loss 0.2633 (0.2383, 0.2883)
VGG-16 with random weights + focal Tversky loss 0.2556 (0.2309, 0.2803)
VGG-16 with ImageNet pretrained weights + focal loss 0.2823 (0.2568, 0.3078)
VGG-16 with ImageNet pretrained weights + focal Tversky loss ~ 0.2715 (0.2463, 0.2967)
VGG-16 with CXR image modality-specific weights + focal loss 0.2813 (0.2558, 0.3068)
VGG-16 with CXR image modality-specific weights + focal 0.2698 (0.2446, 0.2950)

Tversky loss
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Figure 7. PR curves of the model ensembles. (a) PR curve obtained with the weighted-averaging
ensemble of top-3 performing models (ResNet-50 with CXR modality-specific weights + focal loss,
ResNet-50 with CXR modality-specific weights + focal Tversky loss, and ResNet-50 with random
weights + focal loss and (b) PR curve obtained with the ensemble of top-3 performing snapshots
while training the ResNet-50 with CXR modality-specific weights + focal loss model.

(d)

Figure 8. Bounding box predictions using the ensemble of RetinaNet models initialized with varying

weights for the classifier backbones. Green boxes denote the individual model predictions, blue
boxes denote the ensemble predictions and red boxes denote the ground truth. (a) ResNet-50 with
CXR image modality-specific weights + focal Tversky loss; (b) ResNet-50 with CXR image modality-
specific weights + focal loss; (c) ResNet-50 with random weights + focal loss, and (d) the ensembled
bounding box prediction.
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4. Conclusions and Future Work

In this study, we demonstrated the combined benefits of training CXR image modality-
specific models, using them as backbones in an object detection model, evaluating them
in different loss settings, and constructing ensembles of the best-performing models to
improve performance in a pneumonia detection task. We observed that both CXR image
modality-specific classifier backbones and ensemble learning improved detection perfor-
mance compared to the individual constituent models. This study, however, suffers from the
limitation that we have only investigated the effect of using CXR modality-specific classifier
backbones in a RetinaNet-based object detection model to improve detecting pneumonia-
consistent findings. The efficacy of this approach in detecting other cardiopulmonary
disease manifestations is a potential avenue for future research. Additional diversity in
the training process could be introduced by using CXR images and their disease-specific
annotations collected from multiple institutions. With the advent of high-performance
computing and current advancements in DL-based object detection, future studies could
explore the use of mask x-RCNN, transformer-based models, and other advanced detection
methods [28-31] and their ensembles in improving detection performance. Novel model
optimization methods and loss functions can be proposed to further improve detection
performance. However, the objective of this study is not to propose a new objection detec-
tion model but to validate the use of CXR modality-specific classifier backbones in existing
models to improve performance. As the organizers of the RSNA Kaggle pneumonia detec-
tion challenge have not made the blinded GT annotations of the test set publicly available,
we are unable to compare our results with the challenge leaderboard. However, the perfor-
mance of our method on a random split from the challenge-provided training set, where
we sequester 10% of the images for testing, using 70% for training and 20% for validation,
respectively, is markedly superior to the best performing method on the leaderboard.
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