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Molecular testing of SARS-CoV-2 RNA is essential during the pandemic. Here, we compared the results of dif-
ferent respiratory specimens including anterior nasal swabs, pharyngeal swabs, saliva swabs, and gargle
lavage samples to nasopharyngeal swabs on two automated SARS-CoV-2 test systems. Samples were col-
lected and tested simultaneously from a total of 36 hospitalized symptomatic COVID-19 patients. Detection
and quantification of SARS-CoV-2 was performed on cobas®6800 (Roche) and NeuMoDx™ (Qiagen) systems.
Both assays showed reliable detection and quantification of SARS-CoV-2 RNA, with nasopharyngeal swabs

K ds: . R s . . . . .
S?ng)goz/_z showing the highest sensitivity. SARS-CoV-2 RNA concentrations in other respiratory specimens were lower
COVID-19 (mean 2.5 log10 copies/ml) or even undetectable in up to 20%. These data clearly indicate that not all respira-

tory materials are equally suitable for the management of hospitalized patients, especially, in the late phase
of COVID-19, when the viral phase subsides and inflammation becomes the predominant factor, making
detection of even lower viral loads increasingly important.

© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
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Less invasive respiratory specimens

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

The global spread of severe acute respiratory syndrome coronavi-
rus-2 (SARS-CoV-2) and the required expansion of testing capacities
was an enormous global effort. Early identification and sequencing
enabled very rapid development of SARS-CoV-2 detection protocols
[1]. However, most in-house protocols are labor-intensive, and the
massive use of quantitative RT-PCR (qPCR) protocols resulted in
shortage of extraction and qPCR reagents [2—4]. In parallel, commer-
cial assays were developed including fully automated SARS-CoV-2
systems for high-throughput testing [5]. In spring 2020, Roche’s
cobas®SARS-CoV-2 test received an Emergency Use Authorization
(EUA) by the US Food and Drug Administration (FDA) for the qualita-
tive detection of SARS-CoV-2 RNA in nasopharyngeal and oropharyn-
geal swabs on Roche’s fully automated cobas® 6800 and cobas® 8800
systems [6]. During 2020, additional commercial SARS-CoV-2 RNA
assays received EUA status for in vitro diagnostic devices (IVD),

* Corresponding author. Tel: +49-211-8110556
E-mail address: nadine.luebke@med.uni-duesseldorf.de (N. Liibke).
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including the NeuMoDx™ SARS-CoV-2 test (Qiagen), automated on
the NeuMoDx random-access platform [7,8].

To control the spread of SARS-CoV-2 infection, massive screening
measures were initiated to identify both asymptomatic SARS-CoV-2
infections and infections before the onset of symptoms [9—11]. Since
SARS-CoV-2 infections in the younger population and in children are
often asymptomatic, and vaccinations are not yet recommended in
all age groups, schools and child care facilities are of particular inter-
est [12,13]. In this age group, the recommended nasopharyngeal and
throat swabs are difficult to perform and must be performed by
trained medical personnel. Therefore, several screening studies were
initiated using respiratory materials such as saliva swabs, anterior
nasal swabs or gargle lavage, which can be obtained in a minimally
invasive procedure [9—-11,14—16]. Notably, the performance of high-
throughput test systems with such alternative specimens from the
upper respiratory tract is still unclear. In hospitalized patients, moni-
toring of SARS-CoV-2 RNA concentrations is important for the man-
agement of antiviral therapy as well as decision making in hospital
hygiene. Reliable quantification of SARS-CoV-2 RNA is therefore par-
ticularly relevant in the hospital setting.

0732-8893/© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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The objective of this study was therefore to directly compare
detection rates and quantitative results of the recommended naso-
pharyngeal and throat swabs to different minimally invasive respira-
tory specimens on the fully automated SARS-CoV-2 test systems
cobas® 6800 and NeuMoDx™,

2. Material and methods
2.1. Study cohort

All study participants were hospitalized for symptomatic SARS-
CoV-2 infection, but none required intensive care. A total of 36 inpa-
tients with confirmed SARS-CoV-2 infection were recruited for the
study. To participate, patients had to have a confirmed SARS-CoV-2
infection on a nasopharyngeal swab and a written informed consent
from the patient or guardian to participate in the study. Approval
from the local ethics committee was obtained (Study-ID.: 2021-
1291).

The study participants were recruited in autumn 2020. Since no
vaccines were available at that time and the spread of new clinically
relevant SARS-CoV-2 variants was not documented until February
2021, we assume unvaccinated patients with SARS-CoV-2 wild-type
(B.1 variant) infections.

2.2. Respiratory specimens

For the comparative analysis, different respiratory materials were
obtained simultaneously from the study participants. While the rec-
ommended nasopharyngeal swab (NPS) and throat swabs were per-
formed by medical personal, the anterior nasal swabs, the saliva
swabs, and the gargle lavage using 10 ml NaCl, were self-collected by
the study participants. Detection of SARS-CoV-2 in the NPS was man-
datory for comparative analysis.

2.3. Sample preparation

All respiratory materials obtained were processed on the same
working day. To minimize the influence of inhibitory interfering fac-
tors in respiratory materials on PCR, samples were diluted and centri-
fuged prior to PCR (c6800: 1:2.5; NMDx: 1:4.3). The dilutions were
performed with cell culture medium (DMEM). The samples were
tested according to the manufacturer’s instructions.

2.4. . RT-PCR platforms

Detection of SARS-CoV-2 RNA was performed using two different
commercial RT-qPCR assays, automated on the cobas®6800 (c6800,
Roche) and on the NeuMoDx™ (NMDx, Qiagen). Both are dual target
assays and detect 2 different target genes of SARS-CoV-2, 1 structural
and 1 nonstructural protein (c6800: ORF1, E gene; NMDx: NSP2, N
gene).

2.5. Quantification of SARS-CoV-2 RNA

In order to compare different test systems directly with each
other, it is necessary to use reference material, so-called standards.
To compare the cobas 6800 and the NeuMoDx SARS-CoV-2 assays in
terms of their sensitivity, the cycle threshold (Ct) values must be cor-
related with quantitative reference samples. For the direct compari-
son between the cobas 6800 and NMDx the quantitative SARS-CoV-2
reference samples provided by INSTAND e.V. (Society for the Promo-
tion of Quality Assurance in Medical Laboratories) were used to com-
pare Ct-values [17]. The quantitative reference samples are SARS-
CoV-2 positive cell culture supernatants with 107 copies/ml and 10°
copies/ml, respectively. To determine the SARS-CoV-2 RNA concen-
tration for a given Ct-value, the quantitative reference samples were

used in serial dilutions and a standard curve was established. The cal-
culated SARS-CoV-2 RNA concentrations for 2 target genes are given
as mean values.

2.6. Statistics

Statistical analysis was performed using GraphPad online calcula-
tor (https://www.graphpad.com/quickcalcs/kappal/) and GraphPad
Prism 9.01. The level of agreement between ¢6800 and NMDx results
was calculated using Cohen’s kappa statistics. Ct-values and SARS-
CoV-2 RNA concentrations were tested for normal distribution with
the Shapiro-Wilk method. Multiple Wilcoxon matched-pairs signed
rank tests were used to compare individual specimen types between
the NMDx and the c6800 assays and the adjusted P-value was calcu-
lated with the Holm-Sidak method. Differences between specimen
types within 1 assay were compared by Friedman test followed by
Dunn$s multiple comparisons test. A P-value <0.05 was considered
statistically significant.

3. Results

In total, 180 respiratory samples of 36 patients infected with
SARS-CoV-2 (f = 13 (36.1%), m = 23 (63.9%)) with a median age of
56.5 years (19—-90 years) were analyzed.

The SARS-CoV-2 analyses of the various respiratory materials
showed different detection rates compared to the NPS as the gold
standard (Table 1). While both, the nasal and the throat swab showed
a high detection rate of 91.7%, detection rates were lower with the
saliva swab (c6800: 83.3% and NMDx: 80.6%) and the gargle lavage
samples (80.6% and 72.2%). Notably, in these latter 2 specimens the
detection rate of SARS-CoV-2 RNA was reproducibly lower with the
NMDx assay than with the c6800 assay (Table 1).

When comparing the concordance of SARS-CoV-2 RNA detection
between the 2 assays, an agreement of 100% was observed with the
anterior nasal swab and throat swab (Table 2). There was also agree-
ment between the 2 systems regarding the negative result in 3 iden-
tical swabs from the anterior nasal and pharyngeal cavities. In
contrast, the saliva swab and the gargle lavage only achieved overall
agreements of 86.1% and 88.9% (k=0.531 and k=0.709), respectively,
with the gargle lavage showing the highest false negative rate of
19.4% in both SARS-CoV-2 assays. Overall, the c6800 assay performed
slightly better with saliva swabs and gargle lavages compared to the
NMDx assay, where 3 and 4 samples (8.3% and 11.1%, respectively)
were tested positive on the c6800 and negative in the NMDx assay. In
turn, 2 saliva swabs (5.6%) were tested positive in the NMDx assay
despite being tested negative in the c6800 assay. Notably, discordant
results were associated with high Ct-values (Ct >32; Supplemental
Table 1).

A detailed comparison of the Ct-values determined in both SARS-
CoV-2 assays showed minimal differences between individual target
genes, but clear differences related to the respiratory material (Fig. 1,
Supplemental Table 1). Regardless of the target gene, the NPS sam-
ples showed the lowest median Ct-values (Ct: 24.76) followed by the
throat swab and nasal swab (CT: 27.56 and Ct: 29.39, respectively).
Both saliva swabs and gargle lavage samples provided median Ct-val-
ues >32 (Ct: 32.89 and Ct: 33.04, respectively). Overall, the

Table 1
Agreement of SARS-CoV-2 detection rate of different respiratory specimens compared
to the nasopharyngeal swab (NPS).

Concordance  Nasalswab% Throatswab% Salivaswab%  Gargle lavage %
NPS (n) (n) (n) (n)

6800 91.7(33) 91.7(33) 83.3(30) 80.6(29)
NMDx 91.7 (33) 91.7(33) 80.6 (29) 72.2(25)
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Table 2
Agreement of SARS-CoV-2 detection between c6800 and NMDx SARS-CoV-2 assays.

c6800/NMDx NPS % (n) Nasal swab % (n) Throat swab % (n) Saliva swab % (n) Gargle lavage % (n)
Overall agreement 100 (36); 100 (36); 100 (36); 86.1(31): 88.9 (32);
(kappa value, (k=1, 1.000-1.000) (k=1, 1.000-1.000) (k=1, 1.000-1.000) (k=0.531,0.171 t0 0.891) (k=0.709, 0.451 to 0.966)
95% Cl,)
++ 100 (36) 91.7 (33) 91.7 (33) 75(27) 69.4 (25)
-[- 0 83(3) 8.3(3) 11.1(4) 19.4(7)
Overall 0 (1] (1] 13.9(5) 11.1(4)
disagreement
+ 0 0 0 83(3) 11.1(4)
-+ 0 0 0 5.6(2) 0

Overall agreement and disagreement between c6800 and NMDx results are indicated in bold.

nonstructural proteins Nsp2 and ORF1 yielded lower Ct-values than
the structural proteins, independent of the material used (Fig. 1).
These data clearly demonstrate the limitations of a quantitative state-
ment based on individual Ct-values when the assay is not calibrated
to a quantitative standard. Accordingly, for direct comparison of the
2 SARS-CoV-2 assays on the different platforms the SARS-CoV-2 RNA
was quantified using a standardized reference material.

Overall, similar SARS-CoV-2 RNA concentrations were detected
with both analyzed automated SARS-CoV-2 assays ranging from
3.932 to 6.379 log10 cop/ml with the ¢6800 and from 3.527 to 6.415
log10 cop/ml with the NMDx assay, depending on the respiratory
material (Fig. 2, Table 3).

Looking at the differences in respiratory specimen, according to
the determined Ct-values, the NPS provided the highest SARS-CoV-2
RNA concentrations with a median of 6.379 log10 copies/ml (IQR:
5.144-7.922) with the c6800 assay and 6.415 log10 cop/ml (IQR:
5.142-8.015) with the NMDx assay (Fig. 2 and Table 3). Both the saliva
swabs and the gargle lavages samples yielded in average 2.5 log10
lower SARS-CoV-2 RNA concentrations compared to the NPS (c6800:
3.932 log10 cop/ml and 4.114 log10 cop/ml, and NMDx: 3.792
log10 cop/mL and 3.527 log10 cop/ml, P < 0.0001, respectively). Of
note, the nasal and throat swabs had similar median SARS-CoV-2
RNA concentrations regardless of the assay (c6800: 5.061
log10 cop/ml and 5.585 logl0 cop/ml, and NMDx: 4.802
log10 cop/ml and 5.476 cop/ml, P > 0.9999, respectively), but

SARS-CoV-2 Ct value

10

G

concentrations were on average 0.8 (throat swab) and 1.4 (anterior
nasal swab) log10 levels lower compared to the NPS.

4. Discussion

During the COVID-19 pandemic, it was necessary to develop reli-
able assays for the detection of SARS-CoV-2 infections in a very short
period of time. This has resulted in many commercial SARS-CoV-2
tests coming to market shortly after the onset of the pandemic [7,18].
In order to make more efficient use of laboratory capacity, tests for
automated platforms have been developed in addition to standard
real-time PCR assays [19].

In this study, the SARS-CoV-2 assay from Roche for the c6800 and
from Qiagen for the NMDx platform were compared. For this pur-
pose, not only the generally recommended specimens such as naso-
pharyngeal swabs or throat swabs were used, but also less invasive
and easier to obtain respiratory specimens such as anterior nasal
swabs, saliva swabs, and gargle lavages, which have been used pri-
marily in children but also in many cases for SARS-CoV-2 screening
[11,20-23].

While the c6800 system is well established in diagnostic work-
flows for many years, the NMDx system is available since the end of
2018 and therefore the most recent platform in the field of molecular
virus diagnostics. Nevertheless, open channel reagents were offered
for this platform prior to the availability of commercial kits, enabling

— c6800-ORF1-gene
c6800-E-gene

Jows

NPS Nasal Throat
swab swab

Saliva Gargle
swab lavage

Fig. 1. Ct-values determined with the SARS-CoV-2 assays for the c6800 and the NMDx system separated to the target gene and the respiratory specimen. The 6800 SARS-CoV-2
assay detects the nonstructural ORF1 gene and the structural E gene. The NMDx SARS-CoV-2 assay detects the nonstructural Nsp2 gene and the structural N gene. The number of
PCR cycles is limited to 40 in both assays. Undetected samples are set to a Ct-value of 41. Median Ct-value and IQR (25%—75%) are indicated in bars. NPS: nasopharyngeal swab.
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Fig. 2. Comparison of SARS-CoV-2 RNA concentrations of different respiratory specimens quantified using a standardized reference material determined with the SARS-CoV-2
assays for the c6800 and the NMDx system. Direct comparison of the SARS-CoV-2 RNA concentrations determined for the different respiratory specimens with the c6800 SARS-
CoV-2 assay is shown in (A) or with the NMDx SARS-CoV-2 assay in (B). Median viral load and IQR (25%—75%) are indicated in bars. NPS= nasopharyngeal swab.

automation of laboratory-developed real-time RT-PCR test (LDT) for
SARS-CoV-2 as early as autumn 2020 [1]. Commercial reagents for
SARS-CoV-2 for the c6800 and the NMDx platform became available
in summer 2020. Both platforms use a dual-target system and
achieve full automation and thus higher sample throughput. Both
assays showed convincing analytical and clinical performance com-
pared to other commercial assays [24,25].

Comparative testing of 180 respiratory specimens from 36 differ-
ent SARS-CoV-2-positive study participants using both platforms
revealed no significant differences in detection rates between the
c6800 and NMDx SARS-CoV-2 assays when using recommended
specimens such as nasopharyngeal swabs, anterior nasal swabs, or
throat swabs. The c6800 assay has been shown in previous compara-
tive analyses to be effective in qualitative detection of SARS using
nasopharyngeal swabs [26] as well as various other clinical samples
such as sputum, bronchial aspirate, bronchoalveolar lavage and anal
swabs [25]. In contrast we saw substantially lower detection rates in
our study using saliva swabs and gargle lavages.

While anterior nasal and pharyngeal swabs were only slightly less
sensitive than the NPS, as previously observed in other studies
[27,28], both the saliva swab and gargle lavage showed 20% lower
detection rates on average compared to the NPS. This is particularly
evident when looking at the agreement of SARS-CoV-2 detection
between the two assays. The concordances for saliva swabs and gar-
gle lavage were <90% compared to the other materials with 100%
concordances. Here, the disconcordance could primarily be attributed
to the nondetection with the NMDx assay. However, it should be con-
sidered that the discrepancies between the assays were only
observed in samples with low viral loads, i.e., Ct-values >32. An infe-
rior analytical sensitivity in the low-viremic range is expected, how-
ever, the sensitivity may differs between different assays [29].

Table 3

To address whether the discordant results between the two com-
pared assays were due to differences in the sensitivity of individual
target genes used in the assays, we compared not only the Ct-values
of the different materials but also the Ct-values of the individual tar-
gets. We observed minor differences in analytical sensitivity between
the different targets, which were primarily differences between the
genes coding for structural and nonstructural proteins and not
between the selected target genes of the assays. At lower viral loads
(high Ct-values), which we detected with saliva swabs and gargle lav-
ages, the number of undetected targets increased. Together, no indi-
vidual target predominantly failed in saliva swabs or gargle lavages
suggesting that detection of all targets were similarly affected in
these specimens.

Although other studies have shown that both saliva and gargle
lavage are suitable alternative respiratory materials for the detec-
tion of SARS-CoV-2 [30,31], as already mentioned above, these
two materials were clearly inferior in our study. This was most
likely due to the fact that we directly, in contrast to the other
studies, compared our detection rates to the gold standard, the
NPS, which still provides the most sensitive detection for SARS-
CoV-2 [32,33], and in addition to the timing of sample collection
during the course of infection. As shown by Jamal et al. and
Savela and colleages, saliva specimen present high viral loads
only at the onset of infection as differences in sensitivity were
greatest for sample pairs collected later in illness [34,35]. Notably,
for screening of early infections, saliva may still be an excellent
respiratory material, however, in hospitalized and symptomatic
patients at a later stage of COVID-19 infection, SARS-CoV-2 RNA
concentrations in the upper respiratory tract are typically low or
even already undetectable, which needs to be considered for
decision making in the hospital.

Comparison of the determined SARS-CoV-2 RNA concentrations between various respiratory specimens analyzed with the c6800 and the NMDx assays.

NPS Nasal swab

Throat swab Saliva swab Gargle lavage

¢6800 log10 cop/ml (median) (ANPS) 6.379
NMDx log 10 cop/ml (median) (ANPS) 6.415

5.061 (-1.318)
4,802 (-1.577)

5.585 (-0.794)
5.476 (-0.904)

3.932 (-2.447)
3.792 (-2.587)

4114 (-2.264)
3.527 (-2.852)

NPS = naspharyngeal swab.
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The SARS-CoV-2 RNA concentration plays an important role for
the patient management in terms of isolation measures and treat-
ment decisions. Quantitative analysis of SARS-CoV-2 RNA is therefore
common practice. Overall, similar SARS-CoV-2 RNA levels were
detected with both platforms depending on the respiratory speci-
men. As shown in other studies [35,36], the NPS showed the highest
SARS-CoV-2 RNA concentrations in the quantitative comparisons
between the different specimen, followed by nasal and throat swab
with an average of 1 log level lower SARS-CoV-2 RNA concentrations
according to the determined Ct-values. Thus, as expected, both saliva
swab and gargle lavage were inferior in this quantitative evaluation
in our comparative study.

Taken together, both SARS-CoV-2 assays showed comparable
results in both, detection and quantification of SARS-CoV-2 RNA. Dif-
ferences were only found between the different respiratory speci-
mens analyzed. Possible reasons for reduced sensitivity of saliva
swabs and gargle lavages are less viral shedding in this compartment,
lower stability of the SARS-CoV-2 RNA, and/or a higher dilution factor
for the SARS-CoV-2 RNA, related to the specimen heterogeneity
[37,38].

It should be noted that only samples from 36 study participants
were examined, which represents a relatively small study cohort and
represents a limitation of our study. A comparative analysis with a
larger cohort could possibly dissect out the reasons for discordant
results in the low viremic samples in more detail. Importantly, both
SARS-CoV-2 assays utilized in this study were validated and CE-
marked for nasal, nasopharyngeal and pharyngeal swabs only. In
light of our results these specimens indeed showed higher SARS-
CoV-2 RNA concentrations compared to less invasive materials and
should be considered as the gold standard for COVID-19 diagnostics.
Nevertheless, there may be a role for SARS-CoV-2 quantification from
minimally invasive materials in certain patient groups, if it is ensured
that the same specimens are longitudinally compared.

5. Conclusions

This study shows that both the c6800 and the NMDx SARS-CoV-2
assays are highly reliable with the recommended specimens and gen-
erate valid results. When a quantitative reference material was used
as a standard, no relevant differences could be observed in the quan-
tification of the respiratory materials between the assays, while saliva
swabs and gargle lavages were clearly inferior in our study cohort.
Importantly, these data indicate that not all respiratory specimens
are equally suitable for the management of hospitalized patients,
especially when dealing with the late phase of COVID-19 in hospital-
ized patients, when viral replication is declining and inflammation
becomes the predominant factor, which makes both, the detection of
lower levels of virus but also the quantitative longitudinal courses of
SARS-CoV-2-RNA increasingly important.
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