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Abstract

We consider the correction of errors from nucleotide sequences produced by next-

generation targeted amplicon sequencing. The next-generation sequencing (NGS) plat-

forms can provide a great deal of sequencing data thanks to their high throughput, but the

associated error rates often tend to be high. Denoising in high-throughput sequencing has

thus become a crucial process for boosting the reliability of downstream analyses. Our

methodology, named DUDE-Seq, is derived from a general setting of reconstructing finite-

valued source data corrupted by a discrete memoryless channel and effectively corrects

substitution and homopolymer indel errors, the two major types of sequencing errors in most

high-throughput targeted amplicon sequencing platforms. Our experimental studies with

real and simulated datasets suggest that the proposed DUDE-Seq not only outperforms

existing alternatives in terms of error-correction capability and time efficiency, but also

boosts the reliability of downstream analyses. Further, the flexibility of DUDE-Seq enables

its robust application to different sequencing platforms and analysis pipelines by simple

updates of the noise model. DUDE-Seq is available at http://data.snu.ac.kr/pub/dude-seq.

Introduction

A new generation of high-throughput, low-cost sequencing technologies, referred to as next-
generation sequencing (NGS) technologies [1], is reshaping biomedical research, including

large-scale comparative and evolutionary studies [2–4]. Compared with automated Sanger

sequencing, NGS platforms produce significantly shorter reads in large quantities, posing vari-

ous new computational challenges [5].

There are several DNA sequencing methodologies that use NGS [6, 7] including whole

genome sequencing (WGS), chromatin immunoprecipitation (ChIP) sequencing, and targeted

sequencing. WGS is used to analyze the genome of an organism to capture all variants and

identify potential causative variants; it is also used for de novo genome assembly. ChIP

sequencing identifies genome-wide DNA binding sites for transcription factors and other pro-

teins. Targeted sequencing (e.g., exome sequencing and amplicon sequencing), the focus of
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this paper, is a cost-effective method that enables researchers to focus on investigating areas of

interest that are likely to be involved in a particular phenotype. According to previous studies

[8, 9], targeted sequencing often results in the complete coverage of exons of disease-related

genes, while alternative methods result in approximately 90–95% coverage. Hence, in clinical

settings, researchers tend to rely on targeted sequencing for diagnostic evaluations.

To detect sequences based on fluorescent labels at the molecular level, NGS technologies

normally rely on imaging systems requiring templates that are amplified by emulsion polymer-

ase chain reaction (PCR) or solid-phase amplification [1]. These amplification and imaging

processes can generate erroneous reads, the origin of which can be traced to the incorrect

determination of homopolymer lengths, the erroneous insertion/deletion/substitution of

nucleotide bases, and PCR chimeras [6]. Substitution errors dominate for many platforms,

including Illumina, while homopolymer errors, manifested as insertions and deletions (indels),

are also abundant for 454 pyrosequencing and Ion Torrent.

Erroneous reads must be properly handled because they complicate downstream analyses

(e.g., variant calling and genome assembly), often lowering the quality of the whole analysis

pipeline [7] Soft clipping, in which 3’-ends of a read are trimmed based on the quality scores

of individual bases, may be the simplest approach, but it results in a loss of information [10].

More sophisticated methods focus on detecting and correcting errors in sequence data

[11–20]. Given the widespread use of Illumina sequencing platforms, most error-correction

algorithms have targeted substitution errors [10].

As summarized in recent reviews [10, 21], current error-correction methods for NGS data

can be categorized as follows: k-mer (i.e., oligonucleotides of length k) frequency/spectrum-

based, multiple sequence alignment (MSA)-based, and statistical error model-based methods.

The idea behind k-mer-based methods [13, 20, 22–25] is to create a list of “trusted” k-mers

from the input reads and correct untrusted k-mers based on a consensus represented by this

spectrum. In addition to the length of the k-mer, coverage (k-mer occurrences) information is

important to determine trusted k-mers. Under the assumption that errors are rare and random

and that coverage is uniform, for sufficiently large k, it is reasonable to expect that most errors

alter k-mers to inexistent ones in a genome. Thus, for high-coverage genome sequences

obtained by NGS, we may identify suspicious k-mers and correct them based on a consensus.

MSA-based methods [12, 16, 26] work by aligning related sequences according to their similar-

ities and correcting aligned reads, usually based on a consensus in an alignment column, using

various techniques. This alignment-based scheme is inherently well-suited for correcting indel

errors. Early methods suffered from computational issues, but recent approaches utilize

advanced indexing techniques to expedite the alignments. In statistical error model-based

methods [27–29], a statistical model is developed to capture the sequencing process, including

error generation. In this regard, an empirical confusion model is often created from datasets,

exploiting the information obtained from, e.g., alignment results, Phred quality scores (a mea-

sure of the quality of nucleobases generated by automated DNA sequencing) [30], or other

parameters.

While the above methods often exhibit good performance for various platforms, they also

have several limitations. First, k-mer-based schemes tend to be ineligible when the coverage is

expected to vary over the queried sequences, as in transcriptomics, metagenomics, heteroge-

neous cell samples, or pre-amplified libraries [21]. Second, MSA-based methods, which do not

suffer from the above issue related to non-uniform coverage, often require the application of

heuristic and sophisticated consensus decision rules for the aligned columns, and such rules

may be sensitive to specific applications or sequencing platforms. Third, statistical error

model-based methods typically use computationally expensive schemes (e.g., expectation-

maximization) owing to additional stochastic modeling assumptions for the underlying DNA
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sequences. Moreover, little attention is given to the validity and accuracy of such modeling

assumptions, let alone to theoretical analysis of whether near optimum or sound error-correc-

tion performance is attained. Finally, many existing schemes applying the three methods

often return only representative (consensus) denoised sequences created by merging input

sequences; hence, the number of sequences is often not preserved after denoising. In some

applications, this may result in inconsistencies in downstream analyses. To address these

limitations, many existing tools combine the three methods in a complementary manner to

improve performance [10, 21].

In this paper, as an alternative, we applied an algorithm called Discrete Universal DEnoiser

(DUDE) [31] for accurate DNA sequence denoising. DUDE was developed for a general set-

ting of reconstructing sequences with finite-valued components (source symbols) corrupted

by a noise mechanism that corrupts each source symbol independently and statistically identi-

cally. In the DNA denoising literature, such a noise model is equivalent to the confusion

matrix commonly used in statistical error-model-based methods. As demonstrated in the orig-

inal paper [31], DUDE exhibits rigorous performance guarantee for the following setting; even

when no stochastic modeling assumptions are made for the underlying clean source data, only

with the assumption of known noise mechanism, DUDE is shown to universally attain the

optimum denoising performance for any source data the data increase. We note that the above

setting of DUDE naturally fits the setting for DNA sequence denoising, i.e., it is difficult to

establish accurate stochastic models for clean DNA sequences, but it is simple and fairly realis-

tic to assume noise models (i.e., confusion matrices) for sequencing devices based on reference

sequences.

The DUDE algorithm, which will be explained in details in the next section, possesses fla-

vors that are somewhat connected to all three representative methods mentioned above, in a

single scheme. Specifically, DUDE works with double-sided contexts of a fixed size that are

analogous to k-mers. Moreover, like MSA, DUDE applies a denoising decision rule to each

noisy symbol based on aggregated information over certain positions in the reads. However,

unlike MSA, which makes a decision based on the information collected from the symbols in

the same aligned column, DUDE makes a decision using the information collected from posi-

tions with the same double-sided context. Finally, the denoising decision rule of DUDE utilizes

information from the assumed noise model, like in most statistical error model-based meth-

ods, but does not assume any stochastic model on the underlying sequence, thus resulting in a

computationally efficient method. The method of incorporating the noise model is also simple,

making it easy to flexibly apply DUDE to different sequencing platforms by simply changing

the confusion matrix model in the algorithm.

With the above unique nature of the DUDE algorithm, we show in our experiments that it

outperforms other state-of-the-art schemes, particularly for applications to targeted amplicon

sequencing. Specifically, among the applicable areas of targeted amplicon sequencing (e.g.,
cancer gene, 16S rRNA, plant, and animal sequencing [32]), we used 16S rRNA benchmark

datasets obtained with different library preparation methods and DNA polymerases to confirm

the robustness of our algorithm across various sequencing preparation methods. Targeted

amplicon sequencing datasets often have deeper sequencing coverage than those of WGS or

ChIP datasets, which frequently makes conventional k-mer-based techniques often suffer from

the amplification bias problem [33]. By contrast, for DUDE-Seq, as the sequencing coverage

becomes deeper, context-counting vectors can accumulate more probable contexts, and the

robustness of denoising typically improves. We apply two versions of DUDE separately for

substitution and homopolymer errors, the two major types of sequencing error. For substitu-

tion errors, our approach directly utilizes the original DUDE with appropriate adaptation to

DNA sequences and is applicable to reads generated by any sequencing platform. For
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homopolymer errors, however, we do not apply the original DUDE, which was developed in a

framework that does not cover errors of the homopolymer type. To correct homopolymer

errors, we therefore adopt a variant of DUDE for general-output channels [34]. Our homopol-

ymer-error correction is applicable to cases in which base-called sequences and the underlying

flowgram intensities are available (e.g., pyrosequencing and Ion Torrent). For brevity, we refer

to both of these DUDE-based approaches as DUDE-Seq, but the correction type will be easily

distinguishable by the reader.

Discrete Universal DEnoiser (DUDE)

In this section, we formally introduce the DUDE algorithm along with its notation and its con-

nection to DNA sequence denoising. Fig 1 shows the concrete setting of the discrete denoising

problem. We denote the underlying source data as {xi} and assume each component takes

values in some finite set X . The resulting noisy version of the source corrupted by a noise

mechanism is denoted as {Zi}, and its components take values in, again, some finite set Z. As

mentioned in the Introduction, DUDE assumes that the noise mechanism injects noises that

are independent and statistically identical, and such a mechanism is often referred to as a Dis-

crete Memoryless Channel (DMC) in information theory. The DMC is completely character-

ized by the channel transition matrix, also known as the confusion matrix, P 2 RjX j�jZj, of

which the (x, z)-th element, P(x, z), stands for Pr(Zi = z|xi = x), i.e., the conditional probability

that the noisy symbol takes value z, given that the original source symbol is x. We denote ran-

dom variables with uppercase letters and the individual samples of random variables or deter-

ministic symbols with lowercase letters. Thus, the underlying source data, which are treated by

DUDE as individual sequences (and not a stochastic process), are denoted by the lowercase

{xi}, and the noise-corrupted sequences, i.e., sequences of random variables, are denoted by

uppercase {Zi}. Furthermore, throughout this paper, we generally denote a sequence (n-tuple)

as an = (a1,. . .,an), for example, where aj
i refers to the subsequence (ai,. . .,aj).

As shown in Fig 1, a discrete denoiser observes the entire noisy data Zn and reconstructs

the original data with X̂n ¼ ðX̂ 1ðZnÞ; . . . ; X̂nðZnÞÞ. The goodness of the reconstruction by a

discrete denoiser X̂n is measured by the average loss,

LX̂ nðxn;ZnÞ ¼
1

n

Xn

i¼1

Lðxi; X̂ iðZ
nÞÞ; ð1Þ

where Lðxi; x̂ iÞ is a single-letter loss function that measures the loss incurred by estimating xi

with x̂ i at location i. The loss function can be also represented with a loss matrix L 2 RjX j�jX̂ j.
DUDE in [31] is a two-pass algorithm that has linear complexity with respect to the data

size n. During the first pass, given the realization of the noisy sequence zn, the algorithm col-

lects the statistics vector

mðzn; lk; rkÞ½a� ¼ jfi : kþ 1 � i � n � k; ziþk
i� k ¼ lkarkgj;

Fig 1. The general setting of discrete denoising.

https://doi.org/10.1371/journal.pone.0181463.g001
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for all a 2 Z, which is the count of the occurrence of the symbol a 2 Z along the noisy

sequence zn that has the double-sided context ðlk; rkÞ 2 Z2k. Note that m is similar to the counts

across the aligned columns for the simple majority voting in MSA-based denoising methods.

However, in DUDE, the count is collected regardless of whether the positions in the reads are

aligned or not, but considering whether the position has the same context. Additionally, the

context length k is analogous to the k-mer length. Once the m vector is collected, for the sec-

ond pass, DUDE then applies the rule

X̂ iðznÞ ¼ arg min
x̂2X

mTðzn; zi� 1

i� k ; z
iþk
iþ1
ÞΠ� 1½lx̂ � pzi

� ð2Þ

for each k + 1� i� n − k, where πzi
is the zi-th column of the channel matrix P, and lx̂ is the

x̂-th column of the loss matrix Λ. Furthermore,� stands for the element-wise product opera-

tor for two vectors. The intuitive explanation of Eq (2) is as follows: when we rearrange the

right-hand side of Eq (2), we obtain

ð2Þ ¼ arg min
x̂2X

l
T
x̂ fpzi

�Π� TmTðzn; zi� 1

i� k ; z
iþk
iþ1
Þg; ð3Þ

and we can show that πa�P−T mT(zn, lk, rk) approximates the empirical count vector of the

underlying clean symbol at the middle location that resulted in the noisy context lkark. Thus,

the denoising rule Eq (2), re-expressed in Eq (3), finds a reconstruction symbol x̂ that mini-

mizes the expected loss with respect to the empirical estimate (obtained by utilizing the inverse

of P) of the count vector of the underlying xi given the noisy context ziþk
i� k . At a high level,

DUDE is not a simple majority voting rule based on m; instead, it incorporates the DMC

model P (the confusion matrix) and loss function Λ to obtain a more accurate estimation of

the clean source symbol. For more detailed and rigorous arguments on the intuitive descrip-

tion of Eq (2), we refer readers to the original paper [31, Section IV-B].

Note that formula Eq (2) assumes X ¼ Z ¼ X̂ and P is invertible for simplicity, but

Weissman et al. [31] deal with more general cases as well. The form of Eq (2) also shows that

DUDE is a sliding window denoiser with window size 2k + 1; i.e., DUDE returns the same

denoised symbol at all locations with the same value ziþk
i� k . DUDE is guaranteed to attain the

optimum performance by the sliding window denoisers with the same window size as the

observation length n increases. For more details on the theoretical performance analyses, see

Weissman et al. [31, Section V].

The original DUDE dealt exclusively with the case of jX j and jZj finite. Dembo and Weiss-

man [34] DUDE to the case of discrete input and general output channels; the noisy outputs

do not have to have their values in some finite set, but can have continuous values as well. As

in [31], the memoryless noisy channel model, which is characterized in this case by the set of

densities ffxgx2X , was assumed to be known. As shown in [34, Fig 1], the crux of the arguments

is to apply a scalar quantizer Q(�) to each continuous-valued noisy output {Yi} and to derive a

virtual DMC, Γ 2 RjX j�jZj, between the discrete input {Xi} and the quantized (hence, discrete)

output {Zi}. Such Γ can be readily obtained by the knowledge of ffxgx2X and evaluating the fol-

lowing integral for each (x, z): Γ(x, z) =
R

y:Q(y) = z fx(y)dy. Once the virtual DMC is obtained,

the rest of the algorithm in [34] proceeds similarly as the original DUDE; specifically, it obtains

the statistics vector m for the quantized noisy outputs {Zi} during the first pass, and then

applies a sliding window denoising rule similar to Eq (2), which depends on the statistics vec-

tor m, the virtual DMC Γ, ffxgx2X , and the noisy sequence Yn, during the second pass. A con-

crete denoising rule can be found in [34, Eqs (16), (19) and (20)]. In [34], a formal analysis of

the generalized DUDE shows that it attains the optimum denoising performance among slid-

ing window denoisers with the same window size, that base their denoising decisions on the
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original continuous-valued outputs Yn. We refer readers to the paper for more details. In the

next section, we show how we adopt this generalized DUDE in our DUDE-Seq to correct

homopolymer errors in DNA sequencing.

DUDE-Seq: DUDE for DNA sequence denoising

Substitution errors

As described in the previous section, the setting of the original DUDE algorithm naturally

aligns with the setting of substitution-error correction in DNA sequence denoising. We can

set X ¼ Z ¼ fA;C;G;Tg, and the loss function as the Hamming loss, namely, Lðx; x̂Þ ¼ 0,

if x ¼ x̂, and Lðx; x̂Þ ¼ 1, otherwise. Then, the two-pass sliding window procedure of DUDE

for collecting the statistics vector m and the actual denoising can be directly applied as shown

in the toy example in Fig 2. Before we formally describe our DUDE-Seq for substitution-error

correction, however, we need to address some subtle points.

First, the original DUDE in Eq (2) assumes that the DMC matrix P is known beforehand,

but in real DNA sequence denoising, we need to estimate P for each sequencing device. As

described in the Experimental Results section in detail, we performed this estimation following

the typical process for obtaining the empirical confusion matrix, i.e., we aligned the predefined

reference sequence and its noise-corrupted sequence and then determined the ratio of substi-

tution errors and obtain the estimated P. Second, the original DUDE assumes that the noise

mechanism is memoryless, i.e., the error rate does not depend on the location of a base within

the sequence. In contrast, for real sequencing devices, the actual error rate, namely, the condi-

tional probability Pr(Zi = z|Xi = x) may not always be the same for all location index values i.
For example, for Illumina sequencers, the error rate tends to increase towards the ends of

reads, as pointed out in [21]. In our DUDE-Seq, however, we still treat the substitution error

mechanism as a DMC and therefore use the single estimated P obtained as above, which is

essentially the same as that obtained using the average error rate matrix. Our experimental

results show that such an approach still yields very competitive denoising results. Thirdly, the

optimality of the original DUDE relies on the stationarity of the underlying clean sequence,

thus requiring a very large observation sequence length n to obtain a reliable statistics vector

m. In contrast, most sequencing devices generate multiple short reads of lengths 100 * 200.

Fig 2. A sliding window procedure of the DUDE-Seq with the context size k = 3. During the first pass,

DUDE-Seq updates the m(zn, l3, r3) for the encountered double-sided contexts (l3, r3). Then, for the second

pass, DUDE-Seq uses the obtained m(zn, l3, r3) and Eq (2) for the denoising.

https://doi.org/10.1371/journal.pone.0181463.g002
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Hence, in DUDE-Seq, we combined all statistics vectors collected from multiple short reads to

generate a single statistics vector m to use in Eq (2).

Addressing the above three points, a formal summary of DUDE-Seq for the substitution

errors is given in Algorithm 1. Note that the pseudocode in Algorithm 1 skips those bases

whose Phred quality score s are higher than a user-specified threshold and invokes DUDE-Seq

only for the bases with low quality scores (lines 10–14). This is in accord with the common

practice in sequence preprocessing and is not a specific property of the DUDE-Seq algorithm.

Furthermore, for simplicity, we denoted zn as the entire noisy DNA sequence, and

mTðzn; zi� 1
i� k ; z

iþk
iþ1
Þ represents the aggregated statistics vector obtained as described above.

Algorithm 1 The DUDE-Seq for substitution errors

Require:Observation zn, EstimatedDMC matrix P 2 R4�4, HamminglossΛ 2 R4�4,
Contextsize k, Phredqualityscore Qn

Ensure:The denoisedsequence X̂ n

1: Define mðzn; lk; rkÞ 2 R4 for all (lk, rk)2{A,C,G,T}2k.
2: Initializem(zn, lk, rk)[a] = 0 for all (lk, rk)2{A,C,G,T}2k and for all a 2
{A,C,G,T}
3: For i k + 1,. . ., n − k do ⊳ Firstpass
4: mðzn; zi� 1

i� k ; z
iþk
iþ1
Þ½zi� ¼ mðzn; zi� 1

i� k ; z
iþk
iþ1
Þ½zi� þ 1 ⊳ Updatethe countstatisticsvector

5: end for
6: for i 1,. . ., n do ⊳ Secondpass
7: if i� k or i� n − k + 1 then
8: X̂ i ¼ zi

9: else
10: if Qi > thresholdthen ⊳ Qualityscore
11: X̂ i ¼ zi

12: else
13: X̂ iðznÞ ¼ argmin

x̂2fA;C;G;Tg

mTðzn; zi� 1
i� k ; z

iþk
iþ1
ÞΠ� 1½lx̂ � pzi

� ⊳ Applythe denoisingrule

14: end if
15: end if
16: end for

Remarks

1. Incorporating flanking sequences in DUDE-Seq is quite straightforward; we can simply use

the one-sided contexts l2k or r2k once DUDE-Seq reaches the flanking regions. In our exper-

iments, however, we did not perform such modification (lines 7–8 of Algorithm 1) since we

normally used small k values (around k = 5). As demonstrated in our experimental results,

the effect of such small flanking regions is not significant on the final denoising results, and

we can achieve satisfactory results without considering flanking regions. However, in gen-

eral, should longer values of k be needed, we can easily modify the algorithm to incorporate

one-sided contexts in the flanking regions, and such modification will clearly improve the

final denoising result.

2. DUDE-Seq does not need to consider reverse complements of the input sequences to collect

m’s, since forward and reverse reads are handled separately in our experiments. Reverse

complements are typically considered when we need to handle double-stranded sequences

without knowing whether each read corresponds to the forward or reverse strand.

Homopolymer errors

Homopolymer errors, particularly in pyrosequencing, occur while handling the observed flow-

gram, and a careful understanding of the error injection procedure is necessary to correct

DUDE-Seq: Fast, flexible, and robust denoising for targeted amplicon sequencing
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these errors. As described in [35], in pyrosequencing, the light intensities, i.e., flowgram, that

correspond to a fixed order of four DNA bases {T, A, C, G} are sequentially observed. The

intensity value increases when the number of consecutive nucleotides (i.e., homopolymers) for

each DNA base increases, and the standard base-calling procedure rounds the continuous-val-

ued intensities to the closest integers. For example, when the observed light intensities for the

two frames of DNA bases are [0.03 1.03 0.09 0.12; 1.89 0.09 0.09 1.01], the corresponding

rounded integers are [0.00 1.00 0.00 0.00; 2.00 0.00 0.00 1.00]. Hence, the resulting sequence is

ATTG. The insertion and deletion errors are inferred because the observed light intensities do

not perfectly match the actual homopolymer lengths; thus, the rounding procedure may result

in the insertion or deletion of DNA symbols. In fact, the distribution of the intensities f, given

the actual homopolymer length N, {P(f|N)}, can be obtained for each sequencing device, and

Fig 3 shows typical distributions given various lengths.

Exploiting the fact that the order of DNA bases is always fixed at {T, A, C, G}, we can apply

the setting of the generalized DUDE in [34] to correct homopolymer errors as follows. Because

we know the exact DNA base that corresponds with each intensity value, the goal is the correct

estimatimation of homopolymer lengths from the observed intensity values. Hence, we can

interpret the intensity distributions {P(f|N)} as the memoryless noisy channel models with a

continuous-output, where the channel input is the homopolymer length N. We set the upper

bound of N to 9 according to the convention commonly used for handling flowgram distribu-

tions in the targeted amplicon sequencing literature [35–37]. When the usual rounding func-

tion

QRðf Þ ¼ argmin
i2f0;...;9g

ji � f j ð4Þ

Fig 3. Conditional intensity distributions for N = 0, 1, 2, 3.

https://doi.org/10.1371/journal.pone.0181463.g003
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is used as a scalar quantizer, as mentioned above, and the virtual DMC G 2 R10�10 can be

obtained by calculating the integral

Gði; jÞ ¼
R jþ0:5

j� 0:5
Pðf jiÞdf ð5Þ

for each 0� i� 9, 1� j� 9 and Gði; 0Þ ¼
R 0:5

0
Pðf jiÞdf .

With this virtual DMC model, we apply a scheme inspired by the generalized DUDE to cor-

rectly estimate the homopolymer lengths, which results in correcting the insertion and dele-

tion errors. That is, we set X ¼ Z ¼ f0; 1; . . . ; 9g, and again use the Hamming loss

L 2 R10�10. With this setting, we apply QR(f) to each fi to obtain the quantized discrete output

zi, and obtain the count statistics vector m from zn during the first pass. Then, for the second

pass, instead of applying the more involved denoising rule in [34, we employ the same rule as

Eq (2) with Γ in place of P to obtain the denoised sequence of integers X̂n based on the quan-

tized noisy sequence Zn. Although it is its implementation is easier and it has a faster running

time than that of the generalized DUDE. Once we obtain X̂n, from the knowledge of the DNA

base for each i, we can reconstruct the homopolymer error-corrected DNA sequence D̂ (the

length of which may not necessarily be equal to n). Algorithm 2 summarizes the pseudo-code

of DUDE-Seq for homopolymer-error correction.

Experimental results

Setup

We used both real and simulated NGS datasets and compared the performance of DUDE-Seq

with that of several state-of-the-art error correction methods. The list of alternative tools used

for comparison and the rationale behind our choice s are described in the next subsection.

When the flowgram intensities of base-calling were available, we corrected both homopolymer

and substitution errors; otherwise, we only corrected substitution errors. The specifications of

the machine we used for the analysis are as follows: Ubuntu 12.04.3 LTS, 2 × Intel Xeon X5650

CPUs, 64 GB main memory, and 2 TB HDD.

Algorithm 2 The DUDE-Seq for homopolymer errors

Require:Flowgramdata fn, Flowgramdensities fPðf jNÞg9

N¼0
, Hammingloss

L 2 R10�10, Contextsize k
Ensure:The denoisedsequence D̂
1: Let QR(f) be the roundingquantizerin Eq (4) of the main text
2: Let Base(i)2 {T, A, C, G} be the DNA base corresponding to fi
3: Define mðf n; lk; rkÞ 2 R10 for all (lk, rk) 2 {0, 1,. . .,9}2k.
4: Initializem(fn, lk, rk)[a] = 0 for all (lk, rk) 2 {0, 1,. . .,9}2k and for all a
2 {0, 1,. . .,9}
5: Let D̂ ¼ �, I = 0
6: for i 0,. . .,9 do
7: for j 0,. . .,9 do
8: ComputeΓ(i, j) followingEq (5) of the main text ⊳ Computingthe vir-
tual DMC Γ
9: end for
10: end for
11: for i 1,. . .,n do Obtainzi = QR(fi) ⊳ Note zi 2 {0,. . .,9}
12: end for
13: for i k + 1,. . .,n − k do ⊳ Firstpass
14: mðf n; zi� 1

i� k ; z
iþk
iþ1
Þ½zi� ¼ mðf n; zi� 1

i� k ; z
iþk
iþ1
Þ½zi� þ 1

15: end for
16: for i 1,. . .,n do ⊳ Secondpass
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17: if i� k or i� n − k + 1 then X̂ iðf nÞ ¼ zi

18: else
19: X̂ iðf nÞ ¼ argmin

x̂2X

mTðf n; zi� 1
i� k ; z

iþk
iþ1
ÞG� 1½lx̂ � gzi

� ⊳ Note X̂ iðznÞ 2 f0; . . . ; 9g

20: end if
21: if X̂ iðf nÞ � 1 then
22: for j 1; . . . ; X̂ iðf nÞ do D̂Iþj ¼ BaseðiÞ ⊳ Reconstructingthe DNA sequence
23: end for
24: end if
25: I  I þ X̂ iðf nÞ

26: end for
DUDE-Seq has a single hyperparameter k, the context size, that needs to be determined.

Similar to the popular k-mer-based schemes, there is no analytical method for selecting the

best k for finite data size n, except for the asymptotic order result of kjX j2k
¼ oðn= log nÞ in

[31], but a heuristic rule of thumb is to try values between 2 and 8. Furthermore, as shown in

Eq (2), the two adjustable matrices, Λ and P, are required for DUDE-Seq. The loss Λ used for

both types of errors is the Hamming loss. According to Marinier et al. [38], adjusting the

sequence length by one can correct most homopolymer errors, which justifies our use of Ham-

ming loss in DUDE-Seq. In our experiments, the use of other types of loss functions did not

result in any noticeable performance differences. The DMC matrix P for substitution errors is

empirically determined by aligning each sampled read to its reference sequence, as in [35].

Fig 4 shows the non-negligible variation in the empirically obtained P’s across the sequencing

platforms, where each row corresponds to the true signal x and each column corresponds

to the observed noisy signal z. In this setting, each cell represents the conditional probability

P(z|x). In our experiments, dataset P1–P8 used P for GS FLX, Q19–Q31 used P for Illumina,

and S5, A5 used P for Simulation data. The details of each dataset are explained in the follow-

ing sections.

In order to evaluate the results, we used Burrows-Wheeler Aligner (BWA) [39] and SAM-

tools [40]. We aligned all reads to their reference genome using BWA with the following

parameters: [minimum seed length: 19, matching score: 1, mismatch penalty: 4, gap open pen-

alty: 6, gap extension penalty: 1]. After the mapped regions were determined using BWA in

SAM format, we chose uniquely mapped pairs using SAMtools. The Compact Idiosyncratic

Gapped Alignment Report (CIGAR) string and MD tag (string for mismatching positions) for

each of the resultant pairs in the SAM file were reconstructed to their pairwise alignments

using sam2pairwise [41].

Fig 4. Adjustable DMC matrixΠ of DUDE-Seq. Empirically obtainedΠ’s for different sequencing platforms (colors are on a log scale).

https://doi.org/10.1371/journal.pone.0181463.g004
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Evaluation metric

As a performance measure, we define the per-base error rate of a tool after denoising as

etool ¼
# mismatched bases

# aligned bases
; ð6Þ

in which ‘# aligned bases’ represents the number of mapped bases (i.e., matches and mis-

matches) after mapping each read to its reference sequence, and ‘# mismatched bases’ repre-

sents the number of the erroneous bases (i.e., insertions, deletions, and substitutions) among

the aligned bases.

We also employ an alternative definition that adjusts the error rate by incorporating the

degree of alignment. To this end, we define the relative gain of the number of aligned bases

after denoising by a tool over raw data as

gðatoolÞ ¼
# aligned bases after denoising � # aligned bases in raw

# aligned bases in raw
: ð7Þ

Based on this, the adjusted error rate êtool of a denoising tool is defined as follows:

êtool ¼ ð1þ gðatoolÞÞ � etool � gðatoolÞ � eraw; ð8Þ

where etool and eraw represent the (unadjusted) error rates of the denoised data and the raw

data, respectively. In other words, Eq (8) is a weighted average of etool and eraw, in which the

weights are determined by the relative number of aligned bases of a tool compared to the raw

sequence. We believe êtool is a fairer measure as it penalizes the error rate of a denoiser when

there is a small number of aligned bases. The relative gain of the adjusted error rate over raw

data is then defined as

gðêtoolÞ ¼
eraw � êtool

eraw
; ð9Þ

which we use to evaluate the denoiser performance.

While evaluating a clustering result, we employ a measure of concordance (MoC) [42]

which is a popular similarity measure for pairs of clusterings. For two pairs of clusterings P
and Q with I and J clusters, respectively, the MoC is defined as

MoCðP;QÞ ¼
1
ffiffiffiffi
IJ
p
� 1

XI

i¼1

XJ

j¼1

f 2
ij

piqj
� 1

 !

ð10Þ

where fij is the number of the common objects between cluster Pi and Qj when pi and qj are the

numbers of the objects in cluster Pi and Qj, respectively. A MoC of one or zero represents per-

fect or no concordance, respectively, between the two clusters.

Software chosen for comparison

It is impossible to compare the performance of DUDE-Seq with that of all other schemes.

Hence, we selected representative baselines using the following reasoning.

1. We included tools that can represent different principles outlined in the Introduction,

namely, k-mer-based (Trowel, Reptile, BLESS, and fermi), MSA-based (Coral), and statisti-

cal error model-based (AmpliconNoise) methods.

2. We considered the recommendations of [21] to choose baseline tools that are competitive

for different scenarios, i.e., for 454 pyrosequencing data (AmpliconNoise), non-uniform
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coverage data, such as metagenomics data (Trowel, fermi, Reptile), data dominated by sub-

stitution errors, such as Illumina data (Trowel, fermi, Reptile), and data with a high preva-

lence of indel errors (Coral).

3. For multiple k-mer-based tools, we chose those that use different main approaches/data

structures: BLESS (k-mer spectrum-based/hash table and bloom filter), fermi (k-mer spec-

trum and frequency-based/hash table and suffix array), Trowel (k-mer spectrum-based/

hash table), and Reptile (k-mer frequency and Hamming graph-based/replicated sorted

k-mer list).

4. The selected tools were developed quite recently; Trowel and BLESS (2014), fermi (2012),

Coral and AmpliconNoise (2011), and Reptile (2010).

5. We mainly chose tools that return read-by-read denoising results to make fair error-rate

comparisons with DUDE-seq. We excluded tools that return a substantially reduced num-

ber of reads after error correction (caused by filtering or forming consensus clusters).

Examples of excluded tools are Acacia, ALLPATHS-LG, and SOAPdenovo.

6. We also excluded some recently developed tools that require additional mandatory infor-

mation (e.g., the size of the genome of the reference organism) beyond the common setting

of DNA sequence denoising in order to make fair error-rate comparisons. Examples of

excluded tools are Fiona, Blue, and Lighter. Incorporating those tools that require addi-

tional information into the DUDE-Seq framework and comparisons with the excluded

tools would be another future directions.

Real data: 454 pyrosequencing

Pyrosequenced 16S rRNA genes are commonly used to characterize microbial communities

because the method yields relatively longer reads than those of other NGS technologies [43].

Although 454 pyrosequencing is gradually being phased out, we test ed DUDE-Seq with 454

pyrosequencing data for the following reasons: (1) the DUDE-Seq methodology for correcting

homopolymeric errors in 454 sequencing data is equally applicable to other sequencing tech-

nologies that produce homopolymeric errors, such as Ion Torrent; (2) using pyrosequencing

data allows us to exploit existing (experimentally obtained) estimates of the channel transition

matrix Γ (e.g., [35]), which is required for denoising noisy flowgrams by DUDE-Seq (see Algo-

rithm 2); (3) in the metagenomics literature, widely used standard benchmarks consist of data-

sets generated by pyrosequencing.

In metagenome analysis [44], grouping reads and assigning them to operational taxonomic

units (OTUs) (i.e., binning) are essential processes, given that the majority of microbial species

have not been taxonomically classified. By OTU binning, we can computationally identify

closely related genetic groups of reads at a desired level of sequence differences. However,

owing to erroneous reads, nonexistent OTUs may be obtained, resulting in the common prob-

lem of overestimating ground truth OTUs. Such overestimation is a bottleneck in the overall

microbiome analysis; hence, removing errors in reads before they are assigned to OTUs is a

critical issue [35]. With this motivation, in some of our experiments below, we used the differ-

ence between the number of assigned OTUs and the ground truth number of OTUs as a proxy

for denoising performance; the number of OTUs was determined using UCLUST [45] at iden-

tity threshold of 0.97 which is for species assignment.

We tested the performance of DUDE-Seq with the eight datasets used in [35], which are

mixtures of 94 environmental clones library from eutrophic lake (Priest Pot) using primers

787f and 1492r. Dataset P1 had 90 clones that are mixed in two orders of magnitude difference
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while P2 had 23 clones that were mixed in equal proportions. In P3, P4, and P5 and P6, P7,

and P8, there are 87 mock communities mixed in even and uneven proportions, respectively.

In all datasets, both homopolymer and substitution errors exist, and the flowgram intensity

values as well as the distributions are available [35]. Therefore, DUDE-Seq tries to correct

both types of errors using the empirically obtained P and the flowgram intensity distributions

{P(f|N)}.

We first show the effect of k on the performance of DUDE-Seq in Fig 5. The vertical axis

shows the ratio between the number of OTUs assigned after denoising with DUDE-Seq and

the ground truth number of OTUs for the P1, P2, and P8 dataset. The horizontal axis shows

the k values used for correcting the substitution errors (i.e., for Algorithm 1), and color-coded

curves were generated for different k values used for homopolymer-error correction (i.e., for

Algorithm 2). As shown in the figure, correcting homopolymer errors (i.e., with k = 2 for Algo-

rithm 2) always enhanceed the results in terms of the number of OTUs in comparison to cor-

recting substitution errors alone (i.e., Algorithm 1 alone). We observe that k = 5 for Algorithm

1 and k = 2 for Algorithm 2 produce the best results in terms of the number of OTUs. Larger k
value work better for substitution errors owing to the smaller alphabet size of the data, i.e., 4,

compared to that of homopolymer errors, i.e., 10. Motivated by this result, we fixed the context

sizes of substitution error correction and homopolymer error correction to k = 5 and k = 2,

respectively, for all subsequent experiments.

In Fig 6(a), we report a more direct analysis of error correction performance. We compared

the performance of DUDE-Seq with that of Coral [16], which is an MSA-based state-of-the-art

scheme. It aligns multiple reads by exploiting the k-mer neighborhood of each base read and

produces read-by-read correction results for pyrosequencing datasets, similar to DUDE-Seq.

Furthermore, as a baseline, we also present ed the error rates for the original, uncorrected

sequences (labeled ‘Raw’). We did not include the results of AmpliconNoise [35], a state-of-

the-art scheme for 454 pyrosequencing data, in the performance comparison because it does

not provide read-by-read correction results, making a fair comparison of the per-base error

correction performance with DUDE-Seq difficult. We observeed that DUDE-Seq(1+2), which

corrects both substitution errors and homopolymer errors, always outperforms Coral, and the

relative error reductions of DUDE-Seq(1+2) with respect to ‘Raw,’ without any denoising, was

up to 23.8%. Furthermore, the homopolymer error correction further drives down the error

rates obtained by substitution-error correction alone; hence, DUDE-Seq(1+2) always outper-

forms DUDE-Seq(1).

Fig 5. Hyperparameter k of DUDE-Seq. Effects of varying context size k [k1 is for Algorithm 1 (substitution-error correction) and k2 is for Algorithm 2

(homopolymer-error correction); data: [35]].

https://doi.org/10.1371/journal.pone.0181463.g005
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In Fig 6(b), we compare the error correction performance of three schemes, Amplicon-

Noise, Coral, and DUDE-Seq, in terms of the MoC. AmpliconNoise assumes a certain statisti-

cal model on the DNA sequence and runs an expectation-maximization algorithm for

denoising. Here, the two clusterings in the comparison are the golden OTU clusterings and

the clusterings returned by denoisers. We observe that for all eight datasets, the number of

OTUs generated by DUDE-Seq is consistently closer to the ground truth, providing higher

MoC values than those of the other two schemes.

Furthermore, Fig 6(c) compares the running time of the three schemes for the eight data-

sets. We can clearly see that DUDE-Seq is substantially faster than the other two. Particularly,

we stress that the running time of DUDE-Seq, even when implemented and executed with a

single CPU, is two orders of magnitude faster than that of parallelized AmpliconNoise, run on

four powerful GPUs. We believe that this substantial boost over state-of-the-art schemes with

respect to running time is a compelling reason for the adoption of DUDE-Seq in microbial

community analysis.

Real data: Illumina sequencing

Illumina platforms, such as GAIIx, MiSeq, and HiSeq, are currently ubiquitous platforms in

genome analysis. These platforms intrinsically generate paired-end reads (forward and reverse

reads), due to the relatively short reads compared to those obtained by automated Sanger

sequencing [46]. Merging the forward and reverse reads from paired-end sequencing yeilds

elongated reads (e.g., 2 × 300 bp for MiSeq) that improve the performance of downstream

pipelines [47].

Illumina platforms primarily inject substitution errors. A realistic error model is not the

DMC, though, as the error rates of the Illumina tend to increase from the beginning to the end

of reads. Thus, the assumptions under which the DUDE was originally developed do not

exactly apply to the error model of Illumina. In our experiments with DUDE-Seq, however, we

still used the empirically obtained DMC model P in Fig 4, which was computed by averaging
all error rates throughout different Illumina platforms.

In our experiments, we used 13 real Illumina datasets (named Q19–Q31) reported previ-

ously [32], including sequencing results from four organisms (Anaerocellum thermophilum Z-
1320 DSM 6725, Bacteroides thetaiotaomicron VPI-5482, Bacteroides vulgatus ATCC 8482, and

Fig 6. Comparison of reads correction performance on eight real 454 pyrosequencing datasets (labeled P1–P8; [35]). [parameters: k = 5 (Algorithm

1) and k = 2 (Algorithm 2) for DUDE-Seq; (sPyroNoise, cPyroNoise, sSeqNoise, cSeqNoise) = (60, 0.01, 25, 0.08) for AmpliconNoise; (k, mr, mm, g) = (21, 2, 2, 3) for

Coral]: (a) Per-base error rates [1 and 2 represents substitution error-correction (Algorithm 1) and homopolymer error-correction (Algorithm 2), respectively.]

(b) Measure of concordance (MoC), a similarity measure for pairs of clusterings (c) Running time (the type and quantity of processors used for each case are

shown in legend).

https://doi.org/10.1371/journal.pone.0181463.g006
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Caldicellulosiruptor saccharolyticus DSM 8903) targeting two hypervariable regions, V3 and

V4, using different configurations (see the caption for Table 1 and Fig 7 for details). To exam-

ine how the number of reads in a dataset affects denoising performance, we derived 10 subsets

from the original datasets by randomly subsampling 10,000 to 100,000 reads in increments of

10,000 reads. In addition to Coral, we compared the performance of DUDE-Seq with that of

BLESS [48], fermi [49], and Trowel [25], which are representative k-mer-based state-of-the-art

tools. BLESS corrects “weak” k-mers that exist between consecutive “solid” k-mers, assuming

that a weak k-mer has only one error. Fermi corrects sequencing errors in underrepresented k-

mers using a heuristic cost function based on quality scores and does not rely on a k-mer

occurrence threshold. Trowel does not use a coverage threshold for its k-mer spectrum and

iteratively boosts the quality values of bases after making corrections with k-mers that have

high quality values.

Fig 7 shows the per-base error rates, defined in Eq (6), for the tools under comparison

using the first eight datasets (Q19–Q26) and their subsets created as described above (thus, a

total of 80 datasets per tool). BLESS did not run successfully on these datasets, and hence its

results are not shown. First, we can confirm that DUDE-Seq is effective in reducing substitu-

tion errors for data obtained using the Illumina platform in all tested cases of targeted ampli-

con sequencing, with relative error rate reductions of 6.40–49.92%, compared to the ‘Raw’

sequences. Furthermore, among the tools included in the comparison, DUDE-Seq produced

the best results for the largest number of datasets. For Q24 and Q25, fermi was most effective,

but was outperformed by DUDE-Seq in many other cases. Coral was able to denoise to some

extent but was inferior to DUDE-Seq and fermi. Trowel gave unsatisfactory results in this

experiment.

Before presenting our next results, we note that while the error rate defined in Eq (6) is

widely used for DNA sequence denoising research as a performance measure, it occasionally

misleading and cannot be used to fairly evaluate the performance of denoisers. This is because

only errors at aligned bases are counted in the error rate calculation; hence, a poor denoiser

may significantly reduce the number of aligned bases, potentially further corrupting the noisy

Table 1. Details of the Illumina datasets [32] used for our experiments shown in Fig 7.

dataset ID region sequencer Taq organism forward & reverse primer

Q19 V4 MiSeq2 Q5 AT 515 & 805RA

Q20 V4 MiSeq2 Q5 BT 515 & 805RA

Q21 V4 MiSeq2 Q5 BV 515 & 805RA

Q22 V4 MiSeq2 Q5 CS 515 & 805RA

Q23 V4 MiSeq2 HF AT 515 & 805RA

Q24 V4 MiSeq2 HF BT 515 & 805RA

Q25 V4 MiSeq2 HF BV 515 & 805RA

Q26 V4 MiSeq2 HF CS 515 & 805RA

Q27 V3/V4 MiSeq1 Q5 AT 314f & 806rcb

Q28 V3/V4 MiSeq1 Q5 BT 314f & 806rcb

Q29 V3/V4 MiSeq1 Q5 BV 314f & 806rcb

Q30 V3/V4 MiSeq1 Q5 CS 314f & 806rcb

Q31 V3/V4 MiSeq1 HF AT 314f & 806rcb

Taqs: HiFI Kapa (HF), Q5 neb (Q5); Organisms: Anaerocellum thermophilum Z-1320 DSM 6725 (AT), Bacteroides thetaiotaomicron VPI-5482 (BT),

Bacteroides vulgatus ATCC 8482 (BV), Caldicellulosiruptor saccharolyticus DSM 8903 (CS), Herpetosiphon aurantiacus ATCC 23779 (HA), Rhodopirellula

baltica SH 1 (RBS), Leptothrix cholodnii SP-6 (LC)

https://doi.org/10.1371/journal.pone.0181463.t001
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sequence, but it can have a low error rate calculated as in Eq (6). In our experiments with the

datasets Q27-Q31, we detected a large variance in the number of aligned bases across different

denoising tools; thus, it was difficult to make a fair comparison among the performance of dif-

ferent tools with Eq (6). We note that in the experiments presented in Figs 6(a) and 7, such a

large variance was not detected. To alleviate this issue, we employ the alternative definition of

the per-base error rate of a tool in Eq (8).

Fig 8 shows the results obtained for 100,000-read subsets of each of the Q19–Q31 datasets,

i.e., all datasets, for DUDE-Seq and the four alternative denoisers. Because the datasets Q27–

Q31 had two subsets of 100,000 reads, we used a total of 18 datasets to draw Fig 8, one each

from Q19–Q26 and two each from Q27–Q31. As mentioned previously, BLESS could not run

successfully on Q19–Q26; hence, there are only 10 points for BLESS in the plots. Fig 8(a), 8(b)

and 8(c) presents the distribution of gðêtoolÞ, g(atool), and running times for each tool, respec-

tively. For each distribution, the average value is marked with a solid circle. As shown in Fig 8

(b), we clearly see that Coral and Trowel show a large variance in the number of aligned bases.

Fig 7. Comparison of reads correction performance on real Illumina datasets (labeled Q19–Q26; see Table 1 for more details). [parameters: (k, mr,

mm, g) = (21, 1, 1, 1000) for Coral; k = 21 for Trowel; (k, O, C, s) = (21, 3, 0.3, 5) for fermi; k = 5 for DUDE-Seq; no BLESS result shown since it did not work

on these data] [Organisms: Anaerocellum thermophilum Z-1320 DSM 6725 (Q19 and Q23), Bacteroides thetaiotaomicron VPI-5482 (Q20 and Q24),

Bacteroides vulgatus ATCC 8482 (Q21 and Q25), Caldicellulosiruptor saccharolyticus DSM 8903 (Q22 and Q26)] [Q19–Q22: Miseq (Library: nested single

index, Taq: Q5 neb, Primer: 515 & 805RA)] [Q23–Q26: Miseq (Library: NexteraXT, Taq: Q5 neb, Primer: 341f & 806rcb)].

https://doi.org/10.1371/journal.pone.0181463.g007

Fig 8. Performance comparison. (a) Relative gain of adjusted error rates over ‘Raw’ data Eq (9). (b) Relative gain of aligned bases Eq (7). (c) Running

time on real Illumina datasets (labeled Q19–Q31; see the caption for Fig 7). [parameters: kmerlength = 21 for BLESS; (k, mr, mm, g) = (21, 1, 1, 1000) for

Coral; k = 21 for Trowel; (k, O, C, s) = (21, 3, 0.3, 5) for fermi; k = 5 for DUDE-Seq] [BLESS did not work on Q19–Q26].

https://doi.org/10.1371/journal.pone.0181463.g008
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For example, Coral only aligns 30% of bases compared to the raw sequence after denoising for

some datasets. With the effect of this variance in aligned bases adjusted, Fig 8(a) shows that

DUDE-Seq produces the highest average gðêtoolÞ, i.e., 19.79%, among all the compared tools.

Furthermore, the variability of g(atool) was the smallest for DUDE-Seq, as shown in Fig 8(b),

suggesting its robustness. Finally, in Fig 8(c), we observe that the running times were signifi-

cantly shorter for DUDE-Seq and Trowel than for Coral and fermi. Overall, we can conclude

that DUDE-Seq is the most robust tool, with a fast running time and the highest average accu-

racy after denoising.

In summary, we observe from Figs 7 and 8 that DUDE-Seq robustly outperforms the com-

peting schemes for most of the datasets tested. We specifically emphasize that DUDE-Seq

shows a strong performance, even though the DMC assumption does not hold for the

sequencer. We believe that the better performance of DUDE-Seq relative to other state-of-the-

art algorithms (based on MSA or k-mer spectrums) on real Illumina datasets strongly demon-

strates the competitiveness of DUDE-Seq as a general DNA sequence denoiser for targeted

amplicon sequencing.

Experiments on simulated data

We performed more detailed experiments using Illumina simulators in order to further high-

light the strong denoising performance of DUDE-Seq, including the effects on downstream

analyses.

Fig 9(a) shows the results obtained using the Grinder simulator [50] and a comparison with

Coral. Trowel and Reptile require quality scores as input, which are provided by the GemSIM

simulator, but not by the Grinder simulator; hence, we could not include Trowel and Reptile

in Fig 9(a). We generated nine synthetic datasets of forward reads that had error rates at the

end of the sequence varying from 0.2% to 1.0%, as denoted on the horizontal axis. For all cases,

the error rate at the beginning of the sequence was 0.1%. We again used the average DMC

model for the entire sequence for DUDE-Seq. Note that the error rates for the ‘Raw’ data, i.e.,
the red bars, match the average of the error rates at the beginning and the end of the sequence.

From the figure, consistent with the real datasets analyzed in Section, we clearly see that

DUDE-Seq significantly outperforms Coral for all tested error rates.

To evaluate the performance of DUDE-Seq for paired-end reads, we generated datasets,

shown in Table 2, with the GemSIM sequencing data simulator [51]. As shown in the table, we

used 23 public reference sequences [35] to generate the dataset A5 and a single reference

sequence for S5. We used the error model v5 that has error rate s of 0.28% for forward reads

and 0.34% for reverse reads. In Fig 9(b), in addition to DUDE-Seq, Coral, fermi, and Trowel,

we included the results obtained using Reptile [20], another k-mer spectrum-based method

that outputs read-by-read denoising results. We again observe from the figure that DUDE-Seq

outperforms the alternatives by significant margins.

In Table 3, we show that the error-corrected reads produced by DUDE-Seq can also

improve the performance of downstream pipelines, such as paired-end merging. We applied

four different paired-end merging schemes, CASPER [52], COPE [53], FLASH [47], and PAN-

DAseq [54], for the two datasets A5 and S5 in Table 2. The metrics are defined as usual. A true

positive (TP) is defined as a merge with correct mismatching resolution in the overlap region,

and a false positive (FP) is defined as a merge with incorrect mismatching resolution in the

overlap region. Furthermore, a false negative (FN) is a merge that escapes the detection, and a

true negative (TN) is defined as a correct prediction for reads that do not truly overlap. The

accuracy and F1 score are computed based on the above metrics [55]. For each dataset, we

compared the results for four cases: performing paired-end merging without any denoising,
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Fig 9. Reads correction performance on simulated dataset. [parameters: k = 5 for DUDE-Seq; k = 10 for

Trowel; (k, mr, mm, g) = (21, 1, 1, 1000) for Coral; optimal values set by tool seq-analy for Reptile; (k, O, C,

s) = (21, 3, 0.3, 5) for fermi]: (a) Varying error rates using the Grinder simulator [50]. (b) Varying reads

composition using the GemSIM simulator [51] (values on top of each bar represent the error rates).

https://doi.org/10.1371/journal.pone.0181463.g009
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after correcting errors with Coral, after correcting errors with fermi, and after correcting errors

with DUDE-Seq. Reptile and Trowel were not included in this experiment because they were

generally outperformed by Coral and fermi, as shown in Fig 9(b). The accuracy and F1 score

results show that correcting errors with DUDE-Seq consistently yields better paired-end merg-

ing performance, not only compared to the case with no denoising, but also compared to the

Table 2. Details of the public data [52] used for our experiments on simulated data shown in Table 3.

dataset ID # total reads # refs fragment length read length overlap length simulator (error model) or sequencer used

S5 1,000,000 [1] 160 100 40 GemSIM (v5#)

A5 1,000,000 [23] 160–190 100 10–40 GemSIM (v5
#

)

# Error model v5 (forward rate 0.28%, reverse 0.34%)

https://doi.org/10.1371/journal.pone.0181463.t002

Table 3. Paired-end reads merging performance statistics [parameters: k = 5 for DUDE-Seq; (k, mr, mm, g) = (21, 1, 1, 1000) for Coral; (k, O, C, s) =

(21, 3, 0.3, 5) for fermi].

tool dataset # merges TP FP FN accuracy F1

CASPER S5 1,000,000 997,303 2,697 0 0.997 0.999

COPE 974,219 961,366 12,853 25,781 0.961 0.980

FLASH 999,921 977,431 22,490 79 0.977 0.989

PANDAseq 999,947 976,807 23,140 53 0.977 0.988

CASPER S5

w/ Coral

1,000,000 997,510 2,490 0 0.998 0.999

COPE 975,803 963,717 12,086 24,197 0.964 0.982

FLASH 999,942 978,835 21,107 58 0.979 0.989

PANDAseq 999,949 978,270 21,679 51 0.978 0.989

CASPER S5

w/ fermi

1,000,000 997,356 2,644 0 0.997 0.999

COPE 994,025 969,451 24,574 5,975 0.969 0.984

FLASH 999,933 972,025 27,908 67 0.972 0.986

PANDAseq 999,952 971,567 28,385 48 0.972 0.986

CASPER S5

w/ DUDE-Seq

1,000,000 999,320 680 0 0.999 1.000

COPE 987,238 983,639 3,599 12,762 0.984 0.992

FLASH 999,958 992,915 7,043 42 0.993 0.996

PANDAseq 999,949 991,146 8,803 51 0.991 0.996

CASPER A5 999,973 997,202 2,771 27 0.997 0.999

COPE 924,634 915,981 8,653 75,366 0.916 0.956

FLASH 999,578 977,355 22,223 422 0.977 0.989

PANDAseq 999,122 978,720 20,402 878 0.979 0.989

CASPER A5

w/ Coral

999,974 995,899 4,075 26 0.996 0.998

COPE 927,757 918,733 9,024 72,243 0.919 0.958

FLASH 999,742 978,814 20,928 258 0.979 0.989

PANDAseq 999,351 979,899 19,452 649 0.980 0.990

CASPER A5

w/ fermi

999,969 997,288 2,681 31 0.997 0.999

COPE 939,986 923,252 16,734 60,014 0.923 0.960

FLASH 999,732 974,903 24,829 268 0.975 0.987

PANDAseq 999,328 975,320 24,008 672 0.975 0.988

CASPER A5

w/ DUDE-Seq

999,971 998,078 1,893 29 0.998 0.999

COPE 943,531 939,555 3,976 56,469 0.940 0.969

FLASH 999,638 989,860 9,778 362 0.990 0.995

PANDAseq 999,354 989,250 10,104 646 0.989 0.995

https://doi.org/10.1371/journal.pone.0181463.t003
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cases with Coral and fermi error correct ion. This result highlights the potential application of

DUDE-Seq for boosting the performance of downstream DNA sequence analyses.

Discussion

Our experimental results show that DUDE-Seq can robustly outperform k-mer-based, MSA-

based, and statistical error model-based schemes for both real-world datasets, such as 454 pyr-

osequencing and Illumina data, and simulated datasets, particularly for targeted amplicon

sequencing. This performance advantage in denoising further allowed us to obtain improved

results in downstream analysis tasks, such as OTU binning and paired-end merging. Further-

more, the time demand of DUDE-Seq-based OTU binning is order(s) of magnitude lower

than that of the current state-of-the-art schemes. We also demonstrated the robustness and

flexibility of DUDE-Seq by showing that a simple change in P matrix is enough to apply the

exact same DUDE-Seq to data obtained using different sequencing platforms. In particular, we

experimentally showed that even when the memoryless channel assumption does not hold, as

in Illumina data, DUDE-Seq still solidly outperforms state-of-the-art schemes.

The sliding window nature of DUDE-Seq resemble s the popular k-mer-based schemes in

the literature. However, while all existing k-mer-based schemes rely on heuristic threshold

selection for determining errors in the reads, regardless of the error model of the sequencing

platform, DUDE-Seq applies an analytic denoising rule that explicitly takes the error model P

into account. Therefore, even for identical noisy reads zn, DUDE-Seq may result in different

denoised sequences, depending on the P’s of different sequencing platforms, whereas the k-

mer-based scheme will always result in the exact same denoised sequence. The performance

gains reported in this paper compared to state-of-the-art baselines, including those for k-mer-

based schemes, substantiate the competitiveness of our method for targeted amplicon

sequencing.

Another advantage of DUDE-Seq is its read-by-read error-correction capability. This fea-

ture is important for a number of bioinformatics tasks, including de novo sequencing, metage-

nomics, resequencing, targeted resequencing, and transcriptome sequencing, which typically

require the extraction of subtle information from small variants in each read. In addition to

the types of tasks presented in this paper (i.e., per-based error correction, OTU binning, and

paired-end merging), we plan to apply DUDE-Seq to additional tasks, as mentioned above.

Additional venues for further investigation include the procedure for estimating the noise

mechanism represented by P, which is currently empirically determined by aligning each read

to the reference sequence and is therefore sensitive to read mapping and alignment. For more

robust estimation, we may employ an expectation-maximization-based algorithm, as was

recently proposed for estimating substitution emissions for the data obtained using nanopore

technology [56]. Considering uncertainties in P may also be helpful; hence, it may be useful to

investigate the relevance of the framework in [57]. Additionally, it will likely be fruitful to uti-

lize the information in Phred quality scores to make decisions about noisy bases and to fine-

tune the objective loss function in our approach. Using a lossy compressed version of the qual-

ity scores is one possible direction for boosting the inferential performance of some down-

stream applications, as shown in [58]. Furthermore, particularly for the homopolymer error

correction, there are several hyperparameters whose choices can be experimented with in the

future to potentially achieve substantial performance boosts. Examples include the choice of

alphabet size (in lieu of the current value of 10), the choice of the loss function that may be pro-

portional to the difference between the true and estimated value of N (in lieu of the current

Hamming loss), and the choice of quantization (in lieu of Eq (4)). Moreover, we may apply the

full generalized DUDE in [34] for homopolymer error correction to determine if better
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performance can be achieved at the cost of increased complexity. Applying DUDE-Seq to

other types of sequencing technology with homopolymer errors (e.g., Ion Torrent) would also

be possible as long as we can acquire flow (e.g., ionogram) density distributions to estimate Γ.

Currently, there exists no public data repository that includes such information for Ion Tor-

rent, and thus existing Ion Torrent denoisers often ignore homopolymer errors or rely on sim-

plistic noise modeling and iterative updates that unrealistically limit the maximum length of

homopolymer errors that can be handled, let alone computational efficiency [36]. Finally, we

plan to test DUDE-Seq on several other sequencing platforms, such as PacBio and Oxford

Nanopore, which tend to result in longer and more noisy sequences, to further substantiate

the robustness and effectiveness of our algorithm. Applying the recently developed deep neural

networks -based Neural DUDE algorithm [59] to DNA sequence denoising beyond targeted

amplicon sequencing could be another fruitful direction.

Supporting information

S1 File. Fig A, DUDE-Seq web interface. This is a screenshot of the website accompanying

the proposed DUDE-Seq method (http://data.snu.ac.kr/pub/dude-seq). For users who prefer a

graphical user interface, this website provides a web-based execution environments for

DUDE-Seq. Through this screen, a user can specify the parameters for each of the two error

types (in the figure, DUDE-Seq (1) stands for for the substitution error correction described in

Algorithm 1 and DUDE-Seq (2) stands for the homopolymer error correction shown in Algo-

rithm 2), and upload the input file of her choice. The DUDE-Seq process starts automatically

by clicking the “SUBMIT” button. For advanced users who prefer batch processing, the source

code of DUDE-Seq is also available at http://github.com/datasnu/dude-seq. All the used data-

sets are also available on the Sequence Read Archive (SRA) under the accession number

SRP000570 (SRS002051–SRS002053) at https://www.ncbi.nlm.nih.gov/sra/SRP000570 and the

European Nucleotide Archive (ENA) under the accession number PRJEB6244 (ERS671332–

ERS671344) at http://www.ebi.ac.uk/ena/data/view/PRJEB6244. Fig B, Website output:

sequence complexity. The DUDE-Seq website provides analysis results from applying the

DUST algorithm [60] and block-entropy to the outputs from denoising by DUDE-Seq. The

DUST algorithm masks low-complexity regions that have highly biased distribution of nucleo-

tides based on counting 3-mer frequencies in 64-base windows. The DUST score is computed

based on how often different trinucleotides occur as follows:

score ¼
Xk

i¼1

niðni � 1Þðw � 2Þs
2ðl � 1Þl

where k = 43 is the trinucleotide size, w = 64 is the window size, ni is the number of the words i
in a window, l is the number of the possible words in a window, and s is the scaling factor. The

score is scaled from 0 to 100 and a high score implies a low complexity metagenome. The

block-entropy is calculated using Shannon’s diversity index [61]. The block-entropy evaluates

the entropy of the trinucleotides in a sequence as follows:

entropy ¼ �
Xk

i¼1

ð
ni

l
Þlogkð

ni

l
Þ

where k = 43 is the trinucleotide size, ni is the number of the words i in a window, and l is the

number of the possible words in a window. The entropy is also scaled from 0 to 100 and a low

entropy implies a low complexity metagenome. Fig C, Website output: tag sequence proba-

bility. Another output from the DUDE-Seq website is the tag sequence probability of reads
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[62]. This is to reveal the existence of artifacts at the ends, i.e., adapter or barcode sequences at

the 5’- or 3’-end. Fig D, Website output: sequence duplication. The accompanying website

also carries out sequence duplication analysis based on the denoised outputs from DUDE-Seq,

in order to reveal artificial duplicates. As shown in the figure, five types of duplication statistics

[63] are provided: exact duplicates, 5’ duplicates, 3’ duplicates, exact duplicates with the reverse

complement of another sequence, and 5’ or 3’ duplicates with the reverse complement of

another sequence.
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31. Weissman T, Ordentlich E, Seroussi G, Verdú S, Weinberger MJ. Universal discrete denoising: Known

channel. IEEE Transactions on Information Theory. 2005; 51(1):5–28. https://doi.org/10.1109/TIT.

2004.839518

32. Schirmer M, Ijaz UZ, D’Amore R, Hall N, Sloan WT, Quince C. Insight into biases and sequencing errors

for amplicon sequencing with the Illumina MiSeq platform. Nucleic acids research. 2015; p. gku1341.

33. Yan B, Hu Y, Ng C, Ban KH, Tan TW, Huan PT, et al. Coverage analysis in a targeted amplicon-based

next-generation sequencing panel for myeloid neoplasms. Journal of clinical pathology. 2016; p. jclin-

path–2015. https://doi.org/10.1136/jclinpath-2015-203580

34. Dembo A, Weissman T. Universal denoising for the finite-input general-output channel. Information

Theory, IEEE Transactions on. 2005; 51(4):1507–1517. https://doi.org/10.1109/TIT.2005.844104

35. Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ. Removing noise from pyrosequenced amplicons.

BMC bioinformatics. 2011; 12(1):38. https://doi.org/10.1186/1471-2105-12-38 PMID: 21276213

36. Bragg LM, Stone G, Butler MK, Hugenholtz P, Tyson GW. Shining a light on dark sequencing: charac-

terising errors in Ion Torrent PGM data. PLoS Comput Biol. 2013; 9(4):e1003031. https://doi.org/10.

1371/journal.pcbi.1003031 PMID: 23592973

37. Fichot EB, Norman RS. Microbial phylogenetic profiling with the Pacific Biosciences sequencing plat-

form. Microbiome. 2013; 1(1):10. https://doi.org/10.1186/2049-2618-1-10 PMID: 24450498

38. Marinier E, Brown DG, McConkey BJ. Pollux: platform independent error correction of single and mixed

genomes. BMC bioinformatics. 2015; 16(1):10. https://doi.org/10.1186/s12859-014-0435-6 PMID:

25592313

39. Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformat-

ics. 2009; 25(14):1754–1760. https://doi.org/10.1093/bioinformatics/btp324 PMID: 19451168

40. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format

and SAMtools. Bioinformatics. 2009; 25(16):2078–2079. https://doi.org/10.1093/bioinformatics/btp352

PMID: 19505943

41. LaFave MC, Burgess SM. sam2pairwise version 1.0.0; 2014. Available from: https://doi.org/10.5281/

zenodo.11377.

42. Pfitzner D, Leibbrandt R, Powers D. Characterization and evaluation of similarity measures for pairs of

clusterings. Knowledge and Information Systems. 2009; 19(3):361–394. https://doi.org/10.1007/

s10115-008-0150-6

43. Reeder J, Knight R. Rapid denoising of pyrosequencing amplicon data: exploiting the rank-abundance

distribution. Nature methods. 2010; 7(9):668. https://doi.org/10.1038/nmeth0910-668b PMID:

20805793

44. Schloss PD, Handelsman J. Introducing DOTUR, a computer program for defining operational taxo-

nomic units and estimating species richness. Applied and environmental microbiology. 2005; 71(3):

1501–1506. https://doi.org/10.1128/AEM.71.3.1501-1506.2005 PMID: 15746353

45. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;

26(19):2460–2461. https://doi.org/10.1093/bioinformatics/btq461 PMID: 20709691

46. Bartram AK, Lynch MD, Stearns JC, Moreno-Hagelsieb G, Neufeld JD. Generation of multimillion-

sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end Illu-

mina reads. Applied and environmental microbiology. 2011; 77(11):3846–3852. https://doi.org/10.1128/

AEM.02772-10 PMID: 21460107

47. Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies.

Bioinformatics. 2011; 27(21):2957–2963. https://doi.org/10.1093/bioinformatics/btr507 PMID:

21903629

48. Heo Y, Wu XL, Chen D, Ma J, Hwu WM. BLESS: bloom filter-based error correction solution for high-

throughput sequencing reads. Bioinformatics. 2014; p. btu030.

49. Li H. Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly. Bioinfor-

matics. 2012; 28(14):1838–1844. https://doi.org/10.1093/bioinformatics/bts280 PMID: 22569178

50. Angly FE, Willner D, Rohwer F, Hugenholtz P, Tyson GW. Grinder: a versatile amplicon and shotgun

sequence simulator. Nucleic acids research. 2012; 40(12):e94–e94. https://doi.org/10.1093/nar/gks251

PMID: 22434876

DUDE-Seq: Fast, flexible, and robust denoising for targeted amplicon sequencing

PLOS ONE | https://doi.org/10.1371/journal.pone.0181463 July 27, 2017 24 / 25

https://doi.org/10.1093/bioinformatics/btu440
https://doi.org/10.1093/bioinformatics/btu440
http://www.ncbi.nlm.nih.gov/pubmed/25161220
https://doi.org/10.1101/gr.8.3.175
http://www.ncbi.nlm.nih.gov/pubmed/9521921
https://doi.org/10.1109/TIT.2004.839518
https://doi.org/10.1109/TIT.2004.839518
https://doi.org/10.1136/jclinpath-2015-203580
https://doi.org/10.1109/TIT.2005.844104
https://doi.org/10.1186/1471-2105-12-38
http://www.ncbi.nlm.nih.gov/pubmed/21276213
https://doi.org/10.1371/journal.pcbi.1003031
https://doi.org/10.1371/journal.pcbi.1003031
http://www.ncbi.nlm.nih.gov/pubmed/23592973
https://doi.org/10.1186/2049-2618-1-10
http://www.ncbi.nlm.nih.gov/pubmed/24450498
https://doi.org/10.1186/s12859-014-0435-6
http://www.ncbi.nlm.nih.gov/pubmed/25592313
https://doi.org/10.1093/bioinformatics/btp324
http://www.ncbi.nlm.nih.gov/pubmed/19451168
https://doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
https://doi.org/10.5281/zenodo.11377
https://doi.org/10.5281/zenodo.11377
https://doi.org/10.1007/s10115-008-0150-6
https://doi.org/10.1007/s10115-008-0150-6
https://doi.org/10.1038/nmeth0910-668b
http://www.ncbi.nlm.nih.gov/pubmed/20805793
https://doi.org/10.1128/AEM.71.3.1501-1506.2005
http://www.ncbi.nlm.nih.gov/pubmed/15746353
https://doi.org/10.1093/bioinformatics/btq461
http://www.ncbi.nlm.nih.gov/pubmed/20709691
https://doi.org/10.1128/AEM.02772-10
https://doi.org/10.1128/AEM.02772-10
http://www.ncbi.nlm.nih.gov/pubmed/21460107
https://doi.org/10.1093/bioinformatics/btr507
http://www.ncbi.nlm.nih.gov/pubmed/21903629
https://doi.org/10.1093/bioinformatics/bts280
http://www.ncbi.nlm.nih.gov/pubmed/22569178
https://doi.org/10.1093/nar/gks251
http://www.ncbi.nlm.nih.gov/pubmed/22434876
https://doi.org/10.1371/journal.pone.0181463


51. McElroy KE, Luciani F, Thomas T. GemSIM: general, error-model based simulator of next-generation

sequencing data. BMC genomics. 2012; 13(1):74. https://doi.org/10.1186/1471-2164-13-74 PMID:

22336055

52. Kwon S, Lee B, Yoon S. CASPER: context-aware scheme for paired-end reads from high-throughput

amplicon sequencing. BMC bioinformatics. 2014; 15(Suppl 9):S10. https://doi.org/10.1186/1471-2105-

15-S9-S10 PMID: 25252785

53. Liu B, Yuan J, Yiu SM, Li Z, Xie Y, Chen Y, et al. COPE: an accurate k-mer-based pair-end reads con-

nection tool to facilitate genome assembly. Bioinformatics. 2012; 28(22):2870–2874. https://doi.org/10.

1093/bioinformatics/bts563 PMID: 23044551

54. Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD. PANDAseq: paired-end assembler

for illumina sequences. BMC bioinformatics. 2012; 13(1):31. https://doi.org/10.1186/1471-2105-13-31

PMID: 22333067

55. Witten IH, Frank E. Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann;

2005.

56. Jain M, Fiddes IT, Miga KH, Olsen HE, Paten B, Akeson M. Improved data analysis for the MinION

nanopore sequencer. Nature methods. 2015;. https://doi.org/10.1038/nmeth.3290

57. Gemelos GM, Sigurjonsson S, Weissman T. Algorithms for discrete denoising under channel uncer-

tainty. Signal Processing, IEEE Transactions on. 2006; 54(6):2263–2276. https://doi.org/10.1109/TSP.

2006.874295

58. Ochoa I, Hernaez M, Goldfeder R, Ashley E, Weissman T. Effect of lossy compression of quality scores

on variant calling. Bioinformatics, under review. 2016;.

59. Moon T, Min S, Lee B, Yoon S. Neural universal discrete denoiser. In: Proceedings of Neural Informa-

tion Processing Systems (NIPS); 2016.
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