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Abstract: Recently, artificial intelligence (AI) technologies have been employed to predict construction
and demolition (C&D) waste generation. However, most studies have used machine learning models
with continuous data input variables, applying algorithms, such as artificial neural networks, adaptive
neuro-fuzzy inference systems, support vector machines, linear regression analysis, decision trees,
and genetic algorithms. Therefore, machine learning algorithms may not perform as well when applied
to categorical data. This article uses machine learning algorithms to predict C&D waste generation
from a dataset, as a way to improve the accuracy of waste management in C&D facilities. These datasets
include categorical (e.g., region, building structure, building use, wall material, and roofing material),
and continuous data (particularly, gloss floor area), and a random forest (RF) algorithm was used.
Results indicate that RF is an adequate machine learning algorithm for a small dataset consisting
of categorical data, and even with a small dataset, an adequate prediction model can be developed.
Despite the small dataset, the predictive performance according to the demolition waste (DW) type
was R (Pearson’s correlation coefficient) = 0.691–0.871, R2 (coefficient of determination) = 0.554–0.800,
showing stable prediction performance. High prediction performance was observed using three
(for mortar), five (for other DW types), or six (for concrete) input variables. This study is significant
because the proposed RF model can predict DW generation using a small amount of data. Additionally,
it demonstrates the possibility of applying AI to multi-purpose DW management.

Keywords: demolition waste management; construction waste management; prediction model;
random forest; leave-one-out cross-validation; small data

1. Introduction

Large volumes of waste are generated from various construction and demolition (C&D) activities
worldwide [1–3]. Accordingly, many studies in the literature have focused on the importance of optimal
C&D waste management [4]. In particular, demolition waste (DW) generated from building or structure
demolition has been reported to account for approximately 70–90% of the total C&D waste [5,6].
Building demolition in cities is required for new construction because of land shortages [7]. For C&D

Int. J. Environ. Res. Public Health 2020, 17, 6997; doi:10.3390/ijerph17196997 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
https://orcid.org/0000-0001-8590-6482
https://orcid.org/0000-0001-9141-0360
http://www.mdpi.com/1660-4601/17/19/6997?type=check_update&version=1
http://dx.doi.org/10.3390/ijerph17196997
http://www.mdpi.com/journal/ijerph


Int. J. Environ. Res. Public Health 2020, 17, 6997 2 of 15

waste management, calculating C&D waste generation has been recognized as a useful method. This
is a methodology that estimates C&D waste generation using a generation rate calculation (GRC) or
C&D waste generation coefficient [8]. The principle of this method is to obtain the waste generation
rate (in units such as kg/m2 or m3/m2). Several researchers have developed methodologies to quantify
C&D waste by establishing ranges and parameters [9]. For example, Oliver et al. (2010) [10] conducted
a study in which the generated C&D waste was estimated (in tons and m3) using reliable simulation
methods. Additionally, researchers, such as [11–13] estimated the total amount of C&D waste generated
by multiplying the generation rate by the total area. As mentioned previously, the amount of waste
generated was predicted using a waste generation index, such as the waste generation rate obtained by
statistical analysis based on gross floor area (GFA) [14]. However, recently, artificial intelligence (AI)
technologies have been increasingly employed to accurately predict C&D waste generation [15]. AI
algorithms are regarded as state-of-the-art models for reliable prediction of a waste generation because
of their unique features (i.e., data input, learning, and prediction) [16].

Machine learning and statistical analysis algorithms that have been employed to predict C&D
waste generation include artificial neural networks (ANNs), adaptive neuro-fuzzy inference systems,
support vector machines (SVMs), linear regression (LR) analysis, decision trees (DTs), and genetic
algorithms (Gas) [15]. Furthermore, most existing studies on the prediction of C&D waste generation
have used machine learning models based on using continuous data as input variables that applied
algorithms, such as ANN (Golbaz et al. (2019) [17]; Noori et al. (2010) [18]; and Song et al. (2016) [19]),
SVM (Abbasi et al. (2013) [20]; Golbaz et al. (2019) [17]; and Kumar et al. (2018) [21]), LR (Abdoli et al.
(2011) [22]; Azadi and Karimijashni (2015) [23]; Chhay et al. (2018) [24]; and Golbaz et al. (2019) [17]),
and DT (Cha et al. (2017) [25]; Huang et al. (2011) [26]; and Kannangara et al. (2017) [27]). However,
independent variables, which include continuous data (e.g., building age, GFA) and categorical
data (e.g., region [28], building use [29], building structure [30], wall material [31], and roofing
material [31]), affect C&D waste generation. For instance, the type of building structure affects the
choice of construction techniques [32], which in turn determines the generation and constituents of
C&D waste. Accordingly, it cannot be guaranteed that the machine learning algorithms used in existing
studies will perform well when applied to categorical data instead of continuous data.

Therefore, in this study, we explored a method of utilizing machine learning algorithms for a
dataset that includes categorical data (region, building structure, building use, wall material, and roofing
material), as well as continuous data (especially, GFA) to improve the accuracy of C&D waste generation
prediction. Thus, 784 buildings reported in the existing literature [25] were examined as follows:

(1) Deduction of a machine learning algorithm that fits the data features—Random forest (RF)
was found to be an adequate machine learning algorithm given the features of the data used in this
study after theoretical considerations;

(2) Selection of input variables to improve model performance—Data preprocessing was performed
to normalize and remove outliers from the raw data to improve model performance using the RF
algorithm. Then, feature selection was performed using RF-recursive feature elimination (REF) to
identify important input variables affecting the prediction outcomes by the DW type;

(3) Deduction of a general prediction model by machine learning for each DW type—Prediction
models for each DW type (11 models) and a prediction model for individual buildings (one model)
were derived;

(4) Verification and evaluation of prediction models—The RF models were verified by leave-one-out
cross-validation (LOOCV), whereas the predictive model performances were evaluated by R (correlation
coefficient) and R2 (coefficient of determination) values, which are performance indicators representing
the correlation between observed and predicted values. For the machine learning data, the amount of
DW generated (kg/m2) by the DW type (mortar, concrete, block, brick, timber, slate, roofing tile, plastic,
glass, metal, and soil) was used as suggested by Cha et al. [25].
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Consequently, we demonstrated that prediction models’ results can provide more reliable predictions
than existing machine learning methods when the RF algorithm with categorical variables is applied.
This study is highly significant in that it proposed an RF model that can predict DW generation using a
relatively small amount of data. However, this study used limited data. In future studies, the data range
should be extended, and comparative analysis should be performed using various machine learning
algorithms. This study is also meaningful because it emphasized the possibility of applying AI to
multi-purpose DW management.

2. Materials and Methods

We used existing raw data (shown in Cha et al. [25]) from 784 buildings for the generated amounts
(kg) of 11 DW types (mortar, concrete, block, brick, timber, slate, roofing tile, plastic, glass, metal, and soil)
for six input variables (GFA, region, building structure, building use, wall material, and roofing material).
Because the independent variables affecting model outcome were mostly categorical data, it was critical
to select the appropriate machine learning algorithm. According to Cha et al. [25], a statistical model
using the DT algorithm can produce excellent predictions for DW generation. However, this model did
not use machine learning and was developed based on statistical results. Given the characteristics of
DT algorithms, there is a strong likelihood that the model will be generated based on highly influential
variables. It also may exhibit bias [33] and high variance [34] because a small dataset was used rather
than a large dataset. Therefore, in this study, we focused on machine learning models for DW generation
prediction to avoid such limitations and achieve stable prediction performance.

For the data unit of DW generation, DW generated (kg/m2) per GFA (m2) was used in modeling,
which is given by the following equation:

DWGRi of building=

∑
Ai j of building

GFA of building
(1)

where DWGR is the demolition waste generation rate (kg/m2), Ai j is the amount of material j with
properties of waste material I (quantity) (kg), and GFA is the gross floor area (m2).

2.1. Random Forest Algorithm

Random forest (RF) is an ensemble classifier that uses multiple models containing several DTs to
obtain a better prediction performance. It creates many classification trees, and a bootstrap sample
technique is used to train each tree from the set of training data. This method only searches for a
random subset of variables in order to obtain a split at each node. For classification, the input vector is
fed to each tree in the RF, and each tree votes for a class. Finally, the RF chooses the class with the
highest number of votes, as shown in Figure 1.

The RF algorithm can be used to address the above-mentioned problems of the DT algorithm. It
consists of multiple DTs and is a machine learning model where the DT model forms an ensemble
with bagging (an approach using a set of base models) [35]. Hence, the RF algorithm can reduce data
variance and prevent the strong dependence of the DT model on highly influential variables. Bagging
is an ensemble method that uses bootstrap sampling. It randomly selects a sample size of n from a
subset of data and chooses m input variables arbitrarily to generate a DT model. By repeating the
generation process, it produces the final result by voting of the generated DT models. Thus, the RF
algorithm can avoid overfitting and the influence of outliers [36]. Even when a dataset has unbalanced
classes, RF can produce more accurate predictions than other algorithms [37,38]. Thus, we chose the
RF algorithm considering that it would provide more reliable predictions than the previously reported
machine learning algorithms [25].
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2.2. Feature Selection Methods

To improve the prediction performance of the model, input variables that have low correlations
are generally excluded from modeling, leaving out influential or highly influential variables [39].
There are three representative methods for input variable selection: The filter method, wrapper method,
and embedded method [40]. First, the filter method provides a ranking of input variables against output
variables independently from machine learning algorithms [40]. Second, the wrapper method ranks the
input variables after establishing a machine learning model. A considerable amount of time is required for
calculations on all input variables; however, it enables accurate variable selection. Lastly, the embedded
method employs different application methods depending on the machine learning algorithm [40]. It is
used when selecting variables in the training process for machine learning. The representative embedded
methods are SVM-RFE (recursive feature elimination) and RF-RFE [41]. These RFE methods include all
variables in the process and eliminate less significant variables one-by-one, while repeating the learning
process. They are applicable even without assuming a normal data distribution and exhibit higher
performance in variable selection and prediction when the difference in significance between the variables
is large [36]. Thus, because of the two reasons presented above (i.e., the data used in this study does not
follow a normal distribution, and the RF algorithm is applied), the RF-RFE method was used for input
variable selection in this study.

Int. J. Environ. Res. Public Health 2020, 17, x 4 of 15 

Int. J. Environ. Res. Public Health 2020, 17, x; doi:  www.mdpi.com/journal/ijerph 

method, and embedded method [40]. First, the filter method provides a ranking of input variables 
against output variables independently from machine learning algorithms [40]. Second, the wrapper 
method ranks the input variables after establishing a machine learning model. A considerable 
amount of time is required for calculations on all input variables; however, it enables accurate 
variable selection. Lastly, the embedded method employs different application methods depending 
on the machine learning algorithm [40]. It is used when selecting variables in the training process for 
machine learning. The representative embedded methods are SVM-RFE (recursive feature 
elimination) and RF-RFE [41]. These RFE methods include all variables in the process and eliminate 
less significant variables one-by-one, while repeating the learning process. They are applicable even 
without assuming a normal data distribution and exhibit higher performance in variable selection 
and prediction when the difference in significance between the variables is large [36]. Thus, because 
of the two reasons presented above (i.e., the data used in this study does not follow a normal 
distribution, and the RF algorithm is applied), the RF-RFE method was used for input variable 
selection in this study. 

 
Figure 1. Structure of the random forest (RF) algorithm. 

2.3. Leave-One-Out Cross-Validation 

Leave-one-out cross-validation (LOOCV) is useful when evaluating the performance of machine 
learning when a dataset or category value is small [42]. LOOCV takes one data sample from n data 
samples as a test set and the remaining n−1 data samples as a training set to evaluate model 
performance. Because it uses only one sample as a test set, models can be generated using n training 
data. It also provides relatively stable results by testing all samples when compared to the validation 
set approach, which is the existing cross-validation method (10-fold or k-fold). The LOOCV is a nearly 
unbiased and reliable method of estimating the performance of a machine learning model as long as 
the training and testing sets are drawn from the same distribution [43]. The DW data of 784 buildings 
used in this study form a rather small dataset. Hence, the existing validation method could cause 
serious bias and overestimation [33]. Therefore, this study used the LOOCV method to develop a 
stable RF prediction model. Figure 2 shows a schematic representation of the LOOCV method. 

Figure 1. Structure of the random forest (RF) algorithm.

2.3. Leave-One-Out Cross-Validation

Leave-one-out cross-validation (LOOCV) is useful when evaluating the performance of machine
learning when a dataset or category value is small [42]. LOOCV takes one data sample from n
data samples as a test set and the remaining n−1 data samples as a training set to evaluate model
performance. Because it uses only one sample as a test set, models can be generated using n training
data. It also provides relatively stable results by testing all samples when compared to the validation
set approach, which is the existing cross-validation method (10-fold or k-fold). The LOOCV is a nearly
unbiased and reliable method of estimating the performance of a machine learning model as long as
the training and testing sets are drawn from the same distribution [43]. The DW data of 784 buildings
used in this study form a rather small dataset. Hence, the existing validation method could cause
serious bias and overestimation [33]. Therefore, this study used the LOOCV method to develop a
stable RF prediction model. Figure 2 shows a schematic representation of the LOOCV method.
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2.4. Limitations of LOOCV and the Results of the RF Model in this Study

LOOCV is an extreme version of k-fold cross-validation that has the maximum computational cost.
It requires one model to be created and evaluated for each example in the training dataset. The benefit
of using so many fitted and evaluated models is a more robust estimate of model performance as
each row of data is given an opportunity to represent the entirety of the test dataset. However, it is a
computationally expensive procedure to perform, although it results in a reliable and unbiased estimate
of model performance. Although it is simple to use and there is no configuration to specify, there are
times when the procedure should not be used, such as in the case of the evaluation of a significantly
large dataset or a computationally expensive model [43]. This study utilized the DW dataset for 784
buildings. However, considering the fact that AI models are mainly driven by extensive datasets [15],
the DW RF model developed in this study may suffer from a lack or incompleteness of waste data.

3. Development of a DW Prediction Model

3.1. Overview of the RF Model Development Method for Predicting DW Generation

In this section, an RF modeling method for predicting DW generation, as shown in Figure 3, is
presented. In this study, a dataset to be applied to the RF model was constructed based on the existing
raw data (shown in Cha et al. (2017) [25]). As shown in Figure 3, dataset construction and preparation
were performed through data preprocessing, and outliers were removed from the input variables for
11 DW types. Standardization was performed on the area of the building (GFA), the only continuous
variable among the input variables (i.e., GFA, region, building structure, building use, wall material,
and roofing material). However, the other variables were nominal variables that were not included in
the standardization process. Table 1 lists the characteristics and composition of the variables applied to
the RF model. The RF-RFE was applied as a feature selection method to derive important variables
that affect the results from modeling, and the derived feature set based on this was used as an input
variable to generate an RF model for each DW type. Finally, the LOOCV method was applied to verify
the performance of RF models, and the predictive performance of RF models was determined using R
(Pearson’s correlation coefficient) and R2 (coefficient of determination).
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Table 1. Characteristics and composition of variables applied to the RF model in this study.

Variables Type Description

Independent
variables type

Nominal
variable

Region Region A is assigned a scale number of 1,
and regions B and C are 2 and 3, respectively

Building use
The scale number is 1 for only residential, and the
scale numbers for commercial/residential and only
commercial are 2, 3, respectively

Building structure
Reinforced concrete structure is assigned a scale
number of 1, and masonry and wooden structures
are 2 and 3, respectively

Wall material
The scale number for the reinforced concrete wall
is 1, the brick wall is 2, the block wall is 3, and the
wall made of soil is 4.

Roofing material
The scale number for the slab is 1, the slab and
roofing tile is 2, the roof with asbestos is 3, and the
roofing tile is 4.

Continuous
variable

gross floor area
(GFA) (m2) Numeric variable

Dependent
variable

Continuous
variable

Waste generation
(kg/m2) Numeric variable

3.2. Data Preprocessing and Input Variable Selection

To improve the performance of the RF model, it is important to construct a stable dataset and
select the right input variables. Thus, data preprocessing was conducted to remove outliers from raw
data, and data standardization was performed to enhance the performance of the prediction model.
Prior to data preprocessing, outliers were first removed by an outlier detection method using the
interquartile range (IQR) (1Q (Quartile) − 1.5 × IQR (Q3 – Q1) (interquartile range) < selecting data <
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3Q + 1.5 × IQR). Input data standardization was conducted using Equation (2), in which the average
of the data is xaverage, and the standard deviation is σstandard deviation. In this study, we developed an RF
algorithm model using a dataset of 691 data selected from the raw data for 784 buildings.

xstandardization =
xelement − xaverage

σstandard deviation
(2)

To further improve the RF model, we used only highly influential variables as input variables,
excluding those with low influence. The method mentioned in Section 2.2 was used to select input
variables. The RF-RFE method calculated the accuracy scores for each case and provided a variable
set that records the highest score as a character string as the output. The input variables that were
favorable for the RF model were included in the variable set. Variable composition and number were
determined considering the root mean square error, the coefficient of determination (R2), and the mean
absolute error. The input variables for 11 DW types were deduced as a result.

3.3. Model Verification and Performance Evaluation

The LOOCV method mentioned in Section 2.3 was used to verify the outcome prediction model
developed in this study. As a distinct indicator for evaluating the performance of a machine learning
model, R (Pearson’s correlation coefficient) or R2 (coefficient of determination) are useful. Thus, many
researchers (e.g., Qi et al. (2018) [44]; Han et al. (2020) [45]; Kannangara et al. (2018) [27]; Kumar et al.
(2018) [21]) used the R or R2 value between the observed and predicted value for assessing the performance
of prediction models. In this study, for performance evaluation of the prediction model, the R (correlation
coefficient) value, which is given by Equations (3) and (4), between the observed and predicted values
was used as the performance indicator.

R =

∑n
i=1

(
Yi −Y

)︷︸︸︷
Yi −

︷︸︸︷
Y

√√√√∑n
i=1

(
Yi −Y

)∑n
i=1

︷︸︸︷
Yi −

︷︸︸︷
Y


(3)

R2 = 1−

∑n
i=1 (

︷︸︸︷
Yi −Yi)

2

∑n
i=1

(
Yi −Y

)2 (4)

where Yi is the observed value of the generated DW amount,
︷︸︸︷

Yi is the predicted value of the

generated DW amount, Y is the average observed value of the generated DW amounts,
︷︸︸︷

Y is the
average predicted value of the generated DW amount, and n is the number of samples.

4. Results

4.1. Results of Input Variable Selection

As mentioned in Section 2, we used six raw data input variables and deduced input variables by
the DW type for the RF model using RF-RFE, as shown in Table 1. The variables affecting the RF model
outcome were different based upon the DW type, and their significance also varied by depending
on the combination of input variables. Considering the influence variables by the DW type, mortar
appeared to be highly affected by three input variables (structure, region, and GFA), excluding building
use, roofing material, and GFA from the six variables. In other words, by applying the RF algorithm,
it is possible to obtain a model for predicting the amount of mortar generation with good predictive
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performance with only three variables (i.e., structure, region, and GFA). In contrast, the variable set for
concrete contained all six input variables. Hence, the RF model for concrete prediction will produce the
best prediction when all the input variables are considered. The other DW types (block, brick, timber,
slate, roofing tile, plastic, glass, and metal) had sets of five variables. Thus, their RF models will have
the best prediction performance when five input variables are used. However, the results can vary
depending on the combination of input variables, even when the same number of variables is used
for each DW type. Therefore, in this study, we used three (for mortar), five (for block, brick, timber,
slate, roofing tile, plastic, glass, metal, and soil), and six (for concrete) input variables to generate RF
prediction models based on the result of the RF-RFE input variable selection method, shown in Table 2.

Table 2. Results of feature selection produced by RF-recursive feature elimination (RFE). • Selected
Variable Set.

Waste Type Number of Variables in the Variable Set Selected Features
(the Top 3 Variables Out of 3)

Mortar 1 2 3 • 4 5 6 R, S, A
Concrete 1 2 3 4 5 6 • RM, R, S, WM, A, U
Block 1 2 3 4 5 • 6 WM, R, S, A, U
Brick 1 2 3 4 5 • 6 WM, RM, R, A, S
Timber 1 2 3 4 5 • 6 R, RM, A, S, U
Slate 1 2 3 4 5 • 6 RM, R, WM, A, S
Roofing tile 1 2 3 4 5 • 6 R, RM, A, WM, S
Plastic 1 2 3 4 5 • 6 R, S, U, RM, WM
Glass 1 2 3 4 5 • 6 R, A, WM, U, S
Metal 1 2 3 4 5 • 6 R, U, RM, WM, S
Soil 1 2 3 4 5 • 6 WM, R, S, A, U

S (structure), R (region), U (building use), A (gross floor area), WM (wall material), RM (roofing material).

4.2. Prediction Performance of the Developed RF Model

Overall, one RF model that includes all 11 DW types and 11 RF model for each waste type
was created. The RF model for DW generation prediction was developed using R Studio’s (R-Tools
Technology, 250 Northern Ave, Boston, MA 02210 844-448-1212, https://rstudio.com/) ‘Random Forest’
package. Input variables, shown in Table 3, and 500 DTs were used for modeling. Since ‘Random
Forest’ not only randomly selects samples, but also randomly selects columns [36], each of the 500
models can be considered to be different models. If regression is applied, the model is robust because
it takes the average of the predictions from the 500 models. Additionally, if there are more than
500 models, the speed of the model is reduced; therefore, the number of DTs was selected to be 500.
The performance of the developed RF models was verified by LOOCV testing and training. Based on
this, the model performance was evaluated by the DW type.

As shown in Table 3 and Figure 4, there was a high correlation by the DW type (R = 0.691–0.871,
R2 = 0.554–0.800) between the predicted values of the developed RF model and the observed values from
the actual survey. In terms of model performance, mortar showed relatively good performance with
R = 0.752. Although only three input variables (region, structure, and GFA) were used, the predictions
were relatively accurate. The means of the observed and predicted values for mortar were 120.7 kg/m2

and 120.57 kg/m2, respectively, demonstrating a 0.11% error when compared. The concrete RF model
also displayed high performance with R = 0.842 and R2 = 0.707 between the predicted values and the
observed values. Given all six input variables used in the model, concrete waste generation seems
to be affected by more varied input variables than the other wastes. The means of the observed and
predicted values for concrete were 200.1 kg/m2 and 200.87 kg/m2, respectively, which corresponds to a
0.38% error when compared. In other models generated using the five input variables, the performance
was considerably high for block (R = 0.840; R2 = 0.704; input variables: Wall material, region, structure,
GFA, and building use; mean of observations 481.44 kg/m2, mean of predicted value 481.6 kg/m2), brick

https://rstudio.com/
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(R = 0.864; R2 = 0.745; input variables: Wall material, roofing material, region, GFA, and structure; mean
of observations 188.6 kg/m2, mean of predicted value 188.1 kg/m2), timber (R = 0.858; R2 =0.735; input
variables: Region, roofing material, GFA, structure, and building use; mean of observations 96.02 kg/m2,
mean of predicted value 96.06 kg/m2), metal (R = 0.871; R2 = 0.755; input variable: Region, building
use, roofing material, wall material, and structure; mean of observations 7.36 kg/m2, mean of predicted
value 7.40 kg/m2), and soil (R = 0.869; R2 = 0.800; input variables: Region, building use, roofing material,
wall material, and structure; mean of observations 20.77 kg/m2, mean of predicted value 20.82 kg/m2).
From the RF model for a building that includes all DWs, the correlation between values predicted by
the RF model and values observed from the actual survey was R = 0.791 and R2 = 0.615. The mean
observed and predicted values for all wastes were 1165.04 kg/m2 and 1166.258 kg/m2, respectively,
demonstrating a 0.1% error when compared.Int. J. Environ. Res. Public Health 2020, 17, x 10 of 15 
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Table 3. Accuracy assessment of the RF model.

N RF Model by Waste Type
Statistical Metrics

R R2

1 Mortar 0.752 0.561
2 Concrete 0.842 0.707
3 Block 0.840 0.704
4 Brick 0.864 0.745
5 Timber 0.858 0.735
6 Slate 0.814 0.659
7 Roofing tile 0.768 0.583
8 Plastic 0.691 0.568
9 Glass 0.747 0.554

10 Metal 0.871 0.755
11 Soil 0.869 0.800
12 All wastes 0.791 0.615

The predicted values of the RF model by the DW type using the RF algorithm introduced for
this study and observed values from the actual survey are compared in Figure 5. The figure shows
that the predicted values of the RF models are similar to the pattern of observed values. The graph of
all wastes also provides predictions in terms of individual buildings that are similar to the observed
values. Therefore, the RF algorithm used in this study for DW generation prediction is expected to
exhibit high performance on a small dataset of categorical data.

4.3. Discussion

This study developed an AI model for predicting DW generation and proposed an RF model that
can make predictions based on each waste type and an entire building, including all wastes based on a
small amount of data.

However, recent studies on DW generation prediction models using AI have used extensive
amounts of data. In addition, existing related studies (Kannangara et al. (2018) [27]; Johnson et al.
(2017) [46]; Noori et al. (2008) [47]; Azadi et al. (2016) [23]) showed prediction results according to
time series. Kannangara et al. (2018) [27] predicted the amount of MSW (Municipal Solid Waste)
and paper using neural networks and decision trees. In this study, the R2 value of the AI model was
0.35–0.72, and the predictive performance of neural networks was slightly better than that of the
decision tree. Johnson et al., (2017) [47] predicted the amount of refuse, paper, and MGP (metal, glass,
and plastic) generated monthly by applying the GBM (gradient boosting model), and the prediction
performance R2 value of the GBM model was 0.428–0.90 It was found that there are differences in
predictive performance depending on the type of waste. Azadi et al., (2016) [23] predicted seasonal
MSW generation by applying an artificial neural network (ANN) and multiple linear regression (MLR)
algorithm. As a result of the study, the ANN (R = 0.86) model was found to be superior to the MLR
(R = 0.7) model. However, these studies only dealt with the results of waste generation over time by
applying AI algorithms to several waste types. On the other hand, this study presented the results
of one RF model for a building unit that included all types of waste, along with the results of the RF
models for 11 DW types. In addition, the prediction performance (R = 0.691–0.871, R2 = 0.554–0.800) of
the model to which the RF algorithm is applied based on a small amount of data can be considered to
have excellent prediction performance compared to that of previous studies.

The RF models, shown in this study, are applicable for each type of waste and for a single building.
Building demolition work is often conducted in a single building unit; therefore, if a demolition company
uses this RF model, it can serve as a useful tool for DW management. In addition, considering the results
of the average error between the predicted and observed values described in Section 4.2, the RF model is
expected to be used as a powerful management tool even in large-scale dismantling sites.
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5. Conclusions

In this study, we examined prediction models for DW generation using the RF algorithm. Data
preprocessing was conducted on a small dataset to increase the accuracy of the RF model, to which
a machine learning algorithm was applied. The input variables were selected by the DW type for
modeling. LOOCV was performed to verify the prediction performance of the machine learning model
for the small dataset. In total, 11 RF models by the DW type were generated, and one was generated
for all DW types. The findings of this study are as follows:

• First, RF is an adequate machine learning algorithm for a small dataset consisting of categorical
data. The RF model developed in this study demonstrated a relatively high prediction performance
with a high correlation coefficient R of 0.691–0.871 between the values predicted by the models
and the observed values.

• Second, the input variables by the DW type deduced from the embedded method of input variable
selection, RF-RFE, were applied to the RF model. This implies that, even with a small dataset,
an adequate prediction model can be developed. Consequently, we obtained a high prediction
performance using three (for mortar) of five (for the rest of the DW types) input variables, apart
from concrete (for which six input variables were used).

• Lastly, the results of this study demonstrated a similar pattern for predicted values and observed
values from 11 RF models by the DW type and one RF model for a building, including all DW types.
In conclusion, this study proposed an RF model that can improve the prediction performance
using a small dataset of categorical data.

However, in this study, machine learning was performed using RF because the amount of data
was limited. Therefore, future research should extend the range of the data, and comparative analysis
should be conducted using various machine learning algorithms to develop a DW management model.
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