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Abstract

The evaluation of cultivars using multi-environment trials (MET) is an important step in plant

breeding programs. One of the objectives of these evaluations is to understand the geno-

type by environment interaction (GEI). A method of determining the effect of GEI on the per-

formance of cultivars is based on studies of adaptability and stability. Initial studies were

based on linear regression; however, these methodologies have limitations, mainly in trials

with genetic or statistical unbalanced, heterogeneity of residual variances, and genetic

covariance. An alternative would be the use of random regression models (RRM), in which

the behavior of the genotypes is characterized as a reaction norm using longitudinal data or

repeated measurements and information regarding a covariance function. The objective of

this work was the application of RRM in the study of the behavior of common bean cultivars

using a MET, based on Legendre polynomials and genotype-ideotype distances. We used a

set of 13 trials, which were classified as unfavorable or favorable environments. The results

revealed that RRM enables the prediction of the genotypic values of cultivars in environ-

ments where they were not evaluated with high accuracy values, thereby circumventing the

unbalanced of the experiments. From these values, it was possible to measure the geno-

typic adaptability according to ideotypes, according to their reaction norms. In addition, the

stability of the cultivars can be interpreted as variation in the behavior of the ideotype. The

use of ideotypes based on real data allowed a better comparison of the performance of culti-

vars across environments. The use of RRM in plant breeding is a good alternative to under-

stand the behavior of cultivars in a MET, especially when we want to quantify the

adaptability and stability of genotypes.

Introduction

In the final stages of a breeding program, the most promising lines are evaluated in trials con-

ducted in different environments, composed of different years, places, and seasons. This set of

trials, known as multi-environment trials (MET), can provide useful information about the

performance of genotypes in environments where we want to recommend a cultivar [1]. In
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Brazil, these tests are called Value for Cultivation and Use (Valor de Cultivo e Uso–VCU), and

their results are the basis for the recommendation of a new cultivar [2]. In addition, the data

from a MET also allows determination of the effect of the genotype by environment interac-

tion (GEI) on the performance of genotypes and make predictions regarding the breeding val-

ues of the genotypes in other environments [3]. The evaluation of superior materials across

several locations is an essential practice to ensure that the next cultivars have known perfor-

mance [4].

A method to determine the behavior of genotypes, as well as the effect of the GEI acting on

them, is through studies of adaptability and stability. The adaptability is defined as the ability

of a genotype to respond advantageously to its environment, while its stability is related to the

predictability of its behavior [5, 6]. It is possible to identify genotypes that have wide or specific

adaptability to favorable or unfavorable environments. Finlay and Wilkinson [5] defined

favorable and unfavorable environments as those that result in the average performance of the

genotype being above or below the average of all the trials, respectively.

In recent decades, several methods to evaluate the adaptability and stability have been pro-

posed, based on different statistical principles, such as those methodologies that are based on

linear regression models [5–8]. Some of the previous methods to determine the adaptability

and stability also included the ideotype concept [9, 10], and resulted in an improved under-

standing of the relative behavior of the genotypes from a smaller number of parameters. In a

review, Eeuwijk et al. [11] show that there are other methodologies to assess the behavior of

genotypes that are of note, such as AMMI (Additive Main effects and Multiplicative Interac-

tion) [12] and GGE biplot (Genotype main effects and Genotype x Environment interaction

effects) [13].

However, the adaptability and stability analyses still have limitations, especially when used

with trials with genetic or statistical unbalanced, heterogeneity of residual variances, and

genetic covariance. Another relevant factor is that traditional methodologies for the analyses

of adaptability and stability, the behavior of the genotypes is predicted by a linear model

adjusted according to an environmental gradient [5, 14], that is, composed of a set of straight

lines (one for each genotype in the environments) modeling the G x E interaction in a single

dimension [15]. Thus, the predictability of the behavior is compromised if the behavior of the

genotypes in the face of environmental variations differs from that predicted by the linear

model. Consequently, recommendations based on these methodologies can be biased. An

alternative would be the use of Random Regression Models (RRM), as they allow for improved

modeling of the behavior of the genotypes. RRM were first proposed by Kirkpatrick et al. [16],

and later extended by Schaeffer and Dekkers [17] and Meyer and Hill [18].

The RRM is used mainly in animal breeding, where the phenotypic behavior of animals is

characterized by longitudinal data or repeated measurements and information regarding a

covariance function [19–22]. The first methods used were based on parametric functions that

adjusted regression equations for fixed and random effects [23, 24]. However, these functions

have convergence difficulty, mainly in the evaluation of bovine lactation curves, resulting in

the search for new functions, with emphasis on orthogonal polynomials. The covariates based

on orthogonal polynomials reduce problems with rounding and provide relatively small corre-

lations between the estimated regression coefficients [21]. Among the orthogonal polynomials,

Legendre’s polynomials, which describe the structures of variation and covariance between

genetic and environmental components, are distinct [16, 25] and present computational

advantages such as reduced correlations between the estimated coefficients and better conver-

gence properties [26].

In plant science, the application of RRM is recent, as in the works of Sun et al. [27], Ly et al.

[28], Momen et al. [29] and Baba et al. [30], where it is used to model the behavior of
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individuals along a MET, especially when these trials are on a continuous and gradual scale, in

order to capture and predict the variation in the behavior of the genotypes due to environmen-

tal changes, even in places where the genotypes have not been evaluated. Thus, these models

can be used to select genotypes with responses to environmental variations, maintaining the

high ability to predict unmeasured values [27–30]. When considering phenotypic variations in

time, as in the case of lactation curves in cattle, the term random regression is common; how-

ever, in the case of spatial variation from phenotypic records, as in a MET, the term reaction

norm seems to be more acceptable. This term, first described in the field of ecology to describe

the natural adaptation of individuals [31], refers to an individual’s phenotypic plasticity in

response to environmental variation, i.e., a specific relationship between genotype, phenotype,

and environmental gradient. The distinction between the terms is subtle, although it is also

related to the nature of the variation in the measures [32, 33].

According to Streit et al. [34], one way to treat genotype variation in environments is to

consider the multitrait approach, analyzing the information for each environment as a distinct

variable. The use of reaction norm models are appropriate to evaluate gradual and continuous

variations in the environments, with few parameters and without the need to group individuals

in the environments [34]. Thus, knowledge of the reaction norms modeled using Legendre’s

polynomials can better quantify the adaptability and stability of a set of genotypes evaluated in

different environments, aiming for greater accuracy in cultivar recommendations. Therefore,

the objective of this investigation was the application of the random regression models in the

study of genotypes behavior along a MET, based on Legendre polynomials and genotype-ideo-

type distances.

Material and methods

Genetic material

We evaluated 105 common bean cultivars (Phaseolus vulgaris L.), 56 of which were Carioca

grains and 49 were Black grains. These cultivars have been recommended in Brazil by breeding

programs since 1959. The cultivars used, as well as the institutions of origin and year of recom-

mendation, are listed in S1 and S2 Tables (supporting information).

Trials

The trials were conducted in different environments (seasons, years, and places), during the

dry and winter seasons, between 2013 and 2018, at the Experimental Stations in Coimbra

county–Minas Gerais (Unidade de Ensino, Pesquisa e Extensão—UEPE Coimbra: latitude 20˚

49´44@ S, longitude 42˚45´56@ W and altitude of 713 meters) and Viçosa–Minas Gerais (Aero-

porto, latitude 20˚44´38@ S, longitude 42˚50’40” W and altitude of 654 meters; Horta Nova: lat-

itude 20˚45´47@ S, longitude 42˚49´25@ W and altitude of 664 meters; Vale da Agronomia:

latitude 20˚46´04@ S, longitude 42˚52´11@ W and altitude of 662 meters), totaling 13 trials.

Over the years in which the trials were carried out, the cultivars that were recently launched by

the breeding programs were included, thus causing a genetic unbalanced (variation in the

number of cultivars in the trials). The 13 trials and their characteristics are listed in S3 Table

(supporting information).

The trials were designed in randomized blocks with three replications. The plots consisted

of four lines of two meters (m), spaced 0.5 m apart. The treatments used were in accordance

with the recommendations for common bean cultures [30]. The evaluated characteristic was

grain yield, and they were harvested from the two central lines of each plot. The data were cor-

rected to 13% moisture and converted to kg ha-1.
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Statistical analyses

We use RRM to evaluate the behavior of the genotypes as a function that describes this behav-

ior over the gradual and continuous changes in the trials. The genotype’s behavior is quantified

as their reaction norm. For this, initially, the 13 trials in which the genotypes were evaluated

were classified in an environmental gradient, according to the index proposed by Finlay and

Wilkinson [5]. According to these authors, the genotype’s ability to respond to continuous

environmental improvements is a description of its adaptability. The environmental index was

determined as follows:

Ij ¼ ðY j � Y Þ ð1Þ

where Y j is the average of the genotypes j-th trial (j = 1, 2,. . ., na, where na is the total number

of trials) and Y is the general mean. Negative and positive index values indicate unfavorable

and favorable trials, respectively. The values of the environmental index were later standard-

ized to the range of orthogonal functions (−1 to 1) to avoid problems of collinearity among the

data [35], according to the equation adapted by Schaeffer [36]:

Ijs ¼ � 1þ 2
Ij � I1

I13 � I1

� �

ð2Þ

where Ijs is the standardized environmental index, Ij is the value obtained in Eq 1 for each trial,

and I1 and I13 are the index values (Eq 1) obtained for the trials of lowest and highest averages,

respectively.

To adjust the behavior of the genotypes along the environmental gradient, it is necessary to

test different models of reaction norms. The number of models to be tested depends on the

number of trials used (determines the maximum order of the polynomial), the number of

effects included in the model via the Legendre polynomials, and the residual covariance struc-

tures. Thus, we fitted 14 reaction norm models, where seven were considered with homoge-

neous residual variance (H) and the other seven with heterogeneous diagonal residual

variance (D). The models were fitted with Legendre’s polynomials, considering the various

polynomial orders, based on the general model, was as follows:

yijk ¼ Aj þ R=Ajk þ
PM� 1

m¼0
aimFijm þ eijk ð3Þ

where: yijk is the observation of the i-th genotype (i = 1, 2,. . ., ng, where ng is the total number

of genotypes), in the j-th trial (j = 1, 2,. . ., na, where na is the total number of trials), in the k-th
block (k = 1, 2, 3); Aj is the effect of the trial; R/Ajk is the fixed effect of the blocks within each

trial; αim is the reaction norm coefficient for the Legendre polynomial of order m for the geno-

typic effects of the genotypes; Fijm is Legendre’s m-th polynomial for the j-th trial, standardized

from -1 to +1 for the i-th genotype; M is the order of polynomials of the Legendre polynomial

for genotypic effects; and eijk is the residual random effect associated with yijk.

In a matrix, the model above is described as: y = Xb+Zg+e, where: y is the vector of pheno-

typic data; b is the vector of the fixed effects of the combination of blocks × trials added to the

general average; g is the vector of genetic effects (assumed to be random); and e is the residual

vector (random). X and Z represent the incidence matrix for these effects, respectively. It is

assumed that: g ~ N (0, Kg� Ing), and e ~ N (0, ∑� Inp), where Ing and Inp are identity matrices

of the order ng (ng is the total number of genotypes) and np (np is the number of genotypes x

the number of blocks), respectively. The symbol� denotes the Kronecker product. Kg is the

matrix of covariance coefficients for genotypic effect. ∑ represents the matrix of residual

variances.
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After obtaining several models, we choose the one best fit (with lowest mean square error

and greater parsimony). For that, some criteria were used, namely: Akaike Information Crite-

rion (AIC) [37], Bayesian Information Criterion (BIC) [38], and Penalizing Adaptively the

Likelihood (PAL) [39]. These criteria are described as follows:

AIC ¼ � 2lnLþ 2p ð4Þ

BIC ¼ � 2lnLþ pln½n � rðxÞ� ð5Þ

PAL ¼ � 2lnLþ nln ~nð Þ
lnðrn þ 1Þ

lnðrn þ 1Þ
ð6Þ

where;

rn ¼ 2lnLn� 1 � 2lnL1

rn ¼ 2lnL~n � 2lnLn� 1

and lnL is the logarithm of the likelihood function; p is the number of estimated parameters; n
is the number of observations; r(x) is the rank of the fixed effects matrix; and ñ is the highest

number of parameters for the models.

From the chosen model, we utilized the Likelihood Ratio Test (LRT) [40] to test the genetic

effects. The LRT is used which is as follows:

LRT ¼ � 2�ðLogLmod:r � LogLmod:cÞ ð7Þ

where: LogLmod.r is the logarithm value of the maximum likelihood function obtained for the

reduced model (without the genotypic effect), and LogLmod.c is the logarithm value of the maxi-

mum likelihood function obtained for the complete model.

We use the equation proposed by Kirkpatrick et al. [16] to predict the genotypic values (ĝ ij)

for the all genotypes in the trials. The equation is described as:

ĝ ij ¼
PM� 1

m¼0
â imFijm ð8Þ

where: â im is the reaction norm coefficient of order m for the genetic effects of the i-th
genotype.

Another point that we find relevant is to provide an estimate of the prediction accuracy of

the genotypic values, in order to know the reliability of the results. For that, the prediction

accuracy was estimated according to the following equation, adapted from Gilmour et al. [41],

and according to Kirkpatrick et al. [16].

rĝ g ij
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
FijmPEVijF

0

ijm

FijmK̂ gF
0

ijm

v
u
u
t ð9Þ

where: rĝ g ij
is the correlation between the predicted and real genotype values for genotype i in

trial j, that is, the estimated accuracy; PEVij is the Predicted Error Variance, obtained from the

diagonal elements of the matrix of the estimated coefficients for genotype i in trial j; and K̂ g is

the covariance matrix of the coefficients, estimated for the genotypic effect.

Finally, after choosing the appropriate reaction norm model and predicting the genotype

values, we quantify the individual reaction norm for each genotype aiming to know their

adaptability and stability. For that, we used the genotype-ideotype distance (converted into
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probability), according to three ideotypes: i) genotypes of general adaptability (genotypes of

maximum performance in both unfavorable and favorable environments); ii) genotypes of

maximum adaptability to unfavorable environments (genotypes of maximum performance

in unfavorable environments, regardless of their performance in favorable environments);

and iii) genotypes of maximum adaptability to favorable environments (genotypes of maxi-

mum performance in favorable environments, regardless of their performance in unfavor-

able environments). Each ideotype was based on the phenotypic values of each environment.

From the genotypic values, thus, we obtained the value of the genotype-ideotype distance

(converted into probability), according to the estimator adapted from Rocha et al. [42], as

described:

Pik ¼

1

GIDikPng
i¼1

1

GIDik

ð10Þ

where Pik are the probabilities referring to genotype i with regard to ideotype k (k = 1, 2, 3;

where 1 = genotypes of general adaptability; 2 = genotypes of maximum adaptability to unfa-

vorable environments; and 3 = genotypes of maximum adaptability to favorable environ-

ments); and ng is the total number of genotypes. GIDik is the standardized average Euclidean

distance for genotype i in ideotype k, as given by:

GIDik ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j½ĝ ij � ideðĝ ijÞ�

2

nj

s

ð11Þ

where, if k = 1, j = 1,. . ., na; if k = 2, j = 1,. . ., nd; if k = 3, j = 1,. . ., nf; na is the highest

assumed value for j; nd and nf represent the number of unfavorable and favorable environ-

ments, respectively; ideðĝ ijÞ is the ideotype drawn from the standardized genotypic values.

It is important to emphasize that the estimators used above also considered the stability of

the genotypes’ behavior in relation to the ideotype, where the stability can be highlighted as

variation regarding the behavior of the ideotype.

We evaluated the performance only in those genotypes that present an accuracy value of at

least 80% in the trials, since the accuracy is indicative of the precision in the prediction of

genotypic values. Thus, the average accuracy of the trials considered in the cultivar recommen-

dation will also show values equal to or greater than 80%. The standard value is based on that

of Resende and Duarte [43], who claimed to have at least 80% accuracy values in cultivar com-

parison trials.

After obtaining the values of probability of the cultivars, we selected the top ten cultivars

(highest probability value) to plot their curves with their respective reaction norms, to view the

results. The genotypic value of each cultivar was added, plus the environment average, and the

general average, as well as two checks, Pérola (Carioca bean) and Ouro Negro (Black bean), for

comparison purposes. These two cultivars were selected as check, as they are used as references

for the productivity and quality of grain in consumer markets for the Carioca and Black beans,

respectively [44]. The accuracy values (S4 Table) and the values of the genotype-ideotype dis-

tance (recommendation probability values—S5 Table) are available in the supporting

information.

Software used

The joint analyses was carried out using ASREML software [45]. The study of the adaptability

and stability of cultivars was carried out using R [46] according to the ASReml-R and R Stats

packages. The code for the analyses is available in the S1 Code (supporting information).
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Results

The environmental index values, according to Finlay and Wilkinson [5], are shown in Table 1.

Positive index values indicate favorable environments, while negative values indicate unfavor-

able ones [7]. Trials 12, 9, 4, 10, 8, and 6 were classified as unfavorable environments, while tri-

als 5, 2, 3, 7, 1, 11, and 13 were favorable. In addition, we added a column with the

standardized environmental index value.

We found that the different criteria (AIC, BIC, and PAL) pointed to different models as

having a better fit. The AIC criterion identified model Leg.6.D, which has a diagonal structure

for the residuals and an order six for the Legendre polynomials, as having the best fit (Table 2).

The BIC and PAL criteria however, identified the Leg.5.D model as having the best fit. The

AIC and BIC criteria prioritize, respectively, efficiency and consistency in their choices of

Table 1. Trials evaluated with their environmental index.

Trial Description Environmental index Standardized environmental index

12 Dry/2017/Aeroporto -1028.89 -1.00

9 Dry/2016/UEPE Coimbra -868.67 -0.89

4 Winter/2013/Vale da Agronomia -607.25 -0.71

10 Winter/2016/UEPE Coimbra -500.76 -0.64

8 Dry/2016/Aeroporto -466.43 -0.61

6 Winter/2015/UEPE Coimbra -167.35 -0.41

5 Dry/2015/UEPE Coimbra 31.02 -0.27

2 Dry/2013/Vale da Agronomia 106.80 -0.22

3 Winter/2013/Coimbra 127.71 -0.20

7 Dry/2016/UEPE Coimbra 259.39 -0.11

1 Dry/2013/Coimbra 486.60 0.05

11 Winter/2016/Horta Nova 758.98 0.23

13 Winter/2017/UEPE Coimbra 1868.83 1.00

https://doi.org/10.1371/journal.pone.0233200.t001

Table 2. Different fitted models using the Legendre polynomials (Leg).

Model1 Order P2 AIC BIC PAL LRT

Leg.0.H 0 2 11306.5 11318.9 11302.5 377.7�

Leg.1.H 1 4 11287.6 11312.4 11279.6 400.6�

Leg.2.H 2 7 11255.3 11298.8 11256.8 438.8�

Leg.3.H 3 11 11218.1 11286.4 11229.1 484.1�

Leg.4.H 4 16 11191.4 11290.9 11217.4 520.7�

Leg.5.H 5 22 11149.6 11286.3 11197.3 574.5�

Leg.6.H 6 29 11134.4 11314.6 11243.4 603.7�

Leg.0.D 0 14 11006.7 11093.7 10978.7 507.6�

Leg.1.D 1 16 10983.4 11082.8 10951.4 534.9�

Leg.2.D 2 19 10928.4 11046.5 10930.0 595.9�

Leg.3.D 3 23 10865.1 11008.1 10885.4 667.2�

Leg.4.D 4 28 10739.6 10913.6 10778.8 802.7�

Leg.5.D 5 34 10648.1 10859.4 10729.9 906.2�

Leg.6.D 6 41 10645.4 10900.2 10880.5 922.9�

1These models can assume homogeneous (H) or diagonal (D) residual variance structure. 2Number of parameters

�Significant with the LRT test.

https://doi.org/10.1371/journal.pone.0233200.t002
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model [47, 48]. Corrales et al. [48], using simulated data, reported that when the true model

was among the candidate models, the PAL and BIC criteria selected the same model. Further-

more, when the PAL and AIC criteria were used, the model selection was not always the same.

When the real model was unknown, the AIC was more precise in choosing the best model,

compared to the BIC. According to Vrieze [49], for very complex models (which include a

high number of parameters) the BIC criterion was preferred over the AIC. Corrales et al. [48]

stated that the PAL criterion simultaneously considers the consistency and efficiency of a

model and should, therefore, be preferred over the AIC and BIC criteria when choosing mod-

els. The model ultimately chosen was Leg.5.D.

Based on the chosen model (Leg.5.D), the random effects of the cultivars were modeled as

linear functions using the Legendre polynomials, with order five and heterogeneous residual

variance (diagonal). This resulted in 34 estimated parameters, 13 of which were associated

with residuals, that is, one for each trial, and 21 related to the model’s genotypic components.

It is of note that the genetic effect was significant with the LRT test for all fitted models, indi-

cating high variability between the cultivars evaluated (Table 2).

The average accuracy for the prediction of the genotypic values for each cultivar, based on

the Leg.5.D model, are shown in Fig 1. We found that the average accuracy of predictions was

greater when more trials were used to evaluate the cultivars. The accuracy observed for the cul-

tivars that were present in the 13 environments was the highest, while the accuracy estimates

for the cultivars evaluated in only two environments were the lowest. The accuracy values of

each cultivar in each environment are available in S4 Table (supporting information).

Fig 1. Average accuracy of the prediction in each trial for the genotypic values of the cultivars. a) Cultivars evaluated in 13 trials (80 cultivars); b) cultivars

evaluated in nine trials (20 cultivars); c) cultivars evaluated in six trials (four cultivars); and d) cultivars evaluated in only two trials (one cultivar). The trials are

ordered according to the standardized environmental index (Table 1).

https://doi.org/10.1371/journal.pone.0233200.g001
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Using the RRM, the adaptability and stability of 100 of the 105 cultivars was quantified as a

reaction norm. These 100 cultivars were evaluated in at least nine of the 13 trials, with the

accuracy in predicting their genotypic values, equal to or greater than 80%, including for those

trials in which the cultivars were not evaluated (S4 Table).

According to Eq 10, the cultivars were recommended by comparing them with the three

proposed ideotypes (three scenarios): cultivars of general adaptability, cultivars of maximum

adaptability to unfavorable environments, and cultivars of maximum adaptability to favorable

environments. The probability values of each cultivar in each scenario are presented in

S5 Table.

Fig 2 shows the reaction norm curves of the ten common bean cultivars with the highest

potential (highest probability value), considering the general adaptability scenario (ideotype—

maximum performance genotypes in both unfavorable and favorable environments), as well

as the cultivars used as checks (Pérola and Ouro Negro). The probability of each cultivar was

calculated according to Eq 10, in relation to the ideotype for the scenario of general adaptabil-

ity. Among the ten selected cultivars, six had the Carioca grain type (BRS Estilo, IAC Formoso,

IAC Imperador, IPR Andorinha, IPR Campos Gerais and VC 15), and four had the Black

grain type (BRS Agreste, IPR Tiziu, IPR Tuiuiú and VP 22). The IPR Campos Gerais cultivar

surpassed the Pérola cultivar in all trials, while the VP 22 cultivar surpassed the Ouro Negro

cultivar in all trials.

The reaction norm curves of the ten common bean cultivars with the greatest potential

(highest probability value), considering the scenario of maximum adaptability to unfavorable

environments (ideotype—maximum performance genotypes in unfavorable environments,

Fig 2. Cultivars of Carioca and Black common bean of general adaptability according to the ideotype. The trials are ordered according to the standardized

environmental index (Table 1). �Cultivars used as checks.

https://doi.org/10.1371/journal.pone.0233200.g002
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regardless of their performance in favorable environments), as well as the cultivars used as

checks, are presented in Fig 3. Of the ten selected cultivars, seven had Carioca grain (BRS

Estilo, IAC Formoso, IAC Imperador, IPR Andorinha, IPR Campos Gerais, IPR Tangará and

VC 15) and three had Black grain (IPR Tiziu, IPR Tuiuiú and VP 22). The cultivar IPR Cam-

pos Gerais surpassed the cultivar Pérola in all trials, and the IPR Tuiuiú, IPR Tiziu, and VP 22

cultivars exceeded the Ouro Negro cultivar.

In Fig 4, the reaction norm curves for the ten cultivars with the highest potential (highest

probability value), considering the scenario of maximum adaptability to favorable environ-

ments (ideotype—maximum performance genotypes in favorable environments, regardless of

their performance in unfavorable environments), as well as the cultivars used as checks, are

shown. Of the ten selected cultivars, seven had Carioca grain (BRS Estilo, IAC Formoso, IAC

Imperador, IPR Andorinha, IPR Campos Gerais, IPR 139 and VC 15) and three had Black

grain (IPR Agreste, IPR Tuiuiú and VP 22). The IPR Campos Gerais cultivar surpassed the

Pérola cultivar, in all trials, and the IPR Agreste, IPR Tuiuiú, and VP 22 Black common bean

cultivars exceeded the Ouro Negro cultivar, in all trials.

Discussion

Rating the variations of a set of trials, according to an environmental gradient, is essential

when using methods based on linear regression that aim to quantify the adaptability of a culti-

var. Finlay and Wilkinson [5] proposed using the average performances of the cultivars in

each trial as a gradient, and estimating an environmental index using the differences between

the average of the cultivars evaluated in each trial and the general average of the cultivars in all

Fig 3. Cultivars of Carioca and Black common bean of maximum adaptability for unfavorable environments according to the ideotype. The trials are ordered

according to the standardized environmental index (Table 1). �Cultivars used as checks.

https://doi.org/10.1371/journal.pone.0233200.g003
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trials. Additionally, the fit of the regression model for each cultivar was made according to its

performance, relative to the environmental index, in order to increase the values. The lack of

an environmental gradient complicates the interpretation of the behavior of the genotypes in

the face of the environmental variations [5]. Thus, the ordering of environments along a gradi-

ent rather than a set of arbitrarily defined groups of the data is necessary in reaction norm

models, because these models describe the phenotype of an individual expressed as a function

of the gradual and continuous change in environments [50, 51].

When classifying the trials with the environmental index (in favorable or unfavorable envi-

ronments), it was observed that the seasons, places, and years in which the trials were con-

ducted did not determine the classification, as the trials from the same place and year could

have very different results (trials 7 and 9), while those from different seasons, places, and years

could be very similar (for example, environments 1 and 11). It should be noted that trial 9 was

planted 44 days after trial 7, which may be one of the justifications for the different environ-

mental index values. These results could be caused by edaphoclimatic variations, as well as var-

iations in the incidence of pests and diseases in the environments in which the cultivars were

evaluated, resulting in GEI. Several authors have also previously [52–55] reported the influence

of these factors on the environmental classification, resulting in significant GEI. For Ramalho

et al. [56], the most significant contributions to the GEI in the common bean culture were due

to the combinations of cultivar × season and cultivar × years.

The development of methods to model GEI is coupled with the availability of more geno-

typic and environmental information, in line with the advances in data collection and analyses.

The first analyses were based on analyses of variance [57, 58], with a single parameter to

Fig 4. Cultivars of Carioca and Black common bean of maximum adaptability for favorable environments according to the ideotype. The trials are ordered

according to the standardized environmental index (Table 1). �Cultivars used as checks.

https://doi.org/10.1371/journal.pone.0233200.g004
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interpret the adaptability and stability. The advances with the development of new methodolo-

gies however, are based on regression analyses, with interpretations based on more parame-

ters, such as the average, the regression coefficient, the regression deviation, and new

definitions of adaptability and stability [5, 8, 14].

Currently, the effects of genotypes and environmental conditions can be modeled by phe-

notypic values in regression with genetic markers and in environmental covariates, via mixed

models [59]. However, these models consider that the genotype behavior is linear, which may

not equate to the genotypes actual behavior. Thus, RRM in conjunction with Legendre polyno-

mials are used to establish the order of the polynomials of the regression parameters later,

according to the behavior of the genotypes in a MET. Additionally, the mixed model approach

also allows for the genotypic values of individuals to be predicted, as adaptability and stability

are genotypic, and not phenotypic.

According to Ni et al. [60], reaction norm models allow for the adjustment of an individu-

al’s genetic effects with their exposure to the environmental effects, so that the genotypes are

adjusted as a nonlinear function of a continuous environmental gradient. The adjustment of

reaction norm models, as a function of the environmental gradient, considering Legendre

polynomials, captures more adequately the behavior of the genotypes in a MET. These fact is

an advantage of the reaction norms in relation to the traditional methods of analyses of adapt-

ability and stability.

The inclusion of kinship information between the individuals evaluated, whether via pedi-

gree or genomics, could contribute to the use of RRM, which is based on the estimation of the

variance components using the method of Restricted Maximum Likelihood associated with

the Best Linear Unbiased Predictor (REML/BLUP) [61]. This information can be incorporated

into the incidence matrix of the genetic values in the matrix model, allowing more accurate

estimates, and consequently, increasing the prediction accuracy. Several studies are available

that show that the inclusion of kinship information provides better adjusted models and lower

values of residual variance estimates [27, 62–65].

In addition, the availability of environmental information, such as temperature, soil mois-

ture, and rainfall data, can help in estimating the environmental values used in the reaction

norms. Ly et al. [28] showed in their work that much of the variation caused by the GEI is

owing to the changes caused by environmental covariates. One of the most standard ways of

adding spatial variations to a statistical model is through structures of spatial variance and

covariance, as proposed by Cullis and Gleeson [66] and later refined by Gilmour et al. [67].

Furthermore, several studies have incorporated the effects of environmental covariates in their

statistical models, through the inclusion of random effects in the incidence matrices [27, 28,

68, 69].

Jarquı́n et al. [59] state that it is possible to simultaneously model the effects of environmental

covariates and the genomic data obtained. However, this approach would lead to very demand-

ing analyses with a high number of parameters. Thus, these authors proposed models of random

effects where the effects of markers and environmental covariates are modeled together, through

covariance structures, which can significantly improve the prediction accuracy.

To quantify the adaptability and stability using reaction norms, the prediction accuracy rep-

resents the reliability in the evaluation of the behavior of the evaluated genotypes in different

environments. In this work, most of the accuracy estimates obtained for each cultivar in each

environment were greater than 80%, which also resulted in an average accuracy of the 13 trials

that was higher than this value. In the VCU trials, Resende and Duarte [43] recommended that

the accuracy should be at least 80%. Other previous investigations have also highlight the

importance of prediction accuracies, using the reaction norm models in plant breeding experi-

ments [59, 70, 71].
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Another advantage of using reaction norm is the prediction of genotypic values for the cul-

tivars for environments in which they were not evaluated, when the MET presents genetic

imbalance. When using trials with unbalanced data, or just a sample of the cultivars, the pre-

diction accuracy estimates tend to be lower, and the model may not be efficient in evaluating

the performance of the cultivars [72, 73]. Viana et al. [74] working with unbalanced data,

showed that the lack of data resulted in relevant effects on the estimation of genetic variances,

the accuracy of prediction and the ranking of predicted genetic values, which can affect the

efficiency of selection.

For Smith et al. [1], using accurate information for the behavior of the cultivars, allowed

breeders to choose the best varieties, according to the needs of farmers, in order to maximize

profitability and food security. One of the difficulties in assessing the behavior of a group of

cultivars over MET was due to the fact that new genotypes were included in the trials over the

years, in addition to the loss of information due to problems that occurred over the trials,

resulting in genetic and statistical unbalanced.

As noted, only 12 cultivars of superior performance were found in Figs 2–4, with eight Cari-

oca bean cultivars and four Black bean cultivars, instead of 30 cultivars (10 per figure). This

was because there were some cultivars that were widely adaptable and highly stable that were

selected for more than one scenario, such as the IPR Campos Gerais and IPR Tuiuiú.

Cultivars with high phenotypic averages for high yield were identified, but they were not

included in Figs 2–4, as those selected by the reaction norm models. This can be explained by

the fact that the methodology when calculating the probability of each cultivar that was based

on the cultivar-ideotype distance penalizes cultivars that showed great variation in their pro-

ductivity during the trials, even if they presented high general averages. Thus, the reaction

norm models can also quantify the stability of cultivars, defined as the variation regarding the

behavior of the ideotype across environments. Eeuwijk et al. and Van Oijen and Höglind [11,

75] also reported this property of reaction norms. It is also worth mentioning that the use of

the ideotype that was established from the data itself, had the advantage of comparing the

genotypes with a real situation observed for that MET, since the ideotype is defined as the max-

imum value predicted in each trial.

The reaction norms, based on RRM, can also model the heterogeneity of the genetic varia-

tions and correlations between the environments, in addition to the spatial trends in the trials

[16]. Furthermore, these models allow for more accurate estimations of the genotypes in the

trials, as well as better estimations of the genetic parameters, such as heritability, variances,

covariances, and genetic correlations, while they become more difficult in models with only

fixed effects [11].

The maintenance of productivity in different environments is explained by the response to

the environmental stimulus, being caused by the differential expression of the genes present in

each individual. In this way, the adaptability and stability indicated in the reaction norm

curves of the cultivars, provides information regarding their capacity to express phenotypes

that may better adjust to the environmental conditions [76]. In this sense, one way to improve

the adaptability of cultivars to the different environments in which they will be cultivated, is to

pyramid the genes of maximum expression in both the unfavorable and favorable environ-

ments. The superior cultivars in each studied scenario were developed in different breeding

programs from four institutions (EMBRAPA, UFV, IAC, and IAPAR). This is indicative of the

effort and success of these breeding programs, as well as the genetic diversity between them,

since the breeding programs are independent, with their own parental lines. Several studies

have reported the decrease of genetic diversity in crops with genetic breeding, including com-

mon beans [77–80]. The hybridization between cultivars developed by different programs and

adapted to different locations may result in the maintenance of genetic diversity and the
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possibility of gains with the selection. Thus, these cultivars evaluated in this work also have the

potential to be used in common bean breeding programs.

Finally, we can summarize that the use of reaction norm models associated with the Legen-

dre polynomials, allows to adjust the behavior of the genotypes along a MET (as a function of a

gradient). The methodology has the capacity to predict the genotypic values of individuals,

even in places without phenotypic data, heterogeneity of genetic variations, correlations

between environments, and spatial trends in the trials. Then, from the genotypic values and

using an ideotype, it is possible to estimate the adaptability and stability of individuals.

Conclusion

The random regression models to evaluate the adaptability and stability of cultivars appears to

be an alternative in the evaluation of multi-environment trials, because it allows you to deal

with unbalanced data, as well an improved evaluation of cultivar behavior.

The cultivars IPR Campos Gerais, IAC Formoso and VC 15 were the most adapted to the

scenario of general adaptability, while the cultivars IPR Campos Gerais, IPR Tuiuiú and BRS

Estilo performed better in unfavorable environments and the cultivars IAC Formoso, IPR

Campos Gerais and VC 15 were better in places with favorable conditions.
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45. Gilmour AR, Gogel BJ, Cullis BR, Welham SJ, Thompson R. ASReml User Guide Release 4.1 Struc-

tural Specification, VSN International Ltd, Hemel Hempstead, HP1 1ES, UK; 2015. Available: www.

vsni.co.uk

46. Computing RF for S. R Development Core Team. Austria, Vienna; 2015.

47. Yang Y. Can the strengths of AIC and BIC be shared? A conflict between model indentification and

regression estimation. Biometrika. 2005; 92: 937–950. https://doi.org/10.1093/biomet/92.4.937

48. Corrales JD, Munilla S, Cantet RJC. Polynomial order selection in random regression models via penal-

izing adaptively the likelihood. J Anim Breed Genet. 2015; 132: 281–288. https://doi.org/10.1111/jbg.

12130 PMID: 25622858

49. Vrieze SI. Model selection and psychological theory: A discussion of the differences between the Akaike

information criterion (AIC) and the Bayesian information criterion (BIC). Psychol Methods. 2012; 17:

228–243. https://doi.org/10.1037/a0027127 PMID: 22309957

50. Kolmodin R, Strandberg E, Madsen P, Jensen J, Jorjani H. Genotype by environment interaction in Nor-

dic dairy cattle studied using reaction norms. Acta Agric Scand—Sect A Anim Sci. 2002; 52: 11–24.

https://doi.org/10.1080/09064700252806380

51. Calus MPL, Veerkamp RF. Estimation of environmental sensitivity of genetic merit for milk production

traits using a random regression model. J Dairy Sci. 2003; 86: 3756–3764. https://doi.org/10.3168/jds.

S0022-0302(03)73982-4 PMID: 14672207

52. Pereira HS, Melo LC, Del Peloso MJ, de Faria LC, Wendland A. Complex interaction between geno-

types and growing seasons of carioca common bean in Goiás/Distrito Federal. Crop Breed Appl Bio-

technol. 2011; 11: 207–215. https://doi.org/10.1590/S1984-70332011000300002

53. Torga PP, Melo PGS, Pereira HS, de Faria LC, Del Peloso MJ, Melo LC. Interaction of common beans

cultivars of the black group with years, locations and sowing seasons. Euphytica. 2013; 189: 239–248.

https://doi.org/10.1007/s10681-012-0793-y

54. Tusiime G. Genotype x Environment interactions for higher Iron and Zinc in selected bean varieties.

Ambit J Agric. 2015; 1: 16–39.
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