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Abstract

Motivation: Microsatellite instability (MSI) is a promising biomarker for cancer prognosis and chemosensitivity. Techniques
are rapidly evolving for the detection of MSI from tumor-normal paired or tumor-only sequencing data. However, tumor
tissues are often insufficient, unavailable, or otherwise difficult to procure. Increasing clinical evidence indicates the
enormous potential of plasma circulating cell-free DNA (cfNDA) technology as a noninvasive MSI detection approach.
Results: We developed MSIsensor-ct, a bioinformatics tool based on a machine learning protocol, dedicated to detecting MSI
status using cfDNA sequencing data with a potential stable MSIscore threshold of 20%. Evaluation of MSIsensor-ct on
independent testing datasets with various levels of circulating tumor DNA (ctDNA) and sequencing depth showed 100%
accuracy within the limit of detection (LOD) of 0.05% ctDNA content. MSIsensor-ct requires only BAM files as input,
rendering it user-friendly and readily integrated into next generation sequencing (NGS) analysis pipelines. Availability:
MSIsensor-ct is freely available at https://github.com/niu-lab/MSIsensor-ct. Supplementary information: Supplementary
data are available at Briefings in Bioinformatics online.
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Introduction
Microsatellites (MS) refer to short repetitive DNA fragments in
units of 1–6 nucleotide combinations [1]. The deficiency of mis-
match repair (MMR) genes during DNA replication results in
the unrecoverable chain slip phenomenon of the microsatellite
segment. As a consequence, the number of microsatellite repe-
titions alters, giving rise to microsatellite instability (MSI) [2, 3].
MSI was first discovered in colorectal cancer by Altonen et al. in
1993 and is now confirmed as a critical carcinogenic molecular
mechanism [4].

MSI is a sensitive indicator of genetic instability in diverse
cancer types, including approximately 28% endometrial cancers,
15% colorectal cancers, and 22% gastric carcinomas [5–8]. It is
well documented that MSI can be used to screen for Lynch
syndrome, guide the neoadjuvant chemotherapy, and evaluate
the prognosis of patients [9, 10]. Moreover, immune checkpoint
inhibitors are more beneficial for MSI patients than those who
are microsatellite stable (MSS) [11]. In 2017 and 2018, the U.S.
Food and Drug Administration (FDA) respectively approved pem-
brolizumab [12] and nivolumab [13] for the treatment of patients
with MSI solid colorectal tumors who had not progressed in pre-
vious treatments. This increasing clinical relevance underscores
the urgency of accurate assessment of MSI status.

The widely-accepted assays for detecting MSI in the clinic
are polymerase chain reaction (PCR) and immunohistochemistry
(IHC) of the impaired DNA MMR proteins [14, 15]. Due to exces-
sive reliance on manual operations, both methods are often
criticized for insufficient precision [16].

The growth of NGS technologies applied to biological and
clinical aspects [17] has prompted development of a number of
NGS-based MSI detection methods, some of which are designed
for paired normal and tumor samples such as MSIsensor [18]
and MANTIS [19], and others like MIAmS [20], MSIsensor-pro [21],
mSINGS [22], and MSIpred [23] need only tumor samples. As a
result of insufficiency in tumor tissue quantity [24] or the inva-
sive nature of the tissue biopsy [25], a number of patients do not
meet the basic requirements for solid tumor sequencing [26]. It
is well established that ctDNA allowing high-resolution tracking
of cancer progression overcomes many of these limitations [27].

ctDNA carries genomic and epigenome mutation informa-
tion matching the tumor mutation spectrum, such as copy num-
ber variation and DNA methylation [28, 29]. Importantly, the

MSI phenotype can be directly assessed from ctDNA, which is
highly consistent with that from tissue specimens [26, 30–32].
Therefore, how to accurately detect MSI in ctDNA through NGS
to achieve noninvasive diagnoses and early tumor screening has
become an increasingly urgent issue [33].

The mutations introduced by clonal hematopoiesis make it
challenging to explore MSI signals from plasma cfDNA sequenc-
ing data [34, 35], though this problem is effectively solved by the
intervention of UMI sequences or paired white blood cell (WBC)
sequencing data [36]. To our best knowledge, only bMSISEA is
now published for assessing MSI status from cfDNA sequencing
data [37].

Although some MSI callers mentioned above can detect MSI
status from cfDNA or tumor-only sequencing samples, there
are three important limitations. Firstly, the construction of a
panel-specific baseline is complicated, which requires paired
cfDNA and WBC sequencing samples with known MSI statuses.
Secondly, the preliminary analysis of large cohorts is inevitable
due to the lack of a stable threshold for determining the MSI
status. Finally, existing cfDNA MSI caller performs poorly in
samples with ctDNA content <0.4% [37].

Here, we present MSIsensor-ct, a novel method for detecting
MSI status using plasma cfDNA sequencing data, with 100%
sensitivity and specificity on our 39 real samples. The limita-
tion test demonstrates that it can reliably assess MSI status on
samples with ctDNA content over 0.05% and sequencing depth
over 3000×. Furthermore, its robustness renders MSIsensor-ct
compatible with any pan-cancer sequencing panels covering
more than 30 out of 1476 classifiers.

Materials and Methods
Catalogue of data and materials

Thirty-nine patients were recruited, concurrently with their
paired cfDNA and WBC sequencing specimens obtained from
ChosenMed Technology (Supplementary Table 1). Each patient
had given written, informed consent, and five of them had
verified MSI status by IHC, while the others had MSI status
inferred by MSIsensor with filtered methods (Supplementary
Material). 1724 paired whole-exome sequencing (WES) data
were obtained from the Cancer Genome Atlas (TCGA), Euro-
pean Genome-phenome Archive (EGA, EGAS00001001056 and

https://github.com/niu-lab/MSIsensor-ct
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Figure 1. Distribution of MSI/MSS samples across 1763 data. There were 1565 tumor-normal paired WES data from TCGA, 119 from EGA and 40 from NGDC. In addition,

39 patients’ targeted plasma cfDNA and paired WBC sequencing data were collected from ChosenMed Technology and the panel used for sequencing contains 599

genes. UCEC refers to uterine corpus endometrial carcinoma, CRC refers to colon adenocarcinoma/rectum adenocarcinoma, STAD refers to stomach adenocarcinoma,

ESCA refers to esophageal carcinoma, and UCS refers to uterine carcinosarcoma. Details about 39 cfDNA samples are in Supplementary Table 1.

EGAS00001000288), and National Genomics Data Center (NGDC,
PRJCA000610). All samples from public databases were MSI-
labeled, and more details about cancer types with the number
of MSI/MSS cases are shown in Figure 1.

In consideration of the consistency of MSI in tumor tissues
and ctDNA, 1565 WES samples from TCGA were treated as the
training set. Furthermore, 1565 simulated cfDNA sequencing
data based on TCGA were regarded as an independent testing
set, with an average sequencing depth of 10,000× and ctDNA
content of 0.1%. Further tests were conducted on simulated
datasets based on the 159 EGA and NGDC samples. The details of
each dataset are provided in Table 1, and the simulation process
is described in the supplementary material. Simultaneously, the
39 genuine cfDNA samples from ChosenMed Technology also
played a crucial role in testing the performance of MSIsensor-ct.

Models for MSI calling

MSIsensor performed standard chi-square testing for each site
in paired tumor and normal specimens to measure the goodness
of fit between the respective allele frequency distributions [38],
with the chi-square test p-value subsequently used to classify
the stability of distribution in tumor [18, 39]. In this study, allele
frequency distributions and p-values of microsatellites in each
original TCGA sample were obtained using MSIsensor.

There were over 2.7 billion allele frequency distributions
of 1763,163 microsatellites obtained from 1565 tumor samples.
Here, the p-value was used to identify the stability of each dis-
tribution for the subsequent machine learning step. The stability
of a distribution was labeled as ‘unstable’ for p-value <0.05,
otherwise ‘stable’.

We preserved sites that meet the following conditions: 1)
sequencing depth ≥ 20×, 2) presenting in ≥ 10% of samples, 3)
the proportion of unstable distributions of a site ≥ 20%. After-
wards, there were over 16 million distributions of 25,861 sites
remained. Allele frequency distributions and stabilities of a site
in different tumor samples were aggregated into a set, which
we named a site-set. Hence, 25,861 site-sets were generated
(Supplementary Figure 1).

We treated the distributions in each site-set as features and
the stabilities as labels. Each site-set was randomly divided
into the customary training (80%) and validation (20%). Con-
sidering that ctDNA makes up only a small fraction in cfDNA,
we removed the allele frequency consistent with the human
reference genome in distributions to increase the influence of
low-frequency variants.

Subsequently, a machine learning protocol was applied to
explore the distribution pattern of each site-set, after which
25,861 site-classifiers were generated. An AUC restriction was
set to filter inefficient classifiers, and only those with an AUC
exceeding the restriction on validation datasets were retained. In
this action, five machine learning protocols were implemented
for comparison: Support Vector Machines [40], eXtreme Gradi-
ent Boosting [41], Gradient Boosting Decision Tree [42], Logistic
Regression [43], and Adaptive Boosting [44]. These were tested
in conjunction with different AUC restrictions. Then, the com-
parative evaluation was performed on the simulated dataset 1
(Table 1 and 2), where XGBoost with 0.85 AUC restriction per-
formed overall best (Table 2).

This machine learning algorithm was incorporated into
MSIsensor-ct, a C++ compiled MSI detection tool, with 1476
binary classification models (Supplementary Figure 1).
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Table 1. Simulated datasets and their usage

Simulated
dataset

Number
of speci-
mens

Data source Simulated
sequencing
depth (×)

Simulated
ctDNA
content (%)

Usage Accuracy Sensitivity Specificity AUC

1 1565 TCGA samples 10,000 0.10 Test sets for 5 machine
learning models

Details are in Table 2

2 159 EGA and NGDC samples 0.10 1 1 1 1
3 159 EGA and NGDC samples 10,000 0.20 Independent test sets,

robustness tests and
limitation tests

1 1 1 1

4 159 EGA and NGDC samples 0.30 1 1 1 1
5 159 EGA and NGDC samples 0.40 1 1 1 1

6 159 EGA and NGDC samples 1000 0.10 0.7421 1 0.6772 1
7 159 EGA and NGDC samples 1000 0.20 1 1 1 1
8 159 EGA and NGDC samples 1000 0.30 1 1 1 1
9 159 EGA and NGDC samples 1000 0.40 1 1 1 1
10 159 EGA and NGDC samples 2000 0.05 0.7673 1 0.7087 1
11 159 EGA and NGDC samples 2000 0.10 1 1 1 1
12 159 EGA and NGDC samples 3000 0.05 1 1 1 1
13 159 EGA and NGDC samples 3000 0.10 Limitation tests 1 1 1 1
14 159 EGA and NGDC samples 5000 0.05 1 1 1 1
15 159 EGA and NGDC samples 5000 0.10 1 1 1 1
16 159 EGA and NGDC samples 10,000 0.05 1 1 1 1
17 159 EGA and NGDC samples 20,000 0.05 1 1 1 1
18 159 EGA and NGDC samples 20,000 0.10 1 1 1 1
19 159 EGA and NGDC samples 30,000 0.05 1 1 1 1
20 159 EGA and NGDC samples 30,000 0.10 1 1 1 1

This table contains 20 simulated datasets with their usage and test result. Accuracy, sensitivity and specificity are based on the threshold MSIscore = 20%. AUC: Area
Under Curve

Quantification of MSI

For each sample, MSIsensor-ct reported the distributions of 1476
classifiable sites and binary classifiers were then applied to
classify their stabilities. The percentage of unstable sites is the
MSIscore.

Application and comparison

Simulated datasets 2–5 (Table 1) and the 39 cfDNA sequencing
data from ChosenMed Technology were used as independent
testing sets to verify the MSI calling ability of MSIsensor-ct. In
addition, we also tested other MSI callers on the same datasets.

Baselines for MSIsensor-pro (version v1.0.a) and mSINGS (ver-
sion v3.6) were established according to their detailed operating
procedures [21, 22]. However, we failed to establish the baseline
for bMSISEA, so it was not evaluated.

Robustness and limitation test

In order to verify the compatibility for panels with various
microsatellites, the robustness of MSIsensor-ct was evaluated
by randomly extracting site-classifiers from the set of 1476 and
testing their MSI calling performance on simulated datasets
2–5 (Table 1). In addition, we explored the LOD of MSIsensor-ct
in terms of sequencing depth and ctDNA content on simulated
datasets 2, 6–20 (Table 1).

MMR proteins identification using
immunohistochemistry

Immunohistochemistry was performed on formalin-fixed
paraffin-embedded tissues with monoclonal antibodies against
MLH1 (ES05 clone; ZM-0154; ZSGB-BIO, Beijing, China; dilution

1:50), MSH2 (RED2 clone; ZA-0622; ZSGB-BIO, Beijing, China;
dilution 1:100), MSH6 (EP49 clone; ZA-0541; ZSGB-BIO, Beijing,
China; dilution 1:200), and PMS2 (EP51 clone; ZA-0542; ZSGB-
BIO, Beijing, China; dilution 1:50). Optical microscope was used
for further interpretation.

All screened sections were photographed with a 40× field of
vision, and five fields were then randomly selected under a 400×
magnification. Positive cells were identified by the presence
of brownish yellow granules in the nucleus, and the absence
of staining was the criteria for being negative. Moreover, the
expression of a specific protein was described according to the
percentage of positive cells. If the percentage of positive cells was
less than 25%, the protein was considered to be negative; other-
wise, it was considered positive. Immunohistochemistry results
were independently scored by two pathologists. If the results
of the two pathologists were inconsistent, a senior pathologist
reassessed the slides.

Mismatch repair–deficiency (dMMR) is defined as the loss of
expression of any MMR protein in tumor tissues, and tumor cells
with all four MMR proteins evaluated as positive are considered
to be mismatch repair–proficient (pMMR).

Preparation of plasma cfDNA

10 mL of peripheral blood was collected in a cell-free DNA BCT
tube, stored at −80 ◦C, and centrifuged at 1600 g for 15 minutes
at 4 ◦C within 72 hours. Then, 2 ml of the uppermost plasma was
transferred to another centrifuge tube. Additional centrifugation
at 16,000 g at 4 ◦C was performed for 10–15 minutes to remove
cell debris. Subsequently, the supernatant was transferred to a
new RNAase-free tube and store at −80 ◦C until further DNA
extraction. According to the manufacturer’s instructions, cfDNA
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Table 2. Comparison of the five machine learning protocols with different AUC restrictions

AUC restriction Simulated data XGBoost AdaBoost GBDT SVM LR

0.95 TCGA_CRC_AUC 0.9819 0.9807 0.9659 0.9844 0.9901
TCGA_ESCA_AUC 0.9940 1.0000 1.0000 1.0000 1.0000
TCGA_STAD_AUC 0.9896 0.9920 0.9957 0.9835 0.9828
TCGA_UCEC_AUC 0.9589 0.9467 0.9330 0.9602 0.9544
TCGA_UCS_AUC 0.9167 0.7092 0.7150 1.0000 0.7450
All_samples_AUC 0.9656 0.9573 0.9490 0.9690 0.9658
All_samples_Accuracy 0.8708 0.8867 0.8213 0.9036 0.9545
All_samples_Sensitivity 0.9547 0.9381 0.9450 0.9450 0.8673
All_samples_Specificity 0.8480 0.8723 0.7877 0.8923 0.9786
Number of classifiers 28 30 18 28 27

0.90 TCGA_CRC_AUC 0.9683 0.9587 0.9738 0.9694 0.9470
TCGA_ESCA_AUC 1.0000 1.0000 1.0000 1.0000 1.0000
TCGA_STAD_AUC 0.9996 0.9997 0.9997 0.9997 0.9954
TCGA_UCEC_AUC 0.9892 0.9876 0.9886 0.9853 0.9914
TCGA_UCS_AUC 1.0000 1.0000 1.0000 1.0000 1.0000
All_samples_AUC 0.9820 0.9792 0.9824 0.9797 0.9781
All_samples_Accuracy 0.9669 0.9674 0.9384 0.9681 0.9708
All_samples_Sensitivity 0.9591 0.9497 0.9686 0.9589 0.9308
All_samples_Specificity 0.9689 0.9721 0.9306 0.9704 0.9812
Number of classifiers 342 313 191 277 298

0.85 TCGA_CRC_AUC 0.9955 0.989 0.9845 0.9444 0.9776
TCGA_ESCA_AUC 1.0000 1.0000 1.0000 1.0000 1.0000
TCGA_STAD_AUC 1.0000 0.9999 1.0000 1.0000 0.9998
TCGA_UCEC_AUC 0.9911 0.9877 0.9937 0.9891 0.9891
TCGA_UCS_AUC 1.0000 1.0000 1.0000 1.0000 1.0000
All_samples_AUC 0.9867 0.9811 0.9843 0.9703 0.9801
All_samples_Accuracy 0.9738 0.9584 0.9564 0.9589 0.9565
All_samples_Sensitivity 0.9344 0.9344 0.9563 0.95 0.8969
All_samples_Specificity 0.9839 0.9646 0.9565 0.9612 0.9719
Number of classifiers 1476 1431 906 882 1093

0.80 TCGA_CRC_AUC 0.9978 0.9938 0.9959 0.9948 0.9779
TCGA_ESCA_AUC 1.0000 1.0000 1.0000 1.0000 1.0000
TCGA_STAD_AUC 1.0000 0.9999 1.0000 1.0000 0.9998
TCGA_UCEC_AUC 0.9925 0.9883 0.9954 0.9889 0.9888
TCGA_UCS_AUC 1.0000 1.0000 1.0000 1.0000 1.0000
All_samples_AUC 0.9861 0.9818 0.9863 0.9789 0.9802
All_samples_Accuracy 0.9738 0.9661 0.9693 0.9495 0.9572
All_samples_Sensitivity 0.8875 0.8656 0.9281 0.9250 0.9031
All_samples_Specificity 0.9960 0.9920 0.9799 0.9558 0.9711
Number of classifiers 3558 3548 2433 2026 2560

0.75 TCGA_CRC_AUC 0.9952 0.9947 0.9960 0.9950 0.9916
TCGA_ESCA_AUC 1.0000 1.0000 1.0000 1.0000 1.0000
TCGA_STAD_AUC 1.0000 0.9999 0.9999 0.9999 1.0000
TCGA_UCEC_AUC 0.9919 0.9880 0.9959 0.9869 0.9851
TCGA_UCS_AUC 1.0000 1.0000 1.0000 1.0000 1.0000
All_samples_AUC 0.9843 0.9805 0.9857 0.9754 0.9795
All_samples_Accuracy 0.9610 0.9589 0.9732 0.9463 0.9527
All_samples_Sensitivity 0.8188 0.7986 0.8844 0.8750 0.7813
All_samples_Specificity 0.9976 0.9983 0.9960 0.9647 0.9968
Number of classifiers 6142 6025 4464 3598 4487

All samples referred to 1565 simulated sequencing data from TCGA samples, whose sequencing depth was 10,000X and ctDNA content was 0.1%. AUC of all samples
was proposed to be the ultimate criterion.
Accuracy, sensitivity and specificity were calculated based on the threshold: MSIscore = 20%.
XGBoost: eXtreme Gradient Boosting
AdaBoost: Adaptive Boosting
GBDT: Gradient Boosting Decision Tree
SVM: Support Vector Machine
LR: Logistic Regression
AUC: Area Under Curve

was extracted from plasma samples with the QIAamp Circu-
lating Nucleic Acid Kit (Qiagen, Hilden, Germany), and then
quantified using a Qubit 4.0 fluorometer with dsDNA HS Assay
Kits (Life Technologies).

Next-generation sequencing (NGS) library preparation

The purified cfDNA was adenylate 3′ ends after end repair, and
adapters with dual unique molecule identifiers were ligated to
both ends of DNA fragments. Target size DNA fragments were
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Figure 2. Performance of MSIsensor-ct. A) The comparison involved 636 simulated sequencing data with ctDNA content ranging from 0.1% to 0.4% and 39 real plasma

cfDNA sequencing samples with various ctDNA contents. B) Robustness test focused on simulation data sets 2–5. Different numbers of site-classifiers (x-axis) were

randomly chosen from 1476 models, and each random draw was conducted five times.

selected by magnetic beads (Beckman) and then amplified by 10-
cycle PCR using index labeled primers. After beads-based purifi-
cation, quantification and validation, equimolar concentrations
of each library with different indices were pooled into a set and
hybridized at 65 ◦C; enrichment of coding exons and flanking
intronic regions were performed using a custom-designed 599-
Gene Panel (ChosenMed Technology); pools were then washed,
PCR enriched and purified. The validated DNA libraries were
sequenced on NovaSeq 6000 (Illumina) according to the manu-
facturer’s paired-end (2 × 150 bp) instructions. Read pairs were
aligned to the human reference genome (hg19, downloaded from
the UCSC Genome Browser) by BWA-MEM (version 0.7.11) [40].
SAMtools (version 1.3) [41] was used to generate chromoso-
mal coordinate-sorted BAM files. The reads were realigned and
quality recalibrated by Genome Analysis Toolkit (GATK, version
3.6) [42]. The maximum allelic fraction (maxAF) obtained from
VarDict (version 11.5.1) [43] was adopted to estimate the ctDNA
content.

Results and discussion
On the basis of MSIsensor, a well-established gradient-boosting
algorithm, XGBoost, was implemented to explore the distribu-
tion patterns of 25,861 MSI site-sets, from which 1476 binary
classifiers were obtained to assess the stability of sites accord-
ing to their allele frequency distributions in cfDNA sequencing

data. In addition, the MSI status of each sample was quanti-
fied by MSIscore reported by MSIsensor-ct and the threshold
determined manually.

MSIsensor-ct accurately detected MSI status using cfDNA
sequencing data with extraordinary low ctDNA concentrations
in the range of 0.1%–0.4%. Comparison with other MSI callers on
the also showed the outperformance of MSIsensor-ct. Further
experiments were also conducted to illustrate the robustness
and LOD of MSIsensor-ct at a more comprehensive level.

Performance on extra low ctDNA concentration data

We simulated 636 cfDNA sequencing data (Simulated datasets
2–5, Table 1) with extra low ctDNA content (0.1%–0.4%) to exam-
ine the performance of MSIsensor-ct, simultaneously, compared
with other tumor-only or cfDNA-only MSI callers.

The result showed that MSIsensor-ct correctly distinguished
128 MSI and 508 MSS instances at an average sequencing depth
of 10,000× with ctDNA content varying from 0.1% to 0.4%, which
outperformed other algorithms. Moreover, for the 39 cfDNA sam-
ples across different ctDNA content, the AUC of MSIsensor-ct
was uniformly 1.0, whereas none of the other tools surpassed
0.6 (Figure 2.A). Our results showed that while both mSINGS and
MSIsensor-pro are validated MSI calling algorithms for tumor-
only samples, there is still room for improvement in cfDNA-only
samples.
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Figure 3. Threshold for MSI in MSIsensor-ct. In the robustness test, we randomly extracted 5, 10, 20, 30, 50, 100, 200, and 300 site-classifiers to explore the compatibility

of MSIsensor-ct further. Five experiments were performed for each test. MSI calling accuracy with the threshold of 20% ranged between 88.95–100%, 90.69–100%,

93.21–100% and 92.55–100%, when ctDNA concentrations were 0.1%, 0.2%, 0.3 and 0.4% respectively.

Compatibility and a potential stable threshold for
panels

The difference in microsatellites covered by diverse panels
makes the compatibility of MSI callers a critical issue. In this
regard, several tumor-only or cfDNA-only algorithms require
cohort-specific retraining, which involves massive preliminary
work: 1) the panel has already served sufficient patients with
known MSI/MSS statuses; 2) tumor and normal (cfDNA and
WBC) paired sequencing data are always required, while normal
samples are sometimes difficult to obtain; 3) large crowd
cohort analysis is necessary for determining the panel-specific
threshold.

We verified the compatibility of MSIsensor-ct by robustness
test on simulated datasets 2–5 (Table 1). Our results revealed that
the AUCs of any random 10 site-classifiers attained up to 0.96
and reached 0.99 for 30 site-classifiers (Figure 2.B). In addition,
the selected 1476 sites cover 84 MSI sites in the ChosenMed
targeted 599-gene NGS panel.

Furthermore, by comparing accuracies obtained at different
MSI thresholds (Supplementary Table 3), we identified a sta-
ble threshold, MSIscore = 20%, to distinguish MSI versus MSS
samples (Figure 3).

The LOD of MSIsensor-ct

Sequencing depth and ctDNA concentration simultaneously
affect the accuracy of MSI callers. Therefore, limitation test was
conducted to clarify the LOD of MSIsensor-ct.

The results demonstrated that, under the stable threshold of
MSIscore = 20%, MSIsensor-ct accurately detected MSI status in
cfDNA samples of 0.05% ctDNA content with sequencing depth
over 3000× or ctDNA content over 0.2% with at least 1000×
sequencing depth (Figure 4).

Execution time and memory usage

Practical considerations of performance, including execution
time and maximum memory usage, are always relevant to
software [44, 45]. Here, 39 samples were employed to evaluate the
computational performance of MSIsensor-ct. On average, each
sample required 16 seconds of computing time, with a maximum
memory footprint of 2 Mb on a Linux machine running Centos
6.4 with Intel(R) Xeon(R) CPU E5–2680 v2 @ 2.80GHz.

Conclusion
Currently, increasing evidence supports that the MSI phenotype
in ctDNA is highly consistent with that in tumor tissues. Here,
we present MSIsensor-ct with 1476 site-classifiers obtained
by a gradient boost machine learning protocol based on the
microsatellites’ allele frequency distributions in solid tumor
sequencing data.

For MSI detection in cfDNA samples, MSIsensor-ct attained
100% sensitivity and specificity in 39 samples and 17 simulation
datasets (#2–4, #7–9, and #11–20). Furthermore, MSIsensor-ct
accurately discriminated MSI status on data with ctDNA content
at the level of 0.05% and sequencing depth over 3000×, which still
poses a challenge for MSI callers, in general.

Different from other MSI callers that require a baseline con-
struction process, MSIsensor-ct only requires 10 sites in a panel
that covered with the 1476 site classifiers for MSI detection with
AUC attained up to 0.96. The 1476 classifiable sites provided
powerful guidance for the customization of sequencing panels
on MSI detection. Moreover, there is a stable MSI/MSS division
threshold for MSIsensor-ct, which frees the user from massive
preliminary work.

In summary, MSIsensor-ct efficiently detects MSI status in
cfDNA sequencing samples, and its robustness allows its high
compatibility with different sequencing panels. We believe that
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Figure 4. The LOD of MSIsensor-ct limitation. The evaluation involves 16 simulated datasets (#2, #6–20) with different sequencing depths and ctDNA content. The

sensitivity and specificity were calculated at the MSIscore threshold of 20%. The sensitivity of all experiments was 100%. The white text shown inside each point refers

to the exact value of specificity.

the application of MSIsensor-ct in liquid biopsies or tumor early
screening associated with the MSI phenotype will yield substan-
tial clinical benefits.

Supplementary Data
Supplementary materials are available online at Briefings in Bioin-
formatics.
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Key Points
• MSIsensor-ct exhibits high sensitivity and speci-

ficity in MSI calling. Our results have demonstrated
MSIsensor-ct’s MSI calling ability with 100% sensitivity
and specificity on 39 plasma cfDNA samples and 17
simulation datasets (#2–4, #7–9, and #11–20).

• MSIsensor-ct possesses extra low detection limits.
According to our results, MSIsensor-ct accurately
detected the MSI status for a cfDNA sequencing sam-
ple with sequencing depth over 3000× and ctDNA
content at the level of 0.05%.

• MSIsensor-ct is highly compatible with panels with
different microsatellites. The robustness test revealed
that any random 10 microsatellites overlapped with
1476 site-classifiers, the AUC for MSI calling could
be up to 0.96. In addition, no matter how many site-
classifiers were covered, MSIscore = 20% is a stable
threshold to distinguish MSI versus MSS samples.

• MSIsensor-ct is a user-friendly tool for installing and
operating. MSIsensor-ct requires only BAM files as
input and is free from additional baseline establish-
ment, and can be flexibly integrated into the routine
next generation sequencing analysis.
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