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Metabolite associations with insulin resistance were studied in
7,098 young Finns (age 31 6 3 years; 52% women) to elucidate
underlying metabolic pathways. Insulin resistance was assessed
by the homeostasis model (HOMA-IR) and circulating metabo-
lites quantified by high-throughput nuclear magnetic resonance
spectroscopy in two population-based cohorts. Associations were
analyzed using regression models adjusted for age, waist, and
standard lipids. Branched-chain and aromatic amino acids,
gluconeogenesis intermediates, ketone bodies, and fatty acid
composition and saturation were associated with HOMA-IR
(P , 0.0005 for 20 metabolite measures). Leu, Ile, Val, and Tyr
displayed sex- and obesity-dependent interactions, with associa-
tions being significant for women only if they were abdominally
obese. Origins of fasting metabolite levels were studied with di-
etary and physical activity data. Here, protein energy intake was
associated with Val, Phe, Tyr, and Gln but not insulin resistance
index. We further tested if 12 genetic variants regulating the
metabolites also contributed to insulin resistance. The genetic
determinants of metabolite levels were not associated with
HOMA-IR, with the exception of a variant in GCKR associated
with 12 metabolites, including amino acids (P , 0.0005). None-
theless, metabolic signatures extending beyond obesity and
lipid abnormalities reflected the degree of insulin resistance
evidenced in young, normoglycemic adults with sex-specific
fingerprints. Diabetes 61:1372–1380, 2012

D
evelopment of type 2 diabetes is commonly
preceded by insulin resistance manifested by
increased insulin release to maintain glucose
homeostasis (1). Already in young adulthood,

impaired insulin sensitivity is associated with increased risk
for diabetes (2). In addition, insulin resistance in young
adults is often accompanied by a dyslipidemic profile (3,4).
Prevailing theories for the pathogenesis of insulin resistance
focus on lipid-mediated mechanisms (5); however, the eti-
ology also involves, for example, obesity-induced metabolic
by-products and inflammatory signaling (6). The metabolic
abnormalities related to insulin resistance are to some
extent reflected in the circulating levels of metabolites,
and detailed metabolic profiling is therefore increasingly
used to gain insight into the complex pathophysiology of
diabetes (7).

Metabolic profiling studies conducted in middle-aged and
older individuals have demonstrated metabolic signatures
of insulin action in obese individuals (8,9). Branched-chain
(Leu, Ile, and Val) and aromatic (Phe and Tyr) amino acids
were recently associated with the risk for future diabetes in
the Framingham Heart Study (10). The underlying mecha-
nisms remain to be established, in particular whether the
amino acids are contributing to the disease development in
a causal manner. In the same study population, compre-
hensive lipid profiling demonstrated that fatty acids of
shorter carbon chain length and lower double bond content
were associated with insulin resistance index and an in-
creased risk of diabetes (11). These results indicate that
metabolic profiling can inform about the etiology of insulin
resistance and the risk for development of diabetes.

Lifestyle and genetic variation affect insulin sensitivity
as well as contribute to determining metabolite concentra-
tions during fasting. Environmental determinants of meta-
bolite levels are increasingly being investigated (12,13), and
the genetic architecture of metabolites is gradually being
uncovered (14,15); however, the influence of metabolites
on insulin resistance remains incompletely understood.
To identify putative metabolic pathways in the pathophys-
iology of insulin resistance, we applied nuclear magnetic
resonance (NMR) spectroscopy to quantify circulating
metabolites in population-based cohorts of young adults.
The objectives were 1) to investigate metabolites associated
with insulin resistance index independent of established
risk factors, 2) to assess lifestyle contributions to fasting
metabolite levels from diet and physical activity, and 3)
to elucidate the relationship between metabolites and
insulin resistance using novel genetic variants affecting the
metabolite levels.
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RESEARCH DESIGN AND METHODS

Study population. The study comprised two population-based Finnish
cohorts, the Northern Finland Birth Cohort 1966 (NFBC) (16) and the Car-
diovascular Risk in Young Finns Study (YFS) (17). Out of 7,718 individuals
with metabolite data, 170 individuals missing glucose or insulin measure-
ments or with concentrations outside the boundaries of the homeostasis
model assessment of insulin resistance (HOMA-IR) index were excluded. In
addition, individuals diagnosed with type 1 or type 2 diabetes (n = 56), those
taking lipid medication (n = 7) or antihypertensive medication (n = 150), and
pregnant women (n = 237) were removed, leaving 7,098 individuals for
analyses. Participants gave written informed consent, and the study proto-
cols were approved by the local ethics committees.

The NFBC was initiated to study factors affecting preterm birth and sub-
sequent morbidity (http://kelo.oulu.fi/NFBC/). Data collection included clinical
examination and 12-h fasting blood sampling at age 31 for 6,007 individuals, of
which 5,471 had a fasting metabolite profile measured. Data from this time
point were used for the current study. Attendees in the 31-year field study
were representative of the original birth cohort. Plasma glucose concentrations
were measured by glucose dehydrogenase (Granutest 250; Diagnostica Merck),
and insulin concentrations were measured by radioimmunoassay (Pharmacia
Diagnostics). Physical activity was assessed for 4,538 individuals by the meta-
bolic equivalent of task (MET) index based on questionnaire data on frequency,
intensity, and duration of physical activity as described previously (18).

The YFS was designed to study associations of childhood risk factors to
cardiovascular disease in adulthood (http://med.utu.fi/cardio/youngfinnsstudy/).
The baseline study in 1980 included 3,596 children aged 3 to 18. Data used in the
current study are from the follow-up in 2001 that included 2,247 individuals with
a metabolite profile, and these were representative of the baseline cohort (17).
Blood samples were drawn after a 12-h fast. Plasma glucose concentrations
were analyzed enzymatically (Olympus AU400), and insulin concentrations
measured by microparticle enzyme immunoassay kit (Abbott Laboratories).
Dietary information on food consumption was collected for 911 individuals
from 48-h recalls by dietitian interviewers. Information on the types and
amounts of foods and beverages consumed by the subjects in the 2 days prior
to the interview was recorded and converted to intakes of energy using the
National Food Composition Database (19). Physical activity was calculated for
1,685 individuals by the MET index from a questionnaire (20).
Metabolite quantification. A high-throughput NMR platform operating at
500 MHz was used for serummetabolite quantification (21). Proton NMR spectra
were recorded from native serum as well as lipid extracts to enable quantifica-
tion of various amino acids, glycolysis intermediates, and fatty acid composition
and degree of saturation. Metabolites tested for association with HOMA-IR are
listed in Supplementary Table 1. Details of the NMR experimentation and me-
tabolite quantification have been described previously (21–23).
Genotyping. Genotyping of NFBC (n = 4,537) and YFS (n = 1,867) were
conducted on HumanHap 370k and 670k Illumina platforms, respectively. We
studied 12 single nucleotide polymorphisms (SNPs) recently associated with
circulating amino acids and fatty acid composition measures in a genome-wide
association study (15). Variants not directly genotyped were imputed based on
HapMap 3 and 1000 Genomes imputation references (National Center for
Biotechnology Information Build 36) as described previously (15). Descriptive
data for the 12 tested variants are given in Supplementary Table 2.
Statistical analyses. Insulin resistance was estimated with the HOMA-IR
index using the HOMA2 calculator (www.dtu.ox.ac.uk/homacalculator/; accessed
June 2011). Metabolites as well as HOMA-IR were log transformed prior to
analyses. Clinical characteristics for men and women were compared using
t tests.
Metabolite associations with insulin resistance. For each metabolite,
a multiple linear regression model was fitted with HOMA-IR as outcome and the
metabolite as explanatory variable with age, waist circumference, triglycerides,
total cholesterol, and HDL cholesterol as covariates. Several associations
exhibited metabolite 3 sex interaction, and analyses were therefore stratified
by sex. Results were analyzed separately for the two cohorts and combined
using inverse variance–weighted meta-analysis assuming fixed effects.
Metabolites were denoted significant if the meta-analyzed P value was,0.0005
to account for multiple testing. To ensure replication, it was furthermore
a criterion that each metabolite was nominally significant (P , 0.05) in both
cohorts. To ease comparison of effects, association magnitudes are reported
in units of 1 SD HOMA-IR per 1-SD increase in each metabolite. The variance
of HOMA-IR explained by the metabolites was estimated from the global R2 by
including all significant metabolites (Table 2) along with age, waist, total and
HDL cholesterol, triglycerides, and MET index in the model. The additional
variance explained was the increase in R2 over the variance explained by
established risk factors alone. Metabolite 3 waist interactions were assessed
by ANCOVA to test for differences in slopes across tertiles of waist circum-
ference. To address the number of independent metabolites, a backward

stepwise regression model with all 20 significant metabolites was fitted with
HOMA-IR as outcome. Essentially identical results were obtained throughout
with additional adjustment for all components defining metabolic syndrome
and further adjustment for BMI, weight and height, and smoking. Similar
results were found when limiting analyses to individuals with fasting glucose
,5.6 mmol/L. All findings were essentially identical when replacing HOMA-IR
for fasting plasma insulin as outcome in the models.
Dietary and physical activity associations with metabolites. Associa-
tions of relative energy intake measures and MET index with the metabolites
were assessed using linear regression models adjusted for age and sex.
Associations were further tested conditioned on HOMA-IR. Physical activity
data were meta-analyzed for the two cohorts (n = 6,223), whereas dietary data
were available only for a subset of the YFS cohort (n = 911).
Associations of genetic variants regulating metabolite levels with
insulin resistance. A total of 12 preselected SNPs affecting the metabolites
were assessed for association with insulin resistance index. The SNPs were
tested as predictors of HOMA-IR in linear regression models adjusted for age,
sex, waist, and 10 principal components accounting for population structure.
The 12 SNPs were further analyzed for association with the metabolites. Genetic
associations were meta-analyzed using inverse variance weighting (n = 6,344).

RESULTS

Clinical characteristics. The study comprised 7,098
young adults (mean age 31 years, range 24–39). Clinical
characteristics of the population are shown in Table 1.
The study population represents metabolically healthy
individuals from the general Finnish population; only
11% had impaired fasting glucose ($5.6 mmol/L), and
the 80th percentile of HOMA-IR index was 1.3, corre-
sponding to 77% HOMA insulin sensitivity (24).
Metabolite associations with HOMA-IR. To elucidate
metabolic pathways characterizing or contributing to in-
sulin resistance, 39 circulating metabolites and lipid
measures from high-throughput profiling were studied. A
list of analyzed metabolites is given in Supplementary
Table 1. In total, 20 metabolite measures were found to be
associated with HOMA-IR at P , 0.0005 for either men or
women and nominally significant in both cohorts as listed
in Table 2. The metabolites include amino acids, inter-
mediates of glycolysis and gluconeogenesis, and fatty acid
composition and saturation measures. Gln and ketone
bodies (3-hydroxybutyrate and acetoacetate) exhibited
inverse associations, as did the average number of double
bonds per fatty acid chain. Branched-chain amino acids,
Tyr, Ala, and ketone bodies displayed sex-dependent
effects (P , 0.001 for metabolite 3 sex interaction) with
stronger associations observed for men. Furthermore, as-
sociation magnitudes (e.g., b = 0.24 SD HOMA-IR per 1 SD
Ala concentration, corresponding to 1.0 IU/L higher insulin

TABLE 1
Characteristics of the study population

Men
(n = 3,433)

Women
(n = 3,665)

Age (years) 31.2 (2.6) 31.2 (2.8)
Waist circumference (cm) 89 (10) 79 (12)
Systolic blood pressure (mmHg) 128 (13) 118 (13)
Total cholesterol (mmol/L) 5.2 (1.0) 4.9 (0.9)
HDL cholesterol (mmol/L) 1.4 (0.3) 1.6 (0.4)
Triglycerides (mmol/L) 1.1 [0.8–1.7] 0.9 [0.7–1.2]
Plasma glucose (mmol/L) 5.1 [4.9–5.4] 4.9 [4.6–5.1]
Insulin (IU/L) 7.5 [6.0–9.7] 7.0 [5.7–9.0]
HOMA-IR 0.98 [0.78–1.3] 0.92 [0.73–1.2]

Data are mean (SD) and median [interquartile range]. P , 0.0005 for
all comparisons of men and women with two-tailed t test except for
age (P = 0.54).
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per 1 SD Ala) in men were similar for amino acids and total
fatty acids, whereas in women, fatty acid associations
tended to be stronger. The metabolites explained 44 and
38% of variance in HOMA-IR for men and women, re-
spectively, in combination with established risk factors
(age, waist, standard lipids, and physical activity), and
added an additional respective 12 and 8% to the variance
explained by established risk factors alone. In a stepwise
model, most amino acids and gluconeogenesis intermediates

remained significant, while several fatty acid composition
measures were not independently associated with HOMA-IR
(Supplementary Table 3).

Both insulin resistance and circulating metabolite levels
are linked with abdominal obesity (1,6,7). Therefore, we
assessed whether the metabolite associations were con-
sistent across tertiles of waist circumference. Results for
amino acids are illustrated in Fig. 1; for the remaining
metabolites, results are shown in Supplementary Fig. 1.

TABLE 2
Associations of circulating metabolites with HOMA-IR

Metabolite

Men Women

Psex interaction

Molecular link to
insulin resistanceb (SE) P b (SE) P

Branched-chain
amino acids

Essential amino acids;
phosphorylation of insulin
receptor substrate-1 and the
mammalian target of rapamycin
complex (8,10,27,31–33)

Leu 0.14 (0.015) 9 3 10221 0.082 (0.015) 5 3 1028 6 3 1024

Ile 0.22 (0.019) 2 3 10231 0.11 (0.017) 5 3 10212 0.006
Val 0.14 (0.015) 4 3 10221 0.097 (0.015) 5 3 10211 0.001

Aromatic amino acids Precursors for neurotransmitters;
thyroid function (10,27,28)

Phe 0.17 (0.017) 5 3 10224 0.18 (0.016) 5 3 10229 0.28
Tyr 0.21 (0.016) 1 3 10237 0.044 (0.015) 0.003† 2 3 10214

Glycolysis and
gluconeogenesis
intermediates

Gluconeogenesis and glycolysis;
nitric oxide; transamination
(28,43,44)

Ala 0.24 (0.016) 9 3 10256 0.16 (0.015) 1 3 10224 6 3 1025

Gln 20.082 (0.017) 1 3 1026
† 20.11 (0.015) 2 3 10213 0.86

Lactate 0.17 (0.016) 7 3 10227 0.13 (0.014) 2 3 10220 0.24
Pyruvate 0.21 (0.015) 2 3 10244 0.21 (0.014) 4 3 10250 0.97

Ketone bodies Ketogenesis; fatty acid
oxidation (45,46)

Acetoacetate 20.17 (0.014) 4 3 10232 20.10 (0.014) 1 3 10213 1 3 1024

3-hydroxybutyrate 20.13 (0.015) 2 3 10218
† 20.070 (0.014) 6 3 1027 6 3 1025

Glycoproteins Low-grade inflammation (47)
a1-acid glycoprotein 0.14 (0.02) 7 3 10213 0.15 (0.018) 8 3 10218 0.66

Fatty acids Energy storage; lipid transport;
precursors of prostaglandins and
endocannabinoids; free fatty
acid–mediated insulin resistance;
impairment of fatty acid
oxidation (5,6,7)

Total 0.24 (0.040) 5 3 1029 0.35 (0.036) 2 3 10221 0.23
n-3 0.025 (0.016) 0.12† 0.057 (0.016) 4 3 1024 0.16
n-6 and n-7 0.092 (0.036) 0.01† 0.22 (0.036) 7 3 10210 0.08
n-9 and saturated 0.19 (0.032) 5 3 1029 0.25 (0.029) 2 3 10217 0.06

Phospholipids Membrane and lipoprotein
composition; cellular
signaling (48)

Phosphocholines 0.17 (0.039) 2 3 1025 0.17 (0.038) 8 3 1026
† 0.84

Phosphoglycerides 0.15 (0.034) 5 3 1026 0.15 (0.034) 7 3 1026
† 0.92

Fatty acid saturation
measures

Fatty acid saturation and chain
length (11)

Average number of
methylene groups
per double bond 0.11 (0.018) 1 3 1029 0.073 (0.016) 7 3 1026

† 0.60
Average number of
double bonds per
fatty acid chain 20.096 (0.018) 1 3 1027 20.078 (0.016) 2 3 1026

† 0.72

b-Regression coefficients (SE) are in units of 1 SD HOMA-IR per 1-SD change in metabolite concentration. The associations were adjusted for
age, waist circumference, total cholesterol, HDL cholesterol, and triglycerides. Associations were meta-analyzed for the NFBC and the YFS
(n = 7,098). Metabolites were denoted significant at P , 0.0005. †Nominally significant in one of the cohorts only.
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These analyses revealed metabolite 3 waist interaction for
most of the metabolites (14 and 12 associations with P ,
0.05 for metabolite 3 waist tertile for men and women,
respectively), with stronger associations observed for
more abdominally obese individuals. It is notable that for
women, associations of branched-chain amino acids and
Tyr with HOMA-IR were significant only in the upper ter-
tile of waist circumference. In contrast, men displayed
associations for branched-chain and aromatic amino acids
throughout the range of waist circumference; however, the
sex interactions persisted even for obese individuals (data
not shown). Correspondingly, Gln was inversely associated
with HOMA-IR for abdominally obese men only, whereas
the association was present across tertiles of waist cir-
cumference for women.
Dietary composition, physical activity, and metabolites.
Associations of relative dietary energy intake and physical
activity (MET index) with metabolites linked with HOMA-IR
are shown in Fig. 2. Dietary composition was associated
with several fasting metabolite levels but not with insulin
resistance index. Protein energy intake per total energy

intake was directly associated with Val, Phe, and Tyr and
inversely associated with Gln. Relative protein as well as fat
energy intake were directly associated with less fatty acid
saturation. Dietary associations with the metabolites were
essentially unaltered when conditioned for HOMA-IR (data
not shown). In contrast to dietary measures, physical ac-
tivity was inversely associated with insulin resistance index
as well as several metabolites, including Ile, Phe, Tyr, a1-acid
glycoprotein, total fatty acids, and fatty acid saturation
measures. The physical activity associations with metabolites
were of smaller magnitude than with HOMA-IR and were
attenuated or rendered nonsignificant upon conditioning on
HOMA-IR.
Genetic variants, metabolites, and insulin resistance.
To gain insight into the direction of effect underlying the
metabolite associations, we tested if genetic variants regu-
lating the metabolite levels were also modifying HOMA-IR.
Associations of the SNPs with HOMA-IR are shown in
Fig. 3A. None of the SNPs affecting the metabolites were
associated with HOMA-IR (P . 0.05), with the exception
of a variant in GCKR previously associated with insulin

FIG. 1. Associations of amino acids with HOMA-IR across tertiles of waist circumference for men and women. Linear regression and ANCOVA
models were adjusted for age and waist circumference, total cholesterol, HDL cholesterol, and triglycerides. Association magnitudes are in units of
1-SD increased HOMA-IR per 1-SD increase in amino acid level, and error bars indicate SE. Associations were meta-analyzed for the two cohorts
(n = 7,098). *P < 0.05; ◆P < 0.0005 for association of amino acid with HOMA-IR. P < 0.05; ⊗P < 0.0005 for amino acid 3 waist interaction,
indicating different slopes across tertiles of waist circumference.
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resistance and other metabolic traits (15,25,26). The lack
of associations with HOMA-IR was despite the fact that
the analyzed genetic variants were significant determinants
of the metabolites (Fig. 3B). The SNP rs1260326 in GCKR
was associated with insulin resistance index (P = 0.001)

and additionally associated with 12 of the 20 metabo-
lites (P , 0.0005), as shown in Fig. 3C. Most pronounced
associations were found for Ile, Ala, a1-acid glycoprotein,
total fatty acids, and n-9 and saturated fatty acids (P ,
1 3 1027 for all). Of note, the insulin resistance–lowering

FIG. 2. Associations of dietary composition and physical activity with circulating metabolites. All associations were adjusted for age and sex.
Physical activity associations are shown with additional adjustment for HOMA-IR as well. Association magnitudes are in units of 1-SD change in
metabolite concentrations per 1-SD change in lifestyle measure. Error bars indicate 95% CIs and numbers indicate P values of association. Protein,
fat, and carbohydrate energy intake is per total energy intake. Dietary energy intake was derived from 48-h dietary interviews (n = 911), and
physical activity was quantified as MET index based on questionnaires (n = 6,223). Av., average.
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FIG. 3. Associations of genetic variants regulating metabolite levels with HOMA-IR (A) and the strongest circulating metabolite measure (B).
Associations for rs1260326 in GCKR with the metabolites before (C) and after (D) adjustment for triglycerides. Error bars indicate 95% CIs and
numbers indicate P values of association. All associations were adjusted for sex, age, waist, and population structure and meta-analyzed for the
two cohorts (n = 6,343). Association magnitudes are in units of 1 SD HOMA-IR or metabolite concentration per allele copy. Av., average.
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allele was associated with the metabolite levels in the
opposite direction to those observed between the me-
tabolite levels and HOMA-IR. The associations were es-
sentially unaltered when adjusting for HOMA-IR (data
not shown); however, upon conditioning on triglycerides,
they were largely attenuated, while the association with
HOMA-IR was enhanced (Fig. 3D).

DISCUSSION

This study demonstrates that the systemic metabolite
profile strongly reflects the degree of insulin resistance
evidenced in young, apparently healthy adults. The meta-
bolic signatures of insulin resistance were different for
men and women and modulated by obesity. Analyses of
genetic and lifestyle determinants of the metabolite profile
did not lend support to an etiological role of the metabo-
lites in the pathogenesis of insulin resistance; however, the
observed pleiotropy for insulin resistance, lipids, and
amino acids for a variant in GCKR illustrates how altered
glucose sensing may widely affect the metabolite profile.

High-throughput metabolic profiling identified 20 me-
tabolite measures associated with HOMA-IR. A variety of
metabolites comprising amino acids, glycolysis inter-
mediates, ketone bodies, and lipid constituents displayed
pronounced associations independent of the established
dyslipidemic pattern of insulin resistance (3,4). These
findings provide hypotheses implicating known and novel
metabolites as markers of early stage insulin resistance.
Potential mechanisms underpinning the associations are
given in Table 2. The prominent imprint of insulin resistance
on the metabolite profile substantiates and extends findings
from smaller profiling studies (8,9,27,28) by providing quan-
titative information on individual metabolites in population-
based cohorts of young adults. The 12 and 8% of additional
variance in HOMA-IR explained by the metabolites for men
and women, respectively, emphasizes metabolic signatures
beyond obesity and lipid abnormalities and further con-
trasts findings from genome-wide association studies where
genetic variants have explained only a minor fraction of the
variance in insulin resistance (26).

Men and women displayed significant differences in their
metabolite profiles despite a similar range of HOMA-IR in
this study (Supplementary Table 1 and Table 1). While sex
differences in metabolite concentrations are well known
(29), this study revealed novel sex-dependent associations
for amino acids and ketone bodies with insulin resistance
(Table 2). For instance, Tyr displayed five times higher
magnitude of association for men, whereas Phe did not
exhibit different effects for men and women. This could
indicate involvement of sex hormones in the regulation
of these precursors of thyroid hormones and neuro-
transmitters. The associations were also modified by
obesity, with Tyr and branched-chain amino acids being
significant for women only if they were abdominally over-
weight (Fig. 1). Sex differences in metabolite associations
with insulin action have previously been observed in a small
study with stronger associations of a cluster of large neutral
amino acids for overweight men (9). Differences in adipose
tissue composition and adipokine levels could underpin
these observations; however, the molecular mechanisms
remain to be investigated. Although the prevalence of di-
abetes is similar among men and women, there are differ-
ences in the development of insulin resistance, with young
men being more insulin resistant after puberty in conjunc-
tion with an adverse lipid profile (3,4). In addition, some

studies suggest greater protein turnover rates and lesser
insulin sensitivity of protein anabolism for women (30).
Several studies on amino acids in relation to insulin re-
sistance have been conducted for men only (28,31,32);
however, our results indicate that future studies should
account for sex- and obesity-specific differences.

Assessment of lifestyle effectors and genetic determi-
nants of metabolite levels may illuminate the etiology un-
derpinning the metabolic signatures of insulin resistance.
Both diet and physical activity were associated with the
fasting metabolite profiles (Fig. 2). None of the dietary
measures were linked with insulin resistance index; how-
ever, the elevation of several amino acids by increased
protein energy intake could potentially be detrimental for
insulin sensitivity, as suggested by several studies
(8,10,31–33). On the other hand, high protein intake was
also associated with an increase in n-3 fatty acids and
a higher number of double bonds per fatty acid, thus
pointing to a beneficial role of a protein-rich diet. Lipids of
high double bond content were recently linked with de-
creased risk for incidence of diabetes (11), in accordance
with the inverse association between average number of
double bonds per fatty acid chain and insulin resistance
index found in this study.

Physical activity was inversely associated with insulin
resistance index as well as lipids and amino acids; how-
ever, the associations were less pronounced for the
metabolites. Furthermore, the associations diminished when
conditioning on HOMA-IR, indicating that the metabolite
associations are not independent of insulin resistance. Be-
cause physical activity is known to improve insulin sensitivity
(34), these results could indicate that physical activity is pri-
marily affecting insulin resistance and the associations ob-
served with the metabolite profile could be secondary hereto.

The question whether amino acids contribute to the
pathogenesis of insulin resistance and type 2 diabetes in
a functional manner remains unsettled (35). Experimental
studies suggest that branched-chain amino acids may
promote insulin resistance (8,31), yet direct evidence
in humans is lacking. Dietary composition is likely to
influence both metabolite levels and the development of
insulin resistance in a causal manner (8,33), yet we did not
find concomitant associations with dietary measures and
HOMA-IR despite the observation that protein energy in-
take was associated with fasting amino acid levels. These
results, therefore, do not suggest an etiological role of amino
acids in the disease pathogenesis. The cross-sectional di-
etary associations, however, may potentially be confounded
by other environmental factors. To circumvent such bias,
we tested genetic variants determining metabolite levels.
Such analyses may serve to elucidate direction of effect,
since insulin resistance can be affected by genetic variants,
whereas the genes are not influenced by insulin resistance
(36). We found that 11 out of 12 genetic variants, including 6
regulating branched-chain and aromatic amino acids, were
not associated with HOMA-IR (Fig. 3A). Thus, these
analyses on the direction of effect do not lend support to
the notion of a causal role of amino acids in the de-
velopment of insulin resistance. On the other hand, the
modest effects of each genetic variant and the limited
range of HOMA-IR in the young study population may
partly account for the lack of associations, and further
studies are required to determine the etiological roles of
amino acids in the pathogenesis.

A single genetic variant, rs1260326 in the glucokinase
regulatory protein gene GCKR, was associated with insulin
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resistance index. This missense variant has previously
been linked with insulin resistance, glycemia, and sev-
eral other metabolic traits and, recently, amino acids
(15,25,26,37,38). The insulin resistance–lowering allele
was associated with elevated metabolite levels, in contrast
to the direct correlations observed between metabolites
and HOMA-IR (Fig. 3C). The pertinent variant has been
suggested to mimic the consequences of glucokinase
overexpression leading to increased glycolytic flux
(25,39,40). Associations with Ala, lactate, pyruvate, and
branched-chain amino acids suggest effects on the glucose-
alanine cycle as well (38). Because the metabolite associations
were largely attenuated upon adjustment for triglycerides
(Fig. 3D), we propose a shared origin underlying the
associations for amino acids and lipids with GCKR. The
pleiotropy observed for GCKR indicates how perturba-
tions in the glucose sensory mechanism may subsequently
affect lipid and amino acid levels. Altered glucose utiliza-
tion could also underlie the metabolite associations with
insulin resistance established in this study, and the genetic
analyses are therefore compatible with elevated amino
acid and lipid levels being predominantly secondary rather
than direct contributors to the development of insulin
resistance.

The large population studied rendered direct measure-
ment of insulin sensitivity infeasible, and insulin resistance
was therefore approximated by the HOMA index (24).
While the HOMA model largely reflects hepatic insulin
resistance, studies in Finnish populations show that fasting
measures are adequate surrogates of clamp test–derived
insulin resistance (41). The limited sensitivity of high-
throughput NMR confines quantification to highly abundant
metabolites, and the wider coverage achieved by mass
spectrometry, in particular for molecular lipid species,
holds promise to provide further insight into the patho-
physiology of insulin resistance (7,11,42). Our study was
conducted in a homogenous population, yet the results
confirm previous smaller studies in older populations
including Asian men (27). Strengths of the study include
metabolic profiling in population-based cohorts of
young adults and the combination of additional pheno-
type and genotype data to elucidate origins of the
associations.

The diversity of metabolic associations with HOMA-IR
highlights metabolic signatures of insulin resistance be-
yond the characteristics of metabolic syndrome and sug-
gests a strong relation between insulin resistance and the
systemic metabolite profile already evidenced in early
adulthood. A combination of amino acids, lipids, and
intermediates of glycolysis formed sex-specific imprints of
insulin resistance on the metabolite profile that warrant
attention in future physiological studies. Genetic evidence
did not provide support for a functional role of the
metabolites in the pathogenesis of insulin resistance, yet
irrespective of cause or effect, even modest insulin re-
sistance was associated with an adverse cardiometabolic
profile. Understanding the relation between insulin re-
sistance and the systemic metabolite profile in young,
normoglycemic adults may help to promote lifestyle habits
for prevention of insulin resistance prior to development
of hyperglycemia and overt type 2 diabetes.
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