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Abstract 
Social behavior in cattle can be measured by how often and for how long they interact with each other. This information can be used to 
guide management decisions, identify sick animals, or model the spread of diseases. However, visual observation of proximity events is time-
demanding and challenging, especially for rangeland cattle spread over a large area. Although proximity loggers can potentially overcome these 
challenges remotely, it is unknown how accurate these devices are in recording proximity events among beef bulls. The objectives of this study 
were: 1) to determine the accuracy of Lotek LiteTrack LR collars with built-in proximity loggers to identify proximity events among bulls and 2) 
to determine the accuracy of Lotek LiteTrack LR collars to identify proximity events between bulls wearing collars and bulls wearing the Lotek 
V7E 154D ear tag proximity transmitter. Collars were deployed in 12 bulls in 2021 (Experiment 1), and 10 bulls (5 collars and 5 ear tags) in 2023 
(Experiment 2). Videos were recorded of bull behavior in both years to compare proximity observed to proximity recorded by the loggers. 
Sensitivity (Se), specificity (Sp), precision (Pr), and accuracy (Ac) were calculated after computing true positives (TP), false positives (FP), false 
negatives (FN), and true negatives (TN). The interquartile range method was used to detect outliers. As collars work as both a transmitter and 
receiver in Exp. 1, reciprocity was assessed by the Concordance Correlation Coefficient (CCC) as an indirect measure of reliability. In Exp. 1, 
most observations were TN (95.13%), followed by FN (4.11%), TP (0.70%), and FP (0.06%). A high Sp (median = 1.0; 95% CI = 1.0 to 1.0), Pr 
(1.00; 0.72 to 1.0), and Ac (0.96; 0.95 to 0.97), and low Se (0.10; 0.06 to 0.21) were observed. A high reciprocity agreement (0.93; 0.89 to 0.96) 
was also observed. Likewise, in Exp. 2 most observations were TN (85.05%), followed by FN (9.94%), TP (4.36%), and FP (0.65%), while high 
Sp (0.99; 0.99 to 1.0), Pr (0.89; 0.80 to 0.92), and Ac (0.95; 0.81 to 0.95), and low Se (0.35; 0.24 to 0.61) was observed. The Pr of two loggers 
in Exp. 1 and Pr and Ac of one logger in Exp. 2 were considered outliers. In conclusion, both proximity loggers demonstrated high precision, 
specificity, and accuracy but low sensitivity in recording proximity among beef bulls. Therefore, these characteristics should be considered when 
deciding whether to use these devices or not.

Lay Summary 
Understanding cattle’s social behavior can enhance productivity and welfare by informing management practices to improve maternal care, 
disease control, and identifying mating behaviors to assess bull performance, among other applications. However, visual observation of a herd 
is challenging and time-demanding task, especially for rangeland cattle. Proximity loggers can reduce the dependency on visual observation 
through remote proximity monitoring, but little is known about their reliability for beef bulls on pasture. This study aimed to validate remote 
monitoring loggers to detect the proximity of beef bulls within 2.5 to 3 m of each other. Two experiments were performed to determine proximity 
measurement among collars and between collars and ear tags. Videos were recorded as the gold standard to which the loggers were compared, 
and reciprocity between collars was analyzed as an indirect measure of reliability. Loggers presented high precision, low sensitivity, and high 
reciprocity. This indicates that the loggers will not record most proximity events, but those recorded are highly reliable. Additionally, based on 
reciprocity analysis, the collars worked properly as receivers and transmitters. In conclusion, these loggers may be used to investigate social 
interactions between bulls, but the low sensitivity should be considered in the decision of its use.
Key words: beef cattle, bull behavior, precision livestock technologies, proximity, reciprocity, social behavior

INTRODUCTION
Understanding how often and for how long individuals in a 
herd are in proximity to each other provides insightful in-
formation about their social behavior (Fielding et al., 2021). 
This information can be used to guide management decisions 
to enhance cattle productivity and welfare (Nogues et al., 
2023), and for modeling the spread of diseases (de Freslon 
et al., 2019). For instance, proximity was used to investi-
gate cow-calf and bull-cow interactions with the potential to 
quantify maternal and mating behaviors (Swain and Bishop-
Hurley, 2007; O’Neill et al., 2014), and to identify sick steers 
based on their proximity with other steers and to water and 

feed trough (White et al., 2023). Similarly, proximity among 
dairy cows was shown to be a risk factor for disease trans-
mission (de Freslon et al., 2019), with management practices 
altering proximity patterns and playing a role in mitigating 
outbreak occurrence (Fielding et al., 2021).

A growing interest in remote monitoring technologies 
for cattle has been observed over the years and across the 
world (Besler et al., 2024), given their potential to gather 
detailed data at the individual level (Tedeschi et al., 2021) 
with reduced dependency on human observation (Bailey et 
al., 2021). Behaviors can be monitored remotely through dif-
ferent technologies, with particular benefits for animals on 
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rangelands, where direct observations are difficult (Bailey et 
al., 2021). These difficulties increase when studying the so-
cial behavior of cattle, as understanding their social dynamics 
requires observing multiple individuals interacting within a 
herd (Hubbard et al., 2021). Furthermore, it is known that 
the presence of an observer can influence the social behavior 
of some animals and bias the observations due to the different 
levels of tolerance (Allan et al., 2022). Therefore, proximity 
loggers have the potential to measure aspects of the social 
behaviors of free-range cattle with minimal dependency and 
influence of human observation. However, they can also 
increase the data collection costs (Ryder et al., 2012), which 
makes it important to explore the validity of proximity logger 
systems with different costs (e.g., more expensive systems 
using exclusively transmitter-receiver collars or less expensive 
ones using a mix of receiver collars and transmitter ear-tags).

As observed by Besler et al. (2024), radio frequency devices, 
such as proximity loggers, are one of the less studied devices 
among precision technologies for cattle monitoring. Although 
these devices have been used to investigate beef cattle social 
behavior aspects, such as cow-calf interactions (Swain and 
Bishop-Hurley, 2007), cow-cow interactions (Swain et al., 
2015), or cow-bull interactions (O’Neill et al., 2014), little 
is known about their accuracy in recording proximity events. 
Most studies assessing the accuracy of proximity loggers 
were conducted in laboratory settings (Prange et al., 2006; 
Drewe et al., 2012) or with horses (Milwid et al., 2019; Ossi 
et al., 2022), deer (Ossi et al., 2022), raccoons (Prange et al., 
2006), badgers, and badger-cow interactions (Drewe et al., 
2012). Amongst those studies in cows, they either did not val-
idate their results with a gold standard test, such as visual 
observations (Watson-Haigh et al., 2012), or used a short 
period of observations in their field analysis (Drewe et al., 
2012).

Therefore, it is unknown how accurate these devices are in 
recording proximity among beef bulls. As the animal’s body 
mass can cause several interference phenomena on radio 
signal propagation (Swain et al., 2015; Fielding et al., 2021), 
it is important to assess the device’s accuracy on animals with 
similar body mass as the ones the loggers will be deployed 
(Triguero-Ocaña et al., 2019). Inferring accuracy from val-
idation studies on different species will likely lead to unre-
alistic results (Triguero-Ocaña et al., 2019). Therefore, the 
objectives of this study are: 1) to determine the accuracy of 
Lotek LiteTrack LR collars with built-in proximity loggers to 
identify proximity events among bulls and 2) to determine the 
accuracy of Lotek LiteTrack LR collars to identify proximity 
events between bulls wearing collars and bulls wearing the 
Lotek V7E 154D ear tag proximity transmitter.

MATERIALS AND METHODS
The experimental protocols were approved by the University 
of Calgary Veterinary Services Animal Care Committee 
(VSACC) under animal care protocol #AC20-0018. All 
experiments were conducted at the WA Ranches at the 
University of Calgary in Rocky View County, Alberta, Canada.

Devices and Animals
The devices used in the study were the Lotek LiteTrack LR 
collar and the Lotek V7E 154D ear tag (Lotek Wireless Inc., 
Newmarket, Ontario, Canada). The collar has built-in trans-
mitter and receiver proximity sensors in addition to Global 

Positioning System (GPS), accelerometer, and onboard storage 
capacity. The ear tag only contains a transmitter proximity 
sensor and no storage capacity. Both devices operate at very 
high frequencies (VHF; [150.82 MHz]), and the proximity 
events are registered based on a Received Signal Strength 
Indicator (RSSI) threshold. The RSSI value is a proxy for the 
maximum distance from which the receiver perceives a trans-
mitter, and this value is pre-set during device programming. 
Each device (collar and ear tags) transmits a unique identifi-
cation number that is perceived by receivers (collars) in the 
vicinity that register the identification number, the time in 
which the proximity started (moment in which the RSSI value 
becomes stronger than the pre-set threshold) and stopped 
(moment in which the RSSI value becomes weaker than the 
pre-set threshold), the duration of the proximity event, and 
the average RSSI of the proximity event.

Collars and ear-tags were programmed to operate based 
on pre-set schedules using the Pinpoint Host Software (Lotek 
Wireless Inc., Newmarket, Ontario, Canada), which creates 
and uploads the schedules on the devices and downloads the 
data stored in the collars. In 2021, the schedules were set 
to operate from 000000 universal time coordinated (UTC) 
on June 3rd (Day 0) to 235959 UTC on June 17th (14 days 
total), and in 2023, from 000000 UTC on April 5th (Day 0) to 
235959 UTC on April 18th (13 days total). The RSSI threshold 
value was set to −80 decibel-milliwatts (dBm), corresponding 
to a perimeter of 2.5 to 3m of distance (approximately one 
bull length). The transmitter burst rate (the rate at which iden-
tification numbers are transmitted) was set to 20 megabits per 
second (Mbps) for collars and 40 Mbps for ear tags, and the 
transmitter power (amount of power inputted on each trans-
mission) was set to L4 (a scale ranging from L1 to L5 where 
L1 is the maximum power and L5 is the minimum power) for 
both loggers. A separation time of 1 min was set for collars, 
meaning that the proximity events will be accumulated in the 
same record until a separation of at least 1 min is detected; in 
that case, a new event is recorded.

All the abovementioned settings (RSSI = −80 dBm, trans-
mitter burst rate = 20 Mbps, and transmitter power = L4) 
were selected based on manufacturer recommendations. The 
recommendations aimed to balance the range of proximity 
determined (one bull body length or approximately 2.5 to 3 
m) and the operation and data storage generated by the three 
sensors contained in the collars (proximity, GPS, and acceler-
ometer) for at least 60 days (approximately the duration of a 
breeding season). Although this study describes only the data 
recorded from the proximity loggers, the collars were also 
programmed to record three-dimensional GPS fixes (Latitude, 
Longitude, and Altitude) every 5 min, and accelerometers 
were set to operate at 0.5 Hertz (Hz) (2021) or 1 Hz (2023). 
Both followed the same schedules as the proximity loggers.

Once the devices were pre-set, collars were deployed on bulls 
in 2021 to study proximity events among 12 bulls wearing 
collars (Experiment 1) and in 2023 to study proximity events 
between five bulls wearing collars and five bulls wearing ear 
tags (Experiment 2). Collars and ear tags were deployed on 
animals while they were restrained in a squeeze chute. Collars 
were manufactured in two sizes with minimum and maximum 
adjustable sizes (95 to 117 cm and 118 to 127) to fit the variety 
of neck sizes of bulls. Therefore, after each bull was restrained 
in the squeeze chute, the neck was measured, and the collar 
size for that animal was decided. Then, a collar within the size 
range was placed around their necks, adjusting the tightness 
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to leaving a maximum space of four centimeters between the 
internal face of the collar and the lateral of the animal’s neck. 
Ear tags were applied using a regular livestock ear tag plier 
(Allflex® Universal Total Tagger) in an alternating pattern, 
with the first animal entering the chute receiving a randomly 
assigned ear tag and the next one not.

In 2021 (Experiment 1), 11 Aberdeen Angus and one 
Hereford bull (four 2-year-olds, four 3-year-olds, one 4-year-
old, two 5-year-olds, and one 6-year-old) were enrolled in the 
study. After the collars were adjusted around their necks, they 
were housed in a dry lot pen (1.59 ha) from June 3rd to June 
17th. All collars were set to transmit and receive signals during 
the entire period. This pen contained two wind-breaker panels 
attached in line (made of wooden boards with a metal frame; 
each one had an approximate height of 3 m and length of 7 
m), one metal round hay bale feeder, one water trough, and 
one cattle groomer spread across the pen with at least 20 m 
from each other.

In 2023 (Experiment 2), 11 Aberdeen Angus bulls (two 
3-year-olds, four 4-year-olds, one 5-year-old, two 6-year-
olds, and two 7-year-olds) were enrolled in the study. Five 
bulls were housed in dry lot pen 1 (0.190 ha), and six bulls 
were housed in dry lot pen 2 (0.306 ha) from April 5th to 
April 18th. Each pen contained one round hay bale feeder, 
one water trough, and wind-breaker panels on the south and 
north boundaries of the pens by the limiting fences. No wind-
breaker panels or cattle groomers were installed inside the 
pens. Bulls were randomly assigned to each pen after receiving 
ear tags and collars, stratified by age and ear tags within pens. 
Pen 1 housed one 3-year-old, two 4-year-olds, one 6-year-
old, and one 7-year-old bull, with an average body weight 
of 860 ± 48 kg (range: 782 to 907 kg) and a stocking den-
sity of 2.26 kg/m2. Pen 2 housed one 3-year-old, two 4-year-
olds, one 5-year-old, one 6-year-old, and one 7-year-old bull, 
with an average body weight of 940 ± 73 kg (range: 821 to 
1038 kg) and a stocking density of 1.84 kg/m2.

Two bulls in pen 1 (one 4-year-old and one 6-year-old) 
and three bulls in pen 2 (one 3-year-old, one 4-year-old, and 
one 5-year-old) received ear tags in addition to the collars. 
The proximity function on these collars (five bulls with both 
collars and ear tags) was deactivated to avoid interferences 
and unnecessary draining of their batteries because these 
collars would be in close proximity with the ear tags for the 
entire period, generating no meaningful result for the study. 
These bulls received collars even though the interest of this 
study was to record proximity between ear tags and collars 
because the accelerometer and GPS data were collected for 
a different study. One bull in the group was excluded from 
experiment 2 due to excessive reactivity during handling (ear 
tag placement), in which he received a collar with the prox-
imity function deactivated, no ear tag, and was housed in pen 
2. Therefore, the final 2023 group included five bulls wearing 
collars with capabilities of receiving radio signals from the ear 
tags and five bulls wearing ear tags transmitting radio signals 
to collars other than themselves.

In both years, the animals were observed for 1 h after 
deploying the devices for signs of discomfort related to the 
device, such as panting, ear flicking, persistent head throwing, 
and persistently rubbing the collar against the fence.

Visual Observations
Proximity events were identified using continuous video 
recordings of approximately 30 continuous minutes, starting 

at the Day 0 of each year, from 0800 to 1000 h or 1300 to 
1400 h three times a week during weekdays in 2021 (ex-
periment 1) and from 0800 to 1600 h five times a week 
during weekdays in 2023 (experiment 2). Two video cameras 
(Canon® Vixia HF R800) were set on tripods outside the 
pens, filming one or more bulls in the same frame. The 
cameras were positioned to have the focal bull or group of 
bulls in the frame with at least one bull body length (approx-
imately 2.5 to 3 m) of the distance between their bodies and 
the edge of the frame. In 2021, both cameras were used but 
focused on different bulls or groups of bulls simultaneously, 
ensuring that not the same animals were recorded simulta-
neously for both cameras. In 2023, each camera was set to 
record one of the pens.

The first seconds of each video started by focusing on a 
stopwatch that was synched in time with the collars and 
ear tags’ internal clock, giving the time reference to ensure 
that the observation would be associated with the correct 
proximity event. All videos recorded were uploaded into 
the software Boris v.7 (Friard and Gamba, 2016) and were 
analyzed to identify proximity events. Videos were watched 
focusing on one bull at a time, and bulls were considered 
in proximity when any bull entered a perimeter closer to 
one bull’s body length (approximately 2.5 to 3 m) to a 
focal bull, regardless of who approached who. The distance 
of one bull’s body length was chosen as a reference point 
for the observer to determine proximity, as it was not pos-
sible to measure the distance between two animals on the 
video because the distance from a bull to the video cameras 
varied. Once the proximity was identified, the identifica-
tion number of bulls in proximity was noted. The proximity 
event stopped when one of the bulls moved 1 body length 
away. The output of the behavior observation obtained by 
the software contained the identification of the focal subject, 
the identification of the individual or individuals the focal 
subject was in proximity with, and the starting and stopping 
time of the proximity event.

Validation Analysis
The video observations were considered the gold standard 
to which the proximity loggers were compared. For this, 
each second of video observation was compared to the cor-
responding second recorded or not by the proximity logger, 
creating confusion matrices for each bull considering every 
possible dyadic encounter of the focal bull with all bulls 
wearing collars or between the focal bull wearing collar and 
all bulls wearing ear tags within its pen.

The second in which the proximity was observed in the video, 
perceived by the proximity logger, and had bulls’ identification 
matched was considered a true positive (TP). The seconds in 
which the proximity was neither observed in the video nor 
perceived by the logger was considered a true negative (TN). 
The seconds a proximity event was observed in the video but 
not perceived by the proximity logger was considered a false 
negative (FN). The seconds in which the proximity was not 
observed in the video but was perceived by the proximity logger 
were considered a false positive (FP). If a proximity event was 
observed in the video and perceived by the collar, but the bulls’ 
identification did not match, an FN was assigned to the dyadic 
encounter observed in the video, and an FP was assigned to 
the dyadic encounter perceived by the collar. Sensitivity (Eq. 
1), specificity (Eq. 2), precision (Eq. 3), and accuracy (Eq. 4) 
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were calculated for each focal bull and for the total amount of 
observations as follows:

Sensitivity =
TP

TP+ FN (1)

Specif icty =
TN

TN + FP (2)

Precision =
TP

TP+ FP (3)

Accuracy =
TP+ TN

TP+ TN + FP+ FN (4)

Median and 95% confidence interval (95% CI) were calcu-
lated for each metric for both studies. The 95% CI of these 
metrics were obtained by bootstrapping with 1000 simula-
tion iterations, generating data-based confidence intervals 
(Greiner and Gardner, 2000) using the ‘boot’ package in 
RStudio (Version 4.3.2, RStudio, Inc.). Outlier values were 
detected using the interquartile range (IQR) method (Dash et 
al., 2023). For this, the IQR was calculated (75th percentile to 
25th percentile), and any value higher or lower than 1.5× IQR 
was considered an outlier. Results with and without outliers 
were reported. Outlier detection was implemented not only 
to detect devices with potential malfunctioning but also to 
reduce the impact of potential biases on proximity detection 
by the observer. Although visual observations are the current 
gold standard method to detect proximity among animals, 
they are not error-free, and factors such as camera position 
and the distance between the observer and the focal animal 
may affect the accuracy of the video observations (Hughey et 
al., 2018).

In devices operating properly as both transmitters and 
receivers and interacting with each other, it is expected that the 
duration of events recorded by one receiver will be similar to 
the one recorded by the other, showing that both transmitters 
and receivers are operating as expected (Watson-Haigh et al., 
2012). As the collars work as both transmitters and receivers, 
the reciprocity or reciprocal agreement between collars can be 
assessed as an indirect measure of devices’ reliability (Drewe 
et al., 2012; Watson-Haigh et al., 2012). Thus, reciprocity can 
be assessed by comparing the duration of dyadic encounters 
registered by each receiver in pairs of collars (i.e. duration of 
receiver A perceiving transmitter B vs. duration of receiver 
B perceiving transmitter A) (Watson-Haigh et al., 2012). To 
assess the reciprocal agreement between the duration of prox-
imity events observed between each dyad of collars, the con-
cordance correlation coefficient (CCC), bias correction factor, 

scale shift, and location shift (Lin, 1989) were calculated 
using the ‘epiR’ package in RStudio (Version 4.3.2 (2023-10-
31), RStudio, Inc.). Coefficient values were considered negli-
gible (< 0.30), low (0.30 to 0.50), moderate (0.50 to 0.70), 
high (0.70 to 0.90), or very high (> 0.90) (Hinkle et al., 2003).

The CCC measures the degree of concordance between two 
variables (in this case, the duration of dyadic encounters re-
corded by each collar in pairs of collars of Exp. 1) by com-
bining precision (Pearson correlation) and accuracy (bias 
correction factor) assessments in a coefficient ranging from 
−1 (perfect reversed concordance) to +1 (perfect agreement) 
(Lin, 1989). The bias correction factor measures how far the 
best-fit line deviates from a perfect agreement line (45° line), 
ranging from 0 to 1, where values closer to 1 indicate smaller 
deviations (Lin, 1989). The scale shift refers to the differences 
in the dispersion of the two variables, and values closer to 1 
indicate that the variances of the variables are similar (Lin, 
1989). The location shift refers to the differences in the means 
of the two variables while accounting for their variances, and 
values closer to 0 indicate similar means (Lin, 1989).

Results
Experiment 1
All animals in both experiments appeared to be comfortable 
wearing the collars, with no apparent abnormal behavior 
within one hour after deployment. A total of 128,430s (35h 
40min 30s) of visual observations were obtained from videos 
recorded in 2021 of 12 bulls, with 10,702 ± 232s (mean ± SD) 
of visual observation per focal bull. The average duration of 
a receiver perceiving a transmitter during the entire period 
was 9,410 ± 7,597s per dyadic encounter (522s to 43,216s). 
A description of proximity events by video and recorded by 
the proximity loggers (collars operating as receiver and trans-
mitter) is detailed in Table 1.

Most of the seconds computed from the total amount of 
observations were assigned as true negatives (1,343,938s, or 
95.13%), followed by false negatives (58,040s, or 4.11%), 
true positives (9,881s, or 0.70%), and false positives (871s, 
or 0.06%). The metrics calculated from the total amount of 
observations showed a sensitivity of 0.15, specificity of 1.00, 
precision of 0.92, and accuracy of 0.96. When these metrics 
were calculated per focal bull considering all collars, the sen-
sitivity median was 0.10 (95% CI = 0.06 to 0.21), specificity 
median 1.00 (1.00 to 1.00), precision median 1.00 (0.72 to 
1.00), and accuracy median 0.96 (0.95 to 0.97). The precision 
of Collar ID 3 and Collar ID 7 were detected as outlier values. 
When these values were removed, the precision median con-
tinued 1.00, but the 95% CI increased to 0.97 to 1.00. Table 2 
shows the metrics calculated per focal bull and the absolute 
and relative numbers of true positives, false positives, false 
negatives, and true negatives used to calculate the metrics.

Table 1. Total time and time per focal bull in which a proximity event was observed in the video, recorded by proximity loggers (collars operating 
as receiver and transmitter) during corresponding video time, and recorded by logger during the entire period (14 days) of experiment 1 in 12 bulls 
equipped with proximity logger in 2021

Proximity events Time per focal bull (mean ± SD), s Total time, s

Observed in video 5,414 ± 2,887 64,817

Recorded by loggers during corresponding video time 896 ± 976 10,752

Recorded by logger during the entire experiment 103,515 ± 37,747 1,242,180
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The reciprocity analysis, based on the reciprocal agreement 
of proximity duration between dyads of collars (Figure 1), 
showed a very high agreement of 0.93 with a 95% CI coef-
ficient between high and very high (0.89 to 0.96). The scale 
shift was 0.97, the location shift was 0.09, and the bias cor-
rection factor was 0.99. A heatmap of durations of proximity 

events recorded by each dyad of receiver and transmitter over 
the entire period of Exp. 1 is presented in Figure 1.

Experiment 2
A total of 360,493s (100h 08min 13s) of visual observations 
were obtained from videos recorded in 2023 of 11 bulls, with 

Table 2. Absolute and relative values of true positives, false positives, false negatives, true negatives, sensitivity, specificity, precision, and accuracy of 
proximity loggers recording proximity events to other collars when compared to visual observations per focal bull (Collar ID), among 12 bulls enrolled in 
the study in 2021

Collar ID True positives False positives False negatives True negatives Sensitivity Specificity Precision Accuracy

Seconds % Seconds % Seconds % Seconds %

1 3,327 2.82 0 0 4,163 3.53 110,331 93.64 0.44 1.00 1.00 0.96

2 40 0.03 0 0 6,454 5.48 111,305 94.49 0.01 1.00 1.00 0.95

3 26 0.02 11 0.01 2,859 2.43 114,562 97.53 0.01 1.00 0.701 0.98

4 710 0.62 0 0 3,521 3.06 110,774 96.32 0.17 1.00 1.00 0.97

5 1,294 1.09 19 0.02 3,372 2.84 114,016 96.05 0.28 1.00 0.99 0.97

6 307 0.25 7 0.01 4,329 3.48 119,745 96.27 0.07 1.00 0.98 0.96

7 71 0.06 825 0.72 3,371 2.93 110,936 96.30 0.02 0.99 0.081 0.96

8 842 0.73 0 0 2,891 2.50 111,965 96.77 0.23 1.00 1.00 0.98

9 1,883 1.59 0 0 10,502 8.89 105,744 89.52 0.15 1.00 1.00 0.91

10 5 0.004 0 0 740 0.62 118,132 99.37 0.01 1.00 1.00 0.99

11 1,283 1.12 0 0 8,556 7.48 104,583 91.40 0.13 1.00 1.00 0.93

12 93 0.08 9 0.01 7,282 6.11 111,845 93.81 0.01 1.00 0.91 0.94

1Values considered outliers by the Interquartile Range method.

Figure 1. Heatmap of the total duration (s) of proximity events recorded by each dyad of the 12 bulls equipped with proximity loggers in experiment 1 
(collar-to-collar proximity logger system). All collars in experiment 1 operate as both receivers and transmitters. The dyadic encounters duration (values 
inside the boxes) represents the number of seconds each receiver perceived each transmitter.
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32,772 ± 4,335s (mean ± SD) of visual observation per focal 
bull. Proximity events between focal bulls wearing collars with 
loggers activated (receivers detecting ear tag transmitters) and 
one or more bulls wearing the ear tag transmitters recorded 
in video and by devices are detailed in Table 3. All animals 
appeared comfortable wearing the collars and ear tags, with 
no apparent abnormal behavior within less than one hour 
after deployment.

Most of the seconds computed from the total amount of 
observations were assigned as true negatives (430,210s, or 
85.05%), followed by false negatives (50,256s, or 9.94%), 
true positives (22,067s, or 4.36%), and false positives (3,312s, 
or 0.65%). The metrics calculated from the total amount of 
observation showed a sensitivity of 0.31, specificity of 0.99, 
precision of 0.87, and accuracy of 0.89. When these metrics 
were calculated per focal bull wearing a receiver collar, the 
sensitivity median was 0.35 (95% CI = 0.24 to 0.61), speci-
ficity 0.99 (0.99 to 1.00), precision 0.89 (0.80 to 0.92), and 
accuracy 0.95 (0.81 to 0.95). The precision and accuracy of 
Collar ID 5 were detected as outlier values. When these values 
were removed the precision increased to 0.90 (0.88 to 0.93) 
and accuracy to 0.95 (0.94 to 0.96). Table 4 shows the met-
rics calculated per focal bull and the absolute and relative 
numbers of true positives, false positives, false negatives, and 
true negatives used to calculate the metrics.

Discussion
Overall, similar results were observed in both experiments, 
where both collar-to-collar (experiment 1) and collar-to-ear 
tag (experiment 2) proximity loggers systems presented high 
precision, specificity, and accuracy (> 0.89), but low sensi-
tivity (< 0.35) before and after outliers were removed. These 
results showed that most of the observations detected by the 
observer will not be perceived by the logger due to its low 

sensitivity, but those perceived are highly reliable due to its 
high precision. These results are aligned with previous studies 
investigating different transmitter power rates (in horses, deer, 
and calves), which observed that at lower transmitter power, 
sensitivity was lower than specificity and precision (Ossi et 
al., 2022; Ben Meir et al., 2023).

The transmitter power is one of the most important 
parameters to influence not only the sensitivity and pre-
cision of proximity loggers but also the battery lifespan of 
devices and should be carefully aligned with the purpose of 
the study (Triguero-Ocaña et al., 2019). Higher transmitter 
power (closer to L1 in the Lotek LiteTrack LR collars or 
Lotek V7E 154D ear tag) is likely to lead to higher sensi-
tivity but also more false positives (i.e., lower precision) due 
to the signal reaching further and being potentially perceived 
outside the pre-set range (Ossi et al., 2022). The increase in 
transmitter power will also lead to a shorter battery lifespan 
(Triguero-Ocaña et al., 2019). Beef bulls are usually managed 
extensively, especially while in breeding pastures, and it is 
not possible to handle them so often to change or recharge 
batteries. Therefore, a compromise in sensitivity to prolong 
the battery lifespan while recording highly reliable data (high 
precision) for long periods is a reasonable setting for many 
studies investigating beef bull behavior.

The inter-logging variation was identified as a potential 
issue for using proximity loggers in the past because, within 
a group of devices, some might be more sensitive than others, 
leading to lower reciprocity (Boyland et al., 2013). In this 
study, although a variation in sensitivity was observed (Exp. 
1: 95% CI = 0.06 to 0.21; Exp. 2: 95% CI = 0.24 to 0.61), 
no outlier values of sensitivity were detected. On the other 
hand, the precision of two collars in Experiment 1 and the 
precision and accuracy of one collar in Experiment 2 were 
considered outliers. However, when assessing the reciprocity 
as an indirect measure of reliability in Experiment 1, a very 
high agreement was observed in addition to a high scale shift 

Table 3. Total time and time per focal bull in which a proximity event was observed by video, recorded by proximity loggers (collars operating as 
a receiver and ear tags operating as a transmitter) during corresponding video time, and recorded by loggers during the entire period (13 days) of 
experiment 2 of 11 bulls in 2023

Proximity events Time per focal bull (mean ± SD), s Total time, s

Observed in video 14,465 ± 12,748 72,323

Recorded by loggers during corresponding video time 5,075 ± 2,310 25,379

Recorded by logger during the entire experiment 120,265 ± 45,678 601,326

Table 4. Absolute and relative values of true positives, false positives, false negatives, true negatives, sensitivity, specificity, precision, and accuracy of 
proximity loggers recording proximity events between collars (receivers) and ear tags (transmitters) when compared to visual observations per focal 
bull-wearing a collar (Collar ID) among the five bulls wearing a collar and five wearing an ear-tag enrolled in the study in 2023

Collar ID True positives False positives False negatives True negatives Sensitivity Specificity Precision Accuracy

Seconds % Seconds % Seconds % Seconds %

1 1,736 2.73 207 0.33 3,230 5.09 58,328 91.85 0.35 1.00 0.89 0.95

2 3,344 2.51 316 0.24 7,424 5.57 122,265 91.69 0.31 1.00 0.91 0.94

3 7,409 7.97 491 0.53 2,940 3.16 82,078 88.33 0.72 0.99 0.94 0.96

4 5,404 5.45 716 0.72 3,942 3.97 89,170 89.86 0.58 0.99 0.88 0.95

5 4,174 3.57 1,582 1.35 32,720 28.00 78,369 67.07 0.11 0.98 0.731 0.711

1Values considered outliers by the interquartile range method.
2Only the results of bulls wearing a collar are displayed because the collars are the receivers, registering all data transmitted from the ear tags. As ear tags 
do not operate as receivers, they don’t record any data.
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and bias correction factor and low location shift, indicating 
high reciprocal agreement (Watson-Haigh et al., 2012). These 
discrepancies, such as the elevated number of false positives 
of specific collars (e.g., Collar ID 7 in Exp. 1 = 2.93%, and 
Collar ID 5 in Exp. 2 = 28%) and precision outliers, might 
be explained by the interaction of environmental elements 
with the radio signal that leads to propagation impairment 
phenomena occurring during the visual observation (Watson-
Haigh et al., 2012; Triguero-Ocaña et al., 2019).

In the case of Collar ID 7 in Experiment 1 (lowest precision), 
for example, approximately 30% of its visual observations 
were recorded on a rainy day in which he was close to a 
windbreaker (structure of metal and wood) which might 
have caused interferences with the signal propagation and 
impacted its precision. However, this was not reflected in its 
reciprocal agreement and in the heatmap of dyadic encounter 
durations over the entire experimental period, showing no 
significant discrepancies between receivers and transmitters. 
In addition, it is known that although visual observation is 
still the gold standard for behavioral observations, there are 
multiple aspects that can bias its measurements (Hughey et 
al., 2018), which might also impact the results. Nonetheless, 
as the impact of environmental and observer factors on the 
reliability of loggers is out of the scope of this study, it was 
not directly investigated.

Although the use of proximity loggers provides mul-
tiple benefits over visual observation in the study of social 
interactions, such as mitigation of the bias caused by the pres-
ence of an observer (Allan et al., 2022) and monitoring sev-
eral animals uninterruptedly for long periods (Ryder et al., 
2012), it can increase the cost of the data collection (Ryder et 
al., 2012). The collars used in this study cost approximately 
ten times more than the ear tags, which might be prohibitive 
for some researchers or commercial operations. However, for 
some applications, such as interactions between bulls and cows 
(O’Neill et al., 2014), the system presented in Experiment 2 
might be a solution. Using ear tags in most animals and collars 
in a few key individuals (e.g., ear tags in cows and collars 
in bulls within a breeding group) will reduce the costs with 
equipment, and proximity events will be recorded in quan-
tity and with the quality needed for social behavioral studies 
(Ryder et al., 2012). It is important to mention that the ear tags 
used in this study do not store any data and operate only as 
transmitters. Therefore, in the scenario mentioned above, no 
proximity among animals wearing ear tags will be recorded, 
and all data will be stored in the collars. When interested in re-
cording proximity among all individuals in a group, the system 
described in Experiment 1 should be used.

Another limitation of using proximity loggers to study 
social behaviors, assumed by previous studies, is the ina-
bility to differentiate the type of interaction (Ryder et al., 
2012), leading to inferences of social interactions based on 
spatial proximity among individuals (Castles et al., 2014). 
However, more recent reports have shown promising results 
in differentiating affiliative interactions from agonistics 
based on the duration of proximity events of Holstein calves 
(Ben Meir et al., 2023). Such differentiation could be further 
investigated using both systems tested in this study as the 
results indicated that both loggers quantified proximity events 
and the duration of these events. Additionally, the ability to 
record events among several individuals, demonstrated by 
the heatmap of dyadic encounter durations from Exp. 1, 
can address the challenge of recording interactions within 

a herd (Hubbard et al., 2021). This approach has potential 
applications for social dominance ranking in beef bulls and 
the relationship between different aspects of social behavior 
with their reproductive success.

Finally, it is important to mention that the low sensitivity 
observed in both proximity logger systems might be a con-
cern for studies in which the contact rate is the measure 
of interest, such as those modeling disease spread. For 
those studies, devices with high transmitter power should 
be chosen. Furthermore, it is possible that environmental 
elements (e.g., air humidity, distance from structures with 
different materials and densities, etc.) have interfered with 
the propagation of the signal, but limited inferences can be 
made about it as the study was not designed to proper inves-
tigate these effects. Although we acknowledge the potential 
limitation of this study regarding its sample size (especially 
in experiment 2), previous studies have validated proximity 
loggers using the same sample sizes (Triguero-Ocaña et al., 
2019) or smaller and observed similar results whether using 
2 or 4 animals (Ossi et al., 2022). As one of the less studied 
sensors in precision livestock monitoring research (Besler et 
al., 2024), many aspects of proximity logger use in cattle re-
main unexplored. Future studies should investigate the effect 
of environmental elements on the sensitivity and precision 
of these devices in a large group, as well as how changes in 
transmitter power and RSSI threshold interact with battery 
discharge rate, precision, and sensitivity in both systems.

Conclusion
The Lotek LiteTrack LR collars with built-in proximity 
loggers can record proximity events within 2.5 to 3m 
of other collars or to the Lotek V7E 154D ear tags with 
high precision but low sensitivity. Furthermore, the collars 
presented a high reciprocal agreement, an indirect indicative 
of devices’ reliability. This study provides the first validity 
estimates of these two proximity logger systems in recording 
proximity events among beef bulls and provides knowledge 
for researchers to utilize remote monitoring technology 
in the field for better evaluating cattle behavior in remote 
settings
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