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Single nucleotide polymorphisms (SNPs) in taste receptors influence dietary choices that

contribute to health and quality of life. Individual differences in sour taste perception

and preference have been linked to heritable genetics, yet the impact of sour taste

receptor SNPs on sour taste is under-researched, and studies on sour taste SNP

associations to diet and health are lacking. Therefore, this study explored the relationships

between the sour taste SNP KCNJ2-rs236514 and estimated macronutrient, vitamin

and mineral intakes, and markers of metabolic health. Associations were explored in 523

participants aged 65 years and older with data analysed using standard least squares

and nominal logistic regression modelling with post hoc student’s t-tests and Tukey’s

HSD. Associations were found between the presence of the KCNJ2-rs236514 variant

allele (A) and lower intakes of energy, total fat, monounsaturated fat and saturated fat.

The lower fat intakes were significant in female carriers of the variant allele (A), along

with lower water intake. Lower retinol, riboflavin, folate, calcium and sodium intakes

were found in the KCNJ2-A allele carriers. In females, the variant allele was associated

with lower sodium intake before and after Bonferroni adjustment. Higher body mass

index, waist and waist-to-hip ratio measures were found in males carrying the variant

allele. Lower levels of liver function biomarkers were associated with the presence of the

KCNJ2-A allele. Overall and in males, the variant’s association to lower gamma-glutamyl

transferase (GGT) levels remained significant after Bonferroni adjustments. These novel

findings suggest the sour taste SNP, KCNJ2-rs236514, may bemodifying macronutrient,

vitamin and mineral intakes, and markers of metabolic health. Research on the extra-oral

functions of this SNP may improve health outcomes for those with overweight, obesity

and liver disease.
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INTRODUCTION

Diet is a key determinant of non-communicable health outcomes
and quality of life (1, 2). This is becoming particularly important
in the context of an ageing population. Eating preferences and
dietary intake are influenced by individual differences in our
perception and sensitivity to the five key tastes—bitter, sweet,
umami, sour and salt (3–6). Genetic contributions to taste
differences have been established in studies on variance in genes
coding for taste receptors (6–10). Research on the consequential
alterations to dietary patterns has primarily focused on the bitter
taste genes (11, 12). The metabolic health implications of these
taste-gene associated dietary choices has focused on bitter and
sweet taste-related polymorphisms (13–15). However, the direct
associations betweenmany variants in taste genes, nutrient intake
and biomarkers of health remain to be elucidated.

Sour taste can evoke both pleasant and aversive responses
(16). Aversive responses may lead to the avoidance of healthy
foods such as citrus fruits, berries, and fermented foods (17).
Differences in sensitivity to sour taste have been found between
the sexes. Women have higher perception thresholds and prefer
sour more than men (18, 19), and neural responses to sour
are stronger in women (20). The influence of genetics on
variations in taste thresholds for the sourness of citric acid
has been demonstrated in twin studies (9). Preference for
sour has been more strongly correlated to genetic factors than
environmental factors (10). However, the genetic variance in
receptors responsible for the detection of sour compounds
remains under-researched.

While several sour taste receptors have been proposed
(21, 22), downstream sour signalling through an inwardly
rectifying potassium channel appears to modulate the strength
of transduction (23). KCNJ2 (Potassium Inwardly Rectifying
Channel Subfamily J Member 2) is a protein-coding gene directly
linked to the magnitude of the inward potassium current and
hence strength of sour transduction (24, 25). Alterations to sour
taste have been linked to a single nucleotide polymorphism
(SNP) in the KCNJ2 gene (5). Carriers of the KCNJ2-rs236514
variant allele (A) have been shown to have a higher preference
for sour, an association that was maintained after correction for
multiple testing (5). In our study of the associations between
the presence of this sour SNP and mild cognitive impairment,
we reported that there was no association between three indices
of diet quality and the presence of the variant (A) allele
(26). However, diet quality indices provide only a high-level
view of nutritional sufficiency, and the relationship between
the KCNJ2-rs236514 polymorphism on nutrient intake has not
been investigated.

Therefore, this study aimed to explore the associations
between KCNJ2-rs236514, estimated habitual macronutrient,
vitamin and mineral intakes, and biomarkers of metabolic health
in an elderly cohort. While taste thresholds for sour and all
other tastes have been shown to increase in ageing populations
(27), there is an absence of research on how nutrient intake and
biomarkers of health are affected. Furthermore, the impact of
variance in genes coding for sour taste on diet and biomarkers
of health in older populations has not been studied.

MATERIALS AND METHODS

Subjects
This secondary analysis utilised the Retirement Health and
Lifestyle Study (RHLS) cross-sectional cohort of adults aged 65
years and older who were living independently in the Central
Coast area of NSW, Australia (28–31). Participants were required
to have completed a valid food frequency questionnaire (FFQ)
and provided blood samples to enable genotyping of KCNJ2-
rs236514 for eligibility to this study. Complete data sets for 523
participants were available for the analyses. Written informed
consent was obtained from participants and the University of
Newcastle Human Research Ethics Committee provided ethics
approval (Reference No. H-2008-0431) (29).

Demographics and Anthropometrics
Demographic data (age, sex, income, education, history of
smoking) were collated through interviewer-administered
questionnaires (30, 32, 33). Body dimension (hip circumference,
waist circumference, and height) and weight measurements were
collected adhering to the standards of the International Society
for the Advancement of Kinanthropometry (ISAK) (34). Body
mass index (BMI) and waist to hip ratios (WHR) were calculated
using standard equations (34).

Blood Collection and Analyses
After fasting, whole blood was collected by a trained nurse,
into EDTA-lined tubes and stored at −20◦C (35). The Hunter
Area Pathology Service analysed the blood samples to obtain
the liver function, glucose, and lipid biomarker data (35). The
biomarkers of liver function were gamma-glutamyl transferase
(GGT), alkaline phosphatase (ALP), alanine aminotransferase
(ALT), aspartate aminotransferase (AST), total protein, albumin,
calcium globulin ratio (Cal/Glob), and total bilirubin. Along
with blood glucose levels, glycosylated haemoglobin (HbA1c) was
measured. The lipid biomarkers assessed were triglycerides (TG),
low-density lipoprotein (LDL), high-density lipoprotein (HDL),
total cholesterol (TC), and the ratio of TC to HDL.

Genotyping
DNA was isolated from peripheral blood cells using QIAGEN
QIAmp DNA mini kits (30, 36). The KCNJ2-rs236514 SNP
was assessed via allelic discrimination using TaqManTM assay
(Applied BiosystemsTM, ThermoFisher Scientific, California,
USA) and quantitative polymerase chain reaction (QuantStudio
7 Flex Real-Time PCR System) (37, 38). Manufacturers’ protocols
were followed.

Dietary Assessment
Intakes of 225 food items were recorded by completion of
a previously validated FFQ (39). Data were extracted for
macronutrient, vitamin and mineral estimated habitual intakes
with FoodworksTM (V.2.10.146) software (40). If participants’
dietary reports were incomplete or energy intakes were <3,000
kJ/d or >30,000 kJ/d their FFQ was excluded.

Frontiers in Nutrition | www.frontiersin.org 2 August 2021 | Volume 8 | Article 701588

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Ferraris et al. Sour Taste Genetics, Nutrients, Health

Blood Pressure Readings
Blood pressure (BP) measurements were taken from both arms
by qualified clinical staff using an OMRON IA2 machine
(32). Physical limitation preventing measurement, repetitive
differences in systolic BP of >10 mmHg and diastolic BP of
>6 mmHg, very high BP curtailing measurement and machine
error were exclusion criteria (32). Following the World Health
Organisation’s guidelines, hypertensive was defined as recording
systolic BP of ≥140 mmHg and diastolic BP of ≥90 mmHg (41).
Additionally, those taking anti-hypertensive medications were
classified as hypertensive (42).

Statistical Analyses
The data analyses were undertaken using JMP (Pro V.14.2.0;
SAS Institute Inc., Cary, NC, USA 27513). Continuous variable
distributions (means, 95% confidence intervals and standard
deviations) and categorical variable distributions (number
and percentage of cohort) describe the cohort characteristics.
Analysis of the polymorphism, KCNJ2-rs236514, occurred by
presence or absence of the variant allele (A) and was reported
as the number and percentage of the study cohort. Results were
further stratified by sex. Analyses were repeated using genotypes
to investigate potential allele dose dependent responses, where
appropriate using ANOVA and Tukey’s post-hoc test to compare
means between groups.

Statistical significance of continuous variables was examined
through standard least squares regression analyses and for
categorical variables through nominal logistic regression analyses
(χ2, p-values) with post hoc student’s t-test (two categories)
and Tukey’s HSD (three categories). p-values are presented to
one significant number and threshold p-values of <0.05 were
considered statistically significant. The Bonferroni method was
applied to correct for multiple testing and the alternative adjusted
thresholds are presented (43). Where appropriate, results were
adjusted for potential confounding factors such as age, sex,
education, income, smoking status, BMI, and energy intake.
Due to the small number of participants that reported smoking,
current smokers and ex-smokers were collapsed to “history
of smoking.”

RESULTS

Participant Characteristics
The average age of the 523 participants was 77.5 (SD± 6.7) years
and did not differ by sex (Supplementary Table 1). The cohort
was 54.5% female (Supplementary Table 2). Most participants
earned between $20,000–$60,000/year; however, distributions of
income categories varied by sex with men reporting earning
more than women (p < 0.0001; Supplementary Table 2). Men
were more likely to be educated at TAFE (Technical and Further
Education) level or higher (75.6 vs. 60.2%, p = 0.001) and
to have a history of smoking (66.4 vs. 35.1%, p < 0.0001;
Supplementary Table 2). Weight, waist, and hip measures were
normally distributed (Supplementary Table 1). Men were taller,
weighed more, and had higher waist and WHR measures (p <

0.0001; Supplementary Table 1). The mean BMI was 28.6 kg/m2

(SD± 4.8) and did not vary by sex (Supplementary Table 1).

Genotype Distributions
The KCNJ2-rs236514 variant allele (A) had a frequency of 0.56.
The proportion of participants carrying the KCNJ2-A allele (AA
or AG genotypes) was 81.3% and there was no statistically
significant difference by sex (Supplementary Table 3).

Relationships Between KCNJ2-rs236514
and Confounding Variables
The presence of the KCNJ2-A allele did not vary by age, sex,
income, education, history of smoking or BMI in the total cohort
(Supplementary Tables 4, 5). The mean age of female KCNJ2-A
allele carriers was older than non-carriers (78.1 vs. 75.9 years,
p = 0.04) and mean BMI was higher in male KCNJ2-A allele
carriers (29.0 vs. 26.8 kg/m2, p= 0.003; Supplementary Table 4).

Relationships Between KCNJ2-rs236514
and Estimated Energy and Macronutrient
Intakes
The KCNJ2-rs236514 variant allele (A) was associated with lower
mean intakes of energy, TF, MUFA and SF (p range = 0.02–
0.04; Table 1). Relationships for TF, MUFA and SF remained
significant after adjusting for age and sex (p range = 0.02–
0.03). However, relationships were not significant in the
fully adjusted model (age, sex, income, education, and
BMI). Relationships were not significant when Bonferroni
corrections were applied for multiple testing (adjusted
p-threshold ≤0.004).

Differences in energy and macronutrient intake distributions
were found between the sexes. Men consumed more energy,
carbohydrate, starch, protein, and alcohol than women (p range
<0.0001–0.04; Supplementary Table 6). Therefore, the analyses
were stratified by sex (Supplementary Table 7A). In unadjusted,
and age-adjusted models, TF and MUFA intake were lower
in females who carried the KCNJ2-A allele (p range = 0.02–
0.03), but these relationships were not seen in males. Lower
SF intake was found in female KCNJ2-A allele carriers in the
age-adjusted model only (p = 0.04). Additionally, females who
carried theKCNJ2-A allele had lower daily water intakes across all
models (p range= 0.01–0.04). Relationships were not significant
when Bonferroni corrections were applied for multiple testing
(adjusted p-threshold ≤0.004).

Relationships Between KCNJ2-rs236514
and Estimated Dietary Vitamin Intakes
Dietary retinol, riboflavin and folate intakes were lower in
those carrying the KCNJ2-A allele, in the unadjusted and
adjusted models (p range = 0.005–0.02; Table 2). Women
consumed less dietary thiamine, niacin, niacin equivalents,
and folate and greater amounts of beta-carotene than men
(Supplementary Table 8). Therefore, analyses were stratified by
sex (Supplementary Table 7B). In women, the presence of the
KCNJ2-A allele was associated with lower folate intakes in the
unadjusted and age-adjusted models (p = 0.02). In men, KCNJ2-
A allele presence was associated with lower intakes of retinol,
thiamine, and riboflavin in all models (p range = 0.008–0.03).
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TABLE 1 | Estimated energy and macronutrient intakes vary by the presence of the KCNJ2-A allele in unadjusted and adjusted models.

Macronutrient Unadjusted Model 1 Model 2

Mean (95% CI) p Mean (95% CI) p Mean (95% CI) p

A allele absent A allele present A allele absent A allele present A allele absent A allele present

Energy kJ/d 8720.5

(8177.6–9263.5)

8102.2

(7841.4–8363.0)

0.04 8699.0

(8160.1–9237.8)

8147.5

(7888.0–8407.0)

0.07 8977.2

(8352.6–9601.8)

8520.2

(8113.1–8927.2)

0.2

Carbohydrate g/d 223.3

(207.2–239.3)

214.2

(206.5–222.0)

0.3 223.6

(207.6–239.7)

215.1

(207.3–222.8)

0.4 232.9

(214.6–251.2)

225.3

(213.3–237.2)

0.4

Fibre g/d 32.3

(29.8–34.8)

30.9

(29.8–32.1)

0.3 32.2

(29.7–34.7)

31.0

(29.8–32.2)

0.4 33.9

(31.0–36.7)

32.6

(30.7–34.4)

0.4

Starch g/d 105.0

(97.1–112.9)

101.2

(97.1–105.2)

0.4 104.4

(96.4–112.6)

102.3

(98.4–106.2)

0.6 105.2

(95.8–114.7)

103.5

(97.4–109.7)

0.7

Sugars g/d 116.3

(106.0–126.5)

110.9

(105.8–115.7)

0.4 117.1

(106.9–127.3)

110.5

(105.6–115.5)

0.3 125.4

(113.8–136.9)

119.3

(111.7–126.8)

0.3

Protein g/d 95.4

(89.4–101.5)

90.2

(87.2–93.2)

0.1 95.0

(88.8–101.2)

90.6

(87.6–93.5)

0.2 94.7

(87.4–102.0)

92.1

(87.3–96.8)

0.5

Total Fat g/d 75.7

(69.7–81.8)

67.4

(64.4–70.3)

0.02 75.4

(69.3–81.5)

67.6

(65.7–70.5)

0.02 78.5

(71.3–85.7)

71.7

(67.0–76.3)

0.06

MUFA g/d 29.9

(27.3–32.6)

26.3

(25.0–27.3)

0.02 29.7

(27.1–32.3)

26.4

(25.2–27.7)

0.03 31.0

(27.9–34.0)

28.2

(26.2–30.2)

0.07

PUFA g/d 12.5

(10.9–14.1)

11.2

(10.5–12.0)

0.2 12.4

(10.8–14.0)

11.2

(10.5–12.0)

0.2 13.1

(11.2–15.0)

12.1

(10.9–13.3)

0.3

SF g/d 25.9

(23.7–28.2)

23.2

(22.1–24.2)

0.03 25.9

(23.7–28.1)

23.2

(22.2–24.3)

0.03 27.0

(24.4–29.6)

24.5

(22.9–26.3)

0.07

Cholesterol g/d 258.7

(236.9–280.5)

242.1

(231.6–252.5)

0.2 257.5

(236.7–279.3)

243.0

(232.5–254.5)

0.2 256.8

(231.3–282.4)

246.8

(230.1–263.4)

0.4

Alcohol g/d 10.3

(7.8–12.9)

8.3

(7.1–9.5)

0.2 10.1

(7.7–12.5)

8.8

(7.7–10.0)

0.3 10.1

(7.3–12.8)

9.3

(7.5–11.1)

0.6

Water g/d 3149.1

(2911.8–3386.5)

2909.9

(2806.8–3013.0)

0.05 3136.1

(2917.2–3355.0)

2916.3

(2810.9–3021.7)

0.08 3227.3

(2976.4–3478.2)

3015.7

(2852.1–3179.2)

0.1

Model 1, adjusted for age and sex; Model 2, adjusted for age, sex, income, education, smoking, and BMI.

CI, confidence interval; MUFA, monounsaturated fat; PUFA, polyunsaturated fat; SF, saturated fat; Bonferroni adjusted p-threshold ≤ 0.004. Bold values indicates statistically significant.
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TABLE 2 | Estimated dietary vitamin intakes vary by the presence of the KCNJ2-A allele in unadjusted and adjusted models.

Unadjusted Model 1 Model 2

Vitamin Mean (95% CI) p Mean (95% CI) p Mean (95% CI) p

A allele absent A allele present A allele absent A allele present A allele absent A allele present

Total A eq. (µg/d) 1906.5

(1642.7–2170.3)

1724.1

(1597.5–1850.8)

0.2 1922.4

(1658.5–2186.4)

1712.3

(1585.1–1839.4)

0.2 2057.5

(1744.9–2370.0)

1878.2

(1674.5–2081.9)

0.3

Retinol (µg/d) 498.3

(358.4–638.3)

284.3

(217.1–351.5)

0.007 503.6

(363.3–643.9)

287.6

(220.0–355.1)

0.007 502.1

(327.9–676.2)

281.4

(167.9–394.9)

0.01

Beta-carotene (µg/d) 8430.3

(7141.0–9719.7)

8619.2

(8000.109238.3)

0.8 8494.5

(7208.6–9780.4)

8528.6

(7909.4–9147.8)

1.0 9313.0

(7838.0–10788.0)

9560.5

(8599.2–10521.7)

0.7

Thiamine (mg/d) 2.2

(2.0–2.4)

1.9

(1.9–2.0)

0.05 2.2

(2.0–2.4)

2.0

(1.9–2.1)

0.06 2.2

(1.9–2.4)

2.0

(1.8–2.1)

0.1

Riboflavin (mg/d) 2.7

(2.5–2.9)

2.4

(2.2–2.5)

0.007 2.7

(2.5–2.9)

2.3

(2.2–2.5)

0.005 2.7

(2.4–3.0)

2.4

(2.2–2.6)

0.02

Niacin (mg/d) 26.7

(24.9–28.5)

24.7

(23.8–25.6)

0.05 26.6

(24.8–28.4)

24.9

(24.0–25.8)

0.1 26.7

(24.6–28.8)

25.4

(24.0–26.7)

0.2

Niacin eq. (mg/d) 45.8

(42.8–48.8)

42.8

(41.4–44.3)

0.08 45.6

(42.6–48.5)

43.1

(41.7–44.5)

0.1 45.7

(42.3–49.1)

43.9

(41.7–46.2)

0.3

Vitamin B6 (mg/d) 2.9

(1.2–4.5)

3.4

(2.6–4.2)

0.6 2.9

(1.3–4.6)

3.4

(2.6–4.2)

0.6 3.8

(2.1–5.5)

4.2

(3.1–5.3)

0.7

Folate (µg/d) 569.5

(529.4–609.5)

506.6

(487.3–525.8)

0.006 570.0

(530.3–609.7)

510.0

(490.8–529.1)

0.008 569.2

(522.7–615.6)

511.7

(481.4–542.0)

0.02

Vitamin B12 (µg/d) 5.3

(4.8–5.9)

5.2

(4.9–5.4)

0.6 5.3

(4.7–5.9)

5.2 4.9

(5.5)

0.7 5.2

(4.6–5.8)

5.2

(4.8–5.6)

1.0

Vitamin C (mg/d) 218.0

(193.3–242.7)

210.2

(198.3–222.0)

0.6 218.8

(194.0–243.5)

209.8

(197.9–221.8)

0.5 238.1

(210.0–266.2)

225.0

(206.7–243.3)

0.4

Vitamin D (µg/d) 2.6

(2.2–2.9)

2.5

(2.4–2.7)

0.8 2.6

(2.2–2.9)

2.5

(2.4–2.7)

0.8 2.6

(2.3–3.0)

2.6

(2.4–2.8)

0.8

Vitamin E (mg/d) 10.0

(9.1–10.9)

9.3

(8.9–9.7)

0.1 10.0

(9.1–10.8)

9.3

(8.9–9.7)

0.2 10.6

(9.6–11.5)

10.0

(9.4–10.6)

0.2

eq., equivalents; Model 1, adjusted for age and sex; Model 2, adjusted for age, sex, education, income, smoking and BMI.

CI, confidence interval; Bonferroni adjusted p-threshold ≤0.004. Bold values indicates statistically significant.
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Relationships were not significant when Bonferroni corrections
were applied for multiple testing (adjusted p-threshold≤0.004).

Relationships Between KCNJ2-rs236514
and Estimated Dietary Mineral Intakes
In all models, dietary calcium and sodium intakes were lower in
those carrying the KCNJ2-A allele (p range= 0.01–0.04; Table 3).
Relationships were not significant when Bonferroni corrections
were applied for multiple testing (adjusted p-threshold ≤0.006).
Differences inmineral intakes were found between the sexes, with
men consumingmore dietary iron, magnesium, sodium, and zinc
(Supplementary Table 9). Therefore, the analyses were stratified
by sex (Supplementary Table 7C). In women, the presence of the
KCNJ2-A allele was associated with lower sodium intakes in all
models (p range = 0.0006–0.007). Relationships were significant
when Bonferroni corrections were applied for multiple testing in
the unadjusted and age-adjusted models (adjusted p-threshold
≤0.006). In men, the presence of the KCNJ2-A allele was
associated with lower calcium intakes in the fully adjusted
model only (p = 0.04). This relationship was not significant
when Bonferroni corrections were applied for multiple testing
(adjusted p-threshold≤0.006).

Relationships Between KCNJ2-rs236514
and Body Composition Markers
The presence of the KCNJ2-A allele was not associated with the
body composition markers in adjusted or unadjusted models
(Table 4). However, male participants had higher mean weight,
waist, and WHR distributions than females (p < 0.0001;
Supplementary Table 1). Therefore, the analyses were stratified
by sex (Supplementary Table 7D). The presence of the KCNJ2-
A allele in males was associated with higher mean scores for
BMI, waist and WHR in the unadjusted, age adjusted, fully
adjusted, and in an additional fully adjusted model inclusive of
energy intake as a variable (p range = 0.0007–0.004). Except for
waist and WHR in the unadjusted models, these relationships
were significant when Bonferroni corrections were applied for
multiple testing (adjusted p-threshold ≤0.01). In females, the
presence of the KCNJ2-A allele was associated with lower WHR
scores after adjusting for age, education, income, and smoking
(p = 0.03); and age, education, income, smoking and energy
intake (p = 0.04). These relationships were not significant
when Bonferroni corrections were applied for multiple testing
(adjusted p-threshold≤0.01).

Relationships Between KCNJ2-rs236514
and Liver Function Biomarkers
The presence of the KCNJ2-A allele was associated with lower
levels of blood GGT and AST in all models (p range = 0.0002–
0.01; Table 5). Lower blood albumin levels were associated with
the presence of the KCNJ2-A allele in the unadjusted and fully
adjusted models (p= 0.03; Table 5). Relationships to lower GGT
levels in all models were significant when Bonferroni corrections
were applied for multiple testing (adjusted p-threshold≤0.006).

Higher blood GGT, ALT, total protein, albumin, and bilirubin
levels were found in male participants (p range <0.0001–0.006;

Supplementary Table 10), therefore the analyses were stratified
by sex (Supplementary Table 7E). In males, the presence of the
KCNJ2-A allele was associated with lower GGT and ALT, across
all models (p range = 0.0002–0.001). The variant allele (A) was
also associated with lower albumin and bilirubin levels in males,
in all models (p range = 0.03–0.04). In women, the presence
of the KCNJ2-A allele was associated with lower blood AST in
the fully adjusted model (p = 0.04). Relationships to lower GGT
levels in male KCNJ2-A allele carriers were significant in all
models when Bonferroni corrections were applied for multiple
testing (adjusted p-threshold≤0.006).

Relationships Between KCNJ2-rs236514
and Blood Glucose Levels
A statistically significant association was found between lower
fasting blood glucose levels and the presence of the KCNJ2-A
allele in the fully adjusted model (p = 0.02; Table 6). Fasting
blood glucose levels were significantly higher in men than in
women (p < 0.0001; Supplementary Table 11), therefore the
analyses were stratified by sex (Supplementary Table 7F). The
presence of theKCNJ2-A allele inmales was associated with lower
fasting blood glucose in the fully adjustedmodel only (p= 0.005).

Relationships Between KCNJ2-rs236514
and Blood Lipid Levels
There were no associations between the blood lipids and
the presence of the KCNJ2-A allele (Table 7). However,
female participants had higher blood levels of total
cholesterol, LDL and HDL, while males had a higher mean
total cholesterol to HDL ratio (p range <0.0001–0.04;
Supplementary Table 12). Therefore, the analyses were stratified
by sex (Supplementary Table 7G). The presence of the KCNJ2-A
allele in females was associated with higher LDL levels, however
only in the age-adjusted model (p = 0.04). Relationships were
not significant when Bonferroni corrections were applied for
multiple testing (adjusted p-threshold≤0.01).

Relationships Between KCNJ2-rs236514
and Hypertension
The presence of the KCNJ2-A allele was not associated with
hypertension in the total cohort, in unadjusted and adjusted
models (Table 8). There were no differences between the
sexes in the distribution analyses (Supplementary Table 13)
and no associations found when results were stratified by sex
(Supplementary Table 7H).

Analysis by Genotype
Analysis by KCNJ2-rs236514 genotype was repeated for the
relationships with estimated energy, macronutrient, vitamin
and mineral intakes, body composition markers, liver function
biomarkers, blood glucose levels, blood lipid levels and
hypertension for the complete cohort, including unadjusted and
adjustment models as above. Sex stratified analyses were not
conduct by genotype due to insufficient statistical power.

When analysed by genotype energy intake, TF, MUFA, SF,
retinol, riboflavin, folate, sodium, and calcium intakes showed
potential allele dose dependent patterns, with the highest
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TABLE 3 | Estimated dietary mineral intakes vary by the presence of the KCNJ2-A allele in unadjusted and adjusted models.

Unadjusted Model 1 Model 2

Minerals Mean (95% CI) p Mean (95% CI) p Mean (95% CI) p

A allele absent A allele present A allele absent A allele present A allele absent A allele present

Calcium

(mg/d)

1036.7

(949.9–1123.4)

932.7

(891.0–974.3)

0.03 1041.3

(954.6–1128.0)

927.9

(886.1–969.6)

0.02 1078.2

(974.8–1181.5)

970.9

(903.6–1038.3)

0.04

Copper

(mg/d)

2.4

(2.2–2.6)

2.3

(2.2–2.4)

0.2 2.4

(2.2–2.6)

2.3

(2.2–2.4)

0.2 2.6

(2.4–2.8)

2.5

(2.3–2.6)

0.2

Iron

(mg/d)

15.4

(14.3–16.4)

14.3

(13.8–14.8)

0.07 15.3

(14.3–16.4)

14.4

(13.9–14.9)

0.1 15.6

(14.4–16.8)

14.8

(14.0–15.6)

0.2

Magnesium

(mg/d)

416.2

(387.3–445.0)

391.3

(377.4–405.1)

0.1 414.7

(385.9–443.5)

392.8

(379.0–406.7)

0.2 436.9

(403.4–470.4)

418.8

(397.0–440.6)

0.3

Potassium

(mg/d)

4419.6

(4112.2–4727.0)

4144.5

(3997.2–4291.9)

0.1 4418.7

(4110.1–4727.3)

4150.2

(4001.9–4298.5)

0.1 4627.6

(4272.0–4983.1)

4399.9

(4168.7–4631.1)

0.2

Selenium

(mg/d)

178.4

(144.5–212.3)

169.9

(153.6–186.1)

0.7 176.7

(142.7–210.7)

170.0

(153.7–186.4)

0.7 182.4

(141.4–223.5)

182.4

(155.6–209.1)

1.0

Sodium

(mg/d)

2224.1

(2067.2–2381.1)

1994.3

(1918.9–2069.7)

0.01 2209.7

(2057.1–2362.4)

2017.5

(1944.0–2091.0)

0.03 2225.5

(2044.6–2406.4)

2040.6

(1922.7–2158.5)

0.04

Zinc

(mg/d)

13.4

(12.4–14.3)

12.6

(12.2–13.1)

0.2 13.3

(12.4–14.3)

12.7

(12.2–13.1)

0.2 13.6

(12.5–14.7)

13.0

(12.3–13.8)

0.3

Model 1, adjusted for age and sex; Model 2, adjusted for age, sex, education, income, smoking and BMI.

CI, confidence interval; Bonferroni adjusted p-threshold ≤0.006. Bold values indicates statistically significant.
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means in those homozygous for the G allele, the lowest in
those homozygous for the A allele, and intermediate levels
in the heterozygotes, in all models (Supplementary Table 14).
However, there were only statistically significant differences
between the homozygous groups for TF and MUFA, in the
unadjusted model (Supplementary Table 14), and for retinol
and folate in all models, and for riboflavin and sodium
in the unadjusted and the age and sex adjusted models
(Supplementary Table 14).

None of the body composition markers showed clear
patterns of variance by genotype (Supplementary Table 15).
When analysed by genotype GGT, AST, and fasting glucose
showed potential allele dose dependent patterns, with the highest
means in those homozygous for the G allele, the lowest in
those homozygous for the A allele, and intermediate levels
in the heterozygotes, in all models (Supplementary Table 16).
However, there were only statistically significant differences
between the homozygous groups for AST; those homozygous for
the G allele and A allele carrying genotype groups for GGT, in
all models; and between those homozygous for the G allele and
A allele carrying genotype groups for fasting glucose in the fully
adjusted model (Supplementary Table 16).

DISCUSSION

This study is the first to explore relationships between KCNJ2
genetic variation and measures of nutrient intake, body
composition, and health-related biomarkers. Although the cross-
sectional design has limitations, demonstrating these correlations
in a convenient sample is a necessary first step to addressing the
research gaps in this field. The results indicate that carriage of
the KCNJ2-rs236514 variant allele (A) is related to differences in
fat and water intake, estimated intake of various micronutrients,
body composition, blood glucose levels and blood biomarkers of
liver health in an elderly cohort, and that these relationships vary
by sex. At a time when incidences of metabolic-related diseases
are rapidly increasing worldwide (44), the results provide new
understandings of possible drivers and important avenues for
further research.

As a 3’-UTR polymorphism, the KCNJ2-rs236514 variant
may alter protein expression and stability, rather than directly
modulating the protein structure or function (45). While the
ion channel coded by the KCNJ2 gene increases magnitude of
sour taste (24), there is uncertainty around the role of the
KCNJ2-rs236514 variant. Prior research has shown KCNJ2-A
allele carriers like sour more than non-carriers (5). Reduced
liking of tastants has been demonstrated in the presence of
taste receptor SNPs that increase intensity of taste perception
(46, 47). Therefore, the variant may be reducing the magnitude
of sour taste transduction. Due to the novel nature of these
findings, this hypothesis and related research form the framework
for discussion.

While the identified relationship between fat intake and sour
taste genotype KCNJ2-rs236514 may seem counterintuitive, it is
established that sour perception is suppressed by fats and vice-
versa (48–52). Here, estimated consumption of TF, MUFA and
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TABLE 5 | Liver function biomarkers vary by the presence of the KCNJ2-A allele in unadjusted and adjusted models.

Liver

function

biomarkers

Unadjusted Model 1 Model 2

Mean (95% CI) p Mean (95% CI) p Mean (95% CI) p

A allele

absent

A allele

present

A allele

absent

A allele

present

A allele

absent

A allele

present

GGT

(U/L)

57.2

(47.2–67.2)

36.5

(31.7–41.3)

0.0003 57.8

(47.9–67.7)

37.1

(32.3–41.9)

0.0002 55.7

(43.7–67.6)

36.2

(28.4–44.0)

0.001

ALP

(U/L)

78.5

(71.7–85.3)

76.1

(72.8–79.4)

0.5 79.1

(72.2–85.9)

76.1

(72.8–79.4)

0.5 79.2

(70.9–87.6)

76.4

(71.0–81.8)

0.5

ALT

(U/L)

24.5

(22.4–26.6)

22.3

(21.2–23.3)

0.06 24.2

(22.1–26.2)

22.5

(21.5–23.5)

0.1 24.8

(22.5–27.0)

23.3

(21.8–24.8)

0.2

AST

(U/L)

21.6

(20.0–23.1)

19.3

(18.6–20.1)

0.01 21.6

(20.1–23.2)

19.3

(18.6–20.1)

0.009 22.4

(20.6–24.2)

20.1

(18.9–21.2)

0.01

T. Protein

(g/L)

76.8

(75.7–77.6)

76.3

(75.8–76.7)

0.4 76.7

(75.8–77.6)

76.3

(75.9–76.8)

0.5 76.3

(75.2–77.3)

75.8

(75.1–76.5)

0.4

Albumin

(g/L)

39.5

(38.9–40.0)

38.8

(38.5–39.1)

0.03 39.4

(38.9–40.0)

38.8

(38.6–39.1)

0.05 39.3

(38.7–39.9)

38.6

(38.2–39.0)

0.03

Cal/Glob 37.3

(36.3–38.2)

37.5

(37.0–37.9)

0.7 37.3

(36.4–38.2)

37.5

(37.1–37.9)

0.7 37.0

(35.9–38.0)

37.1

(36.4–37.8)

0.8

Bilirubin

(µmol/L)

11.7

(10.8–12.6)

10.6

(10.2–11.1)

0.05 11.7

(10.8–12.6)

10.8

(10.3–11.2)

0.05 11.8

(10.8–12.8)

10.8

(10.2–11.5)

0.05

Model 1, adjusted for age and sex; Model 2, adjusted for age, sex, education, income, smoking and BMI.

CI, confidence interval; GGT, gamma glutamyltransferase; ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; Cal/Glob, calcium globulin ratio;

Bonferroni adjusted p-threshold ≤0.006. Bold values indicates statistically significant.

SF were significantly lower amongst KCNJ2-A allele carriers,
particularly in females. If the variant is reducing the magnitude
of sour taste transduction, there may be an increase in liking
for sour. As a result, lower consumption of dietary fat may
be required to moderate the sourness of foods. This potential
sex dimorphism is congruent with previous research showing
women find sour more intense and are more sensitive to sourness
(18, 19, 53). As female KCNJ2-A allele carriers consumed less
fat, the hypothesis is supported. Further research is required
to substantiate these theories and the bases from which they
are made.

The finding in this study that female KCNJ2-A allele carriers
consumed significantly less water is supported by previous
research on sour taste receptors. The PKD2LI acid-sensing
pathway was found to be activated by water, triggering appetitive
drinking under thirst (54). Therefore, the reduced water
intake of female KCNJ2-A allele carriers further supports the
hypothesis that the SNP is reducing the degree of transduction.
Additional research is required to explore this possibility and the
mechanisms in play.

There were lower retinol, riboflavin, folate, calcium, and
sodium intakes in KCNJ2-A allele carriers before and after
adjustments, and differences by sex. Relationships between
KCNJ2 SNPs and micronutrient intakes have not previously
been explored, therefore data are not available to contextualise
these findings. However, as a fat-soluble vitamin (55), lower
retinol intake may be explained by the lower intake of
TF, MUFA and SF by those carrying the KCNJ2-A allele.
These novel findings would benefit from further studies on
KCNJ2 variance, sour taste genetics more broadly, and vitamin

and mineral intakes. Studies incorporating individual food
intakes are required for more practical dietary understanding
and application.

The body composition measures of BMI, waist and WHR
were all significantly higher in male KCNJ2-A allele carriers
in all adjustment models and after correction for multiple
testing. The mean BMI places male KCNJ2-A allele carriers in
the overweight category, and waist and WHR scores indicate
an increased risk of metabolic complications (56). Energy
intake did not modify the association suggesting an effect
on body mass markers other than diet. The KCNJ2 gene is
expressed in high concentrations in human endocrine and
brain tissues (57). Both areas play a role in metabolism hence
extra-oral KCNJ2 gene expression may be altering function
in these tissues influencing body composition. As BMI, waist
and WHR are indicators of obesity and obesity-related diseases
(58), further research on the role of the KCNJ2 receptor
would be valuable to fully elucidate it’s gustatory and extra-
oral functions.

The liver enzymes in the total cohort (GGT, AST) and in
men (GGT, ALT, Albumin, Bilirubin) that were associated with
the presence of the KCNJ2-A allele were significant at lower
mean levels. Clinically, the mean GGT levels in non-KCNJ2-
A allele carriers exceeded the reference ranges in the total
cohort and men [reference range 5–50 U/L (59)]. However,
the levels of GGT enzymes were ∼50% lower in KCNJ2-
A allele carriers than they were in non-carriers. Raised liver
enzymes, particularly GGT, are significant risk factors for
metabolic syndrome and type 2 diabetes (60, 61). Therefore, the
lower GGT levels in variant allele (A) carriers may suggest a
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TABLE 6 | Blood glucose measures vary by the presence of the KCNJ2-A allele in the fully adjusted model.

Blood glucose

measures

Unadjusted Model 1 Model 2

Mean (95% CI) p Mean (95% CI) p Mean (95% CI) p

A allele

absent

A allele

present

A allele

absent

A allele

present

A allele

absent

A allele

present

Glucose*

(mmol/L)

5.8

(5.5–6.0)

5.6

(5.5–5.7)

0.09 5.7

(5.5–5.9)

5.6

(5.5–5.7)

0.2 5.7

(5.5–6.0)

5.5

(5.3–5.6)

0.02

HbA1c

(%)

5.9

(5.8–6.0)

5.9

(5.9–6.0)

0.8 5.9

(5.8–6.0)

5.9

(5.9–6.0)

0.9 5.9

(5.8–6.0)

5.9

(5.8–6.0)

0.6

Model 1, adjusted for age and sex; Model 2, adjusted for age, sex, education, income, smoking and BMI.

CI, confidence interval.

*Fasting; HbA1c, glycosylated haemoglobin. Bold values indicates statistically significant.

TABLE 7 | Blood lipid measures do not vary by the presence of the KCNJ2-A allele in unadjusted and adjusted models.

Blood lipid measures Unadjusted Model 1 Model 2

Mean (95% CI) p Mean (95% CI) p Mean (95% CI) p

A allele

absent

A allele

present

A allele

absent

A allele

present

A allele

absent

A allele

present

TG (mmol/L) 1.4

(1.2–1.5)

1.4

(1.3–1.4)

0.9 1.4

(1.2–1.5)

1.4

(1.3–1.4)

1.0 1.3

(1.2–1.5)

1.3

(1.2–1.4)

0.9

LDL (mmol/L) 2.4

(2.2–2.6)

2.5

(2.4–2.6)

0.3 2.4

(2.2–2.6)

2.5

(2.4–2.6)

0.3 2.3

(2.1–2.5)

2.4

(2.3–2.6)

0.4

HDL (mmol/L) 1.5

(1.4–1.6)

1.5

(1.4–1.5)

0.2 1.5

(1.4–1.6)

1.4

(1.4–1.5)

0.1 1.6

(1.5–1.6)

1.5

(1.4–1.6)

0.3

TC (mmol/L) 4.5

(4.3–4.8)

4.6

(4.5–4.7)

0.6 4.5

(4.3–4.7)

4.6

(4.5–4.7)

0.7 4.5

(4.3–4.7)

4.5

(4.4–4.7)

0.6

TC/HDL 3.2

(3.0–3.5)

3.4

(3.3–3.5)

0.3 3.2

(3.0–3.4)

3.4

(3.3–3.5)

0.2 3.1

(2.9–3.4)

3.2

(3.1–3.4)

0.4

Model 1, adjusted for age and sex; Model 2, adjusted for age, sex, education, income, smoking and BMI.

CI, confidence interval; TG, triglycerides, LDL, low density lipoprotein, HDL, high density lipoprotein; TC, total cholesterol; Bonferroni adjusted p-threshold ≤0.01.

TABLE 8 | Hypertension status does not vary by presence of the KCNJ2-A allele in unadjusted and adjusted models.

Unadjusted Model 1 Model 2

χ
2 (p-value) OR (95% CI) χ

2 (p-value) OR (95% CI) χ
2 (p-value) OR (95% CI)

A allele present

Hypertensive 0.1 1.1 0.04 1.1 0.02 1.04

(0.8) (0.6–1.7) (0.8) (0.6–1.7) (0.9) (0.6–1.8)

Hypertensive, systolic ≥140 mmHg and diastolic ≥90 mmH and/or on anti-hypertensive medication; Model 1, adjusted for age and sex; Model 2, adjusted for age, sex, income,

education, smoking and BMI.

OR, odds ratio; CI, confidence interval.

protective effect on metabolic health. Particularly considering
the elevated metabolic-disease risk profile of male participants
with the variant allele (A) in this study. Further exploration
of these relationships in the context of presence or absence of

liver disease, and in metabolic diseases are required. As the
relationships between KCNJ2-A allele presence and the liver
function biomarkers exist independently of all confounders and
the KCNJ2 protein is moderately expressed in the human liver
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(57), the possible extra-oral functions of the receptor should be
considered and investigated.

Fasting blood glucose levels were lower in KCNJ2-A allele
carriers in the total cohort and in males, in the fully adjusted
model. Clinically, fasting blood glucose levels are within
healthy ranges in this cohort [reference range 3.0–6.0 mmol/L
(62)]. Therefore, the statistical significance is not indicative
of pathological significance. However, fasting blood glucose is
positively correlated with obesity-related markers (63, 64). In
this study fasting blood glucose was lower but BMI, waist and
WHR scores were higher in male KCNJ2-A allele carriers. This
supports the hypothesised extra-oral functions of the receptor, in
line with its presence in endocrine and brain tissue. Furthermore,
studies have found a positive correlation between elevated blood
glucose and GGT levels in subjects with metabolic conditions
(65, 66). Both markers are present at lower levels in KCNJ2-
A allele carriers, strengthening the theory that the SNP may
be reducing transduction and may have a protective effect on
metabolic health.

In addition to the cross-sectional design of the study, the
results require interpretation considering several limitations. As
an elderly cohort, age-related decline in the perception of all
five tastes is possible (18). Therefore, age adjustments were
important in validating results for wider application. Age did
not influence the relationships of statistical significance making
findings applicable to broader population age ranges. Nutrient
intake data were derived from an FFQ which can be subject
to under and over-reporting, reporting bias and erroneous
recall (67, 68). Furthermore, FFQs are more representative of
habitual intake than specific daily intake (67). The findings
are not necessarily causal in a cross-sectional study and in
the absence of contextualising research, the hypotheses require
further investigation.

The large sample size and even sex distribution of the study
cohort are a strength of this study. While some patterns were
found that suggest potential allele dose effects, it is important
to note that the genotype analysis is provided for contextual
patterns of allele dosage only, and limited statistical significance
was found here, likely due to the reduced statistical power
when analysing with three (AA/AG/GG) groups, as compared
to two (presence/absence of the A-allele). Of those carrying
the KCNJ2-A allele, 54.5% were female and therefore the
sexes are evenly represented. In addition, the mean allelic
frequencies are reflective of those found in European and
Asian countries (69), cultures representative of the wider
Australian populace (70). Importantly, the well-characterised
study cohort enabled multiple outcome variables to be assessed
and confounders to be adjusted for, improving the integrity of
the findings.

CONCLUSIONS

In presenting associations between KCNJ2-rs236514 and
macronutrient, vitamin and mineral intakes, body composition,
blood biomarkers of liver health and blood glucose levels, this
novel research suggests the sour taste gene may be a modifier of

nutritional intake and measures of metabolic health. Additional
studies exploring the impact that the KCNJ2-rs236514 SNP
has on sour detection thresholds, intensity and preference are
required to clarify potential influence on dietary choice and
intake. Understanding individual genetic taste profiles may
then help health professionals customise diets that improve
nutritional status and health. Further research is required on
the effect the SNP may be having on signalling magnitude
and direction to understand the mechanisms involved and
test these hypotheses. In addition, investigating the possible
extra-oral functions of the KCNJ2 receptor and the rs236514
SNP may greatly assist in improving the health of those with
overweight and obesity, liver disease and metabolic-related
health conditions.
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