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Recently, we reported that obese Dahl salt-sensitive leptin receptor mutant (SSLepRmutant) 
rats develop glomerular injury and progressive proteinuria prior to puberty. Moreover, this 
early progression of proteinuria was associated with elevations in GFR. Therefore, the 
current study examined whether treatment with lisinopril to reduce GFR slows the early 
progression of proteinuria in SSLepRmutant rats prior to puberty. Experiments were 
performed on 4-week-old SS and SSLepRmutant rats that were either treated with vehicle 
or lisinopril (20 mg/kg/day, drinking water) for 4 weeks. We did not observe any differences 
in MAP between SS and SSLepRmutant rats treated with vehicle (148 ± 5 vs. 163 ± 6 mmHg, 
respectively). Interestingly, chronic treatment with lisinopril markedly reduced MAP in SS 
rats (111 ± 3 mmHg) but had no effect on MAP in SSLepRmutant rats (155 ± 4 mmHg). 
Treatment with lisinopril significantly reduced proteinuria in SS and SSLepRmutant rats 
compared to their vehicle counterparts (19 ± 5 and 258 ± 34 vs. 71 ± 12 and 498 ± 66 mg/
day, respectively). Additionally, nephrin excretion was significantly elevated in SSLepRmutant 
rats versus SS rats, and lisinopril reduced nephrin excretion in both strains. GFR was 
significantly elevated in SSLepRmutant rats compared to SS rats, and lisinopril treatment 
reduced GFR in SSLepRmutant rats by 30%. The kidneys from SSLepRmutant rats displayed 
glomerular injury with increased mesangial expansion and renal inflammation versus SS 
rats. Chronic treatment with lisinopril significantly decreased glomerular injury and renal 
inflammation in the SSLepRmutant rats. Overall, these data indicate that inhibiting renal 
hyperfiltration associated with obesity is beneficial in slowing the early development of 
glomerular injury and renal inflammation.
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INTRODUCTION

Obesity has emerged as an epidemic and major health problem 
over the last few decades and has been linked to the increasing 
prevalence of renal disease (Chagnac et  al., 2000; Bosma 
et  al., 2004; Ejerblad et  al., 2006; Hsu et  al., 2006; Jacobs 
et  al., 2010). One of the major reasons for this association 
is that obesity is associated with the two most common 
causes of renal disease, hypertension and diabetes (Chen 
et  al., 2004; Kurella et  al., 2005). However, obesity alone is 
now considered an independent risk factor for renal injury 
and ultimately leads to chronic kidney disease (CKD) (Chagnac 
et  al., 2000; Bosma et  al., 2004; Ejerblad et  al., 2006; Hsu 
et  al., 2006; Jacobs et  al., 2010). While there have been 
plenty of studies investigating the pathophysiology of renal 
disease in obese adults, studies examining the relationship 
between renal disease and obese children have been few 
and far between. Recent studies suggest that childhood obesity 
is associated with the increased risk of proteinuria in children 
independent of diabetes and hypertension (Ogden et  al., 
2016; Hales et  al., 2017) indicating that renal dysfunction 
starts long before elevations in blood glucose levels and 
arterial pressure. Recently, we  reported that the obese Dahl 
salt-sensitive (SS) leptin receptor mutant (SSLepRmutant) rat 
develops progressive proteinuria in the absence of 
hyperglycemia and elevations in arterial pressure prior to 
puberty (McPherson et  al., 2016, 2020; Poudel et  al., 2020). 
Therefore, the SSLepRmutant rat offers the ability to study the 
mechanisms involved in the early progression of renal injury 
associated with obesity.

One of the hallmark characteristics that contributes to 
renal injury in adult obese patients is elevations in GFR, 
also known as renal hyperfiltration (Chagnac et  al., 2000; 
Henegar et al., 2001; Hall et al., 2004). Yet, studies examining 
the early changes in renal hemodynamics in obese children 
are limited. The renin-angiotensin system (RAS) plays 
important role in regulating GFR (Hall, 1986, 1991). 
Angiotensin II (AngII), one of the major metabolites of 
RAS, is elevated in obese subjects with renal disease and 
causes hypertension and stimulates renal inflammation 
(Suzuki et  al., 2003; Schmieder et  al., 2007; Yvan-Charvet 
and Quignard-Boulange, 2011; Kalupahana et  al., 2012; 
Kalupahana and Moustaid-Moussa, 2012; Alique et al., 2014; 
Li et  al., 2015). Moreover, RAS contributes to the early 
elevations in GFR during the initial stages of renal disease 
in obese patients (Ribstein et  al., 1995; Zhang and Reisin, 
2000; Price et  al., 2002). We  recently observed that the 
early progression of proteinuria in obese SSLepRmutant rats 
was associated with renal hyperfiltration (McPherson et al., 
2020). Since angiotensin-converting enzyme inhibitors are 
one of the standard treatments for patients with albuminuria 
(Agodoa et  al., 2001; Jafar et  al., 2001; Progression of 
Chronic Kidney Disease, 2003; Chu et  al., 2021), 
we  hypothesized that ACE inhibition would reduce 
hyperfiltration and renal inflammation leading to a reduction 
in the early progression of proteinuria in SSLepRmutant rats 
prior to puberty.

MATERIALS AND METHODS

General
Experiments were performed on a total of 101 SS and 
SSLepRmutant female and male rats between 4–8  weeks of age 
prior to puberty (Shields et  al., 2021). SS and SSLepRmutant 
rats were obtained from our in-house colony of heterozygous 
SSLepRmutant rats, created by using zinc-finger nuclease 
technology as previously described (McPherson et  al., 2016). 
We  have previously observed the development of renal injury 
is similar in female and male SS and SSLepRmutant rats during 
this age (Poudel et  al., 2018; Shields et  al., 2021). Genotyping 
was performed by the Molecular and Genomic Facility at the 
University of Mississippi Medical Center. Rats were fed a 1% 
NaCl diet (TD58640; Harlan Laboratories, Madison, WI) and 
had free access to food and water except during the 2-h period 
of the GFR measurement. Rat housing in the Laboratory Animal 
Facility at University of Mississippi Medical Center was approved 
by the American Association for the Accreditation of Laboratory 
Animal Care, and all protocols were approved by the University 
of Mississippi Medical Center Institutional Animal Care and 
Use Committee.

Effects of Lisinopril on the Early 
Progression of Renal Injury in SS and 
SSLepRmutant Rats
At 4 weeks of age, SS and SSLepRmutant rats were weighed 
and blood samples were collected via tail vein for measurement 
of blood glucose levels (glucometer, Bayer HealthCare; 
Mishawaka, IN). Then, the rats were placed in metabolic 
cages for an overnight urine collection to determine proteinuria 
using the Bradford method (Bio-Rad Laboratories; Hercules, 
CA). After collecting baseline data, SS and SSLepRmutant 
rats were separated into four groups: (1) SS and (2) 
SSLepRmutant rats treated with vehicle and (3) SS and (4) 
SSLepRmutant rats treated with lisinopril (20 kg/mg/day, in 
the drinking water; 16,833; Cayman Chemical Company, 
Ann Harbor, MI) for 4 weeks. We measured the water intake 
weekly to ensure that the rats were receiving the appropriate 
dose of lisinopril. Every 2 weeks rats were placed in metabolic 
cages until the rats reached 8 weeks of age, and proteinuria 
and blood glucose levels were measured at each time period. 
Nephrin excretion was measured on the final urine sample 
(NBP2-76751, Novus Biologicals, Littleton, CO). During the 
final week of the study, the rats were placed under anesthesia, 
and catheters were inserted into the carotid artery and 
jugular vein for the measurement of mean arterial pressure 
(MAP) and infusion of FITC-sinistrin (measurement of GFR), 
respectively. After a 24-h recovery period, catheters were 
connected to pressure transducers (MLT0699, ADInstruments, 
Colorado Springs, CO) coupled to a computerized PowerLab 
data-acquisition system (ADInstruments) to obtain conscious 
MAP from the rats. After a 30-min equilibration period, 
MAP was recorded continuously for 30 min. Immediately 
after measuring MAP, the jugular vein catheter was flushed 
with heparinized saline.
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Measurement of GFR via FITC-Sinistrin
After a 24-h recovery period from measuring MAP, rats were 
anesthetized briefly with isoflurane for assembly of the 
noninvasive clearance kidney device (MediBeacon, Mannheim, 
Germany) consisting of two light-emitting diodes that excite 
FITC-sinistrin (FTC-FS001; MediBeacon, Mannheim, Germany) 
at 480 nm, a photodiode that emits light at 531 nm, a 
microprocessor, and a battery. The device was attached to the 
back of the rat by a double-sided adhesive patch (MediBeacon, 
Mannheim, Germany) and secured with a rodent jacket to a 
region (~3 cm) on the back of the rat from which hair had 
been removed with a depilation cream. Rats were allowed to 
recover in separate cages, and a baseline measurement for 
15 min was recorded. Next, a bolus injection of FITC-sinistrin 
(5 mg/100 g body wt, prepared as 15 mg/ml in sterile isotonic 
saline) was administered via the jugular vein followed by a 
bolus injection of sterile saline. During a 2-h period after 
bolus injection, excretion kinetics of FITC-sinistrin were 
measured transcutaneously at a sampling rate of 60 
measurements/min with an excitation time of 10 ms/measurement 
and used to calculate the elimination half-life (t1/2) of FITC-
sinistrin using a one-compartment model with MDPLab 
evaluation software (MediBeacon), as previously described (Pill 
et al., 2005, 2006; Schock-Kusch et al., 2009). GFR was determined 
from the t1/2 of FITC-sinistrin with a validated empirically 
derived conversion factor, as previously described (Yu et  al., 
2007; Schock-Kusch et  al., 2009, 2011). Then, the rats were 
anesthetized and terminal blood samples were taken from the 
abdominal aorta for the measurement of plasma total cholesterol 
concentrations determined by ELISA (Cayman Chemical 
Company, Ann Arbor, MI). Both kidneys were weighed. The 
right kidney was cut in half, in which one half was fixed in 
a 10% buffered formalin solution for histology, and the other 
half was snapped frozen in liquid nitrogen and stored at −80°C. 
Renal cytokines were measured using a Bio-Plex Pro Rat 
Cytokine Plex Assay Reagent Kit on a Bio-Rad Bioplex 200 
System according to the manufacture’s protocol (Bio-Rad 
Laboratories; Hercules, CA).

Measurement of Glomerular Injury in SS 
and SSLepRmutant Rats
Paraffin kidney sections were prepared from the right kidneys 
collected from SS and SSLepRmutant rats treated with vehicle 
and lisinopril. Kidney sections were cut into 3 μm sections 
and stained with Periodic acid-Schiff (PAS). To determine 
glomerular injury, thirty glomeruli per PAS section from each 
rat were captured using a SeBa microscope equipped with a 
color camera (Laxco Inc., North Creek, Washington) and scored 
in a blinded fashion on a 0–4 scale with 0 representing a 
normal glomerulus, 1 representing a 25% of loss, 2 representing 
a 50% loss, 3 representing a 75% loss, and 4 representing 
>75% loss of capillaries in the tuft.

Statistical Analysis
These data are presented as mean values ± SEM. Statistical 
analysis was performed using GraphPad Prism 8 (GraphPad 

Software, San Diego, CA). Two-way ANOVA followed by Tukey’s 
multiple comparisons test was used to determine the significant 
difference in mean values for a single time point. Time course 
changes in proteinuria were compared between and within SS 
and SSLepRmutant strains treated with either vehicle or lisinopril 
using a repeated measures three-way ANOVA followed by the 
Holm-Sidak test. A value of p of <0.05 was considered significantly 
different. The power of the studies was not enough to detect 
sex differences, so female and male rats were graphed together. 
Female rats in each group are represented by partially 
filled symbols.

RESULTS

Comparisons of Metabolic Parameters
Measurement of body weight, blood glucose, plasma total 
cholesterol levels in SS and SSLepRmutant rats treated with either 
vehicle or lisinopril are presented in Table  1. At the end of 
the study, body weight was significantly higher in SSLepRmutant 
rats compared to SS rats treated with vehicle (365 ± 15 and 
276 ± 16 g, respectively), and treatment with lisinopril had no 
effect on body weight in either strain (388 ± 13 and 245 ± 10 g, 
respectively). Non-fasting blood glucose levels were similar in 
all groups and within normal physiological range (≤120 mg/
dl). Plasma total cholesterol levels were markedly elevated in 
vehicle-treated SSLepRmutant rats versus SS rats (449 ± 27 vs. 
175 ± 31 mg/dl, respectively). After chronic treatment with 
lisinopril, plasma total cholesterol was significantly reduced in 
SSLepRmutant rats (314 ± 35 mg/dl) but not in SS rats 
(164 ± 15 mg/dl).

Measurement of MAP, Proteinuria, and 
Nephrin Excretion
Effects of lisinopril on MAP, proteinuria, and nephrin excretion 
in SS and SSLepRmutant rats are presented in Figure  1. We  did 
not observe a difference in MAP between vehicle-treated SS 
and SSLepRmutant rats (148 ± 5 and 163 ± 6 mmHg, respectively; 
Figure  1A). Interestingly, lisinopril significantly lowered MAP 
in SS rats (111 ± 4 mmHg) but not in SSLepRmutant rats 
(155 ± 4 mmHg). At baseline, proteinuria was significantly higher 

TABLE 1 | Comparison of metabolic parameters in vehicle and lisinopril-treated 
SS and SSLepRmutant rats at 8 weeks of age.

Metabolic 
Parameters

SS SSLepRmutant

Vehicle Lisinopril Vehicle Lisinopril

Body weight (g) 272 ± 16 245 ± 10 365 ± 15† 388 ± 13†

Glucose  
(mg/dL)

104 ± 4 96 ± 3 115 ± 8 98 ± 3

Total 
cholesterol 
(mg/dL)

175 ± 31 164 ± 15 449 ± 27† 314 ± 35†,#

†indicates a significant difference in p < 0.05 vs. SS rats within the same treatment.
#indicates a significant difference in p < 0.05 vs. vehicle-treated rats within the same strain.
Values are means ± SE. n = 6–8 per group in each parameter.
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in SSLepRmutant rats compared to SS rats (93 ± 22 and 10 ± 4 mg/
day, respectively) and remained significantly higher throughout 
the course of the study (Figure  1B). Chronic treatment with 
lisinopril significantly reduced proteinuria in SS and SSLepRmutant 
rats compared to their vehicle counterparts (19 ± 5 and 258 ± 34 
vs. 71 ± 12 and 498 ± 66 mg/day, respectively). At the end of 
the study, we measured nephrin excretion to determine podocyte 
injury (Figure  1C). Nephrin excretion was markedly elevated 
in vehicle-treated SSLepRmutant versus their SS counterparts 
(2,268 ± 329 vs. 480 ± 110 ng/day, respectively), and treatment 
with lisinopril significantly reduced nephrin excretion in 
SSLepRmutant rats (1,417 ± 164 ng/day). While treatment with 
lisinopril reduced nephrin excretion in SS rats (37 ± 21 ng/day), 
it did not reach statistical significance.

Measurement of GFR via FITC-Sinistrin
Endpoint measurements of GFR in SS and SSLepRmutant rats 
treated with either vehicle or lisinopril are shown in Figure  2. 
Unadjusted GFR was 64% higher in SSLepRmutant rats compared 
to SS rats treated with vehicle, and treatment with lisinopril 
reduced GFR by 30% in SSLepRmutant rats without having an 
effect in SS rats (Figure  2A). When GFR was adjusted to 
body weight, GFR was significantly higher in vehicle-treated 
SSLepRmutant rats compared to their vehicle-treated SS 
counterparts (Figure 2B). After 4 weeks of lisinopril treatment, 
GFR was significantly decreased in SSLepRmutant rats compared 
to the values measured vehicle SSLepRmutant rats. Lisinopril 
treatment had no effect on GFR in SS rats. When adjusting 
GFR for kidney weight instead body weight, we  observed 
similar results (Figure  2C).

Glomerular Injury
The effects of treatment with lisinopril on the degree of 
glomerular injury in SS and SSLepRmutant rats are presented 
in Figure 3. In vehicle-treated animals, SSLepRmutant rats displayed 
a higher degree of mesangial expansion (Figure  3A) and 
glomerular injury scoring (Figure  3B) when compared to SS 
rats. Chronic treatment with lisinopril significantly reduced 
glomerular mesangial expansion and injury in SSLepRmutant 
rats without having an effect in SS rats.

Comparison of Renal Inflammatory 
Cytokine Levels
The effects of lisinopril on the renal cytokines levels in SS and 
SSLepRmutant rats are presented in Figure  4. Macrophage 
inflammatory protein-3 alpha (MIP-3α) was increased by more 
than 2-fold in the kidneys from vehicle-treated SSLepRmutant rats 
compared to SS rats, and chronic treatment with lisinopril 
significantly reduced renal MIP-3α levels in SSLepRmutant rats 
(Figure 4A). We observed a significant decrease in renal interleukin-2 
(IL-2) levels in vehicle-treated SSLepRmutant rats compared to the 
values measured in SS rats, and lisinopril treatment normalized 
IL-2 levels in the kidneys of SSLepRmutant rats (Figure 4B). Similar 
to IL-2, renal IL-4 levels were decreased by 25% in vehicle-treated 
SSLepRmutant rats versus SS rats, and lisinopril prevented the 
decrease in IL-4  in SSLepRmutant rats (Figure  4C).

A

B

C

FIGURE 1 | Measurement of mean arterial pressure (MAP) [Panel (A)] and 
temporal changes in proteinuria [Panel (B)] and nephrin excretion [Panel (C)] 
in vehicle and lisinopril-treated Dahl salt-sensitive (SS) rats and obese SS 
leptin receptor mutant (SSLepRmutant) rats. Numbers of rats studied (n = 5–10 
per group). Female rats in each group are represented by partially filled 
symbols. Values are means ± SE. The significance of the difference in mean 
values for a single time point was determined by a two-way ANOVA followed 
by Tukey’s multiple comparisons test. Temporal changes in proteinuria were 
compared between and within strains using a repeated measures three-way 
ANOVA followed by the Holm-Sidak test. *indicates a significant difference 
from the corresponding value within the same strain at baseline, †indicates a 
significant difference from the corresponding value in SS rats within the same 
treatment, and #indicates a significant difference from the corresponding value 
in vehicle within the same strain.

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Brown et al. ACE Inhibition in SSLepRmutant Rats 

Frontiers in Physiology | www.frontiersin.org 5 December 2021 | Volume 12 | Article 765305

DISCUSSION

Patients suffering from obesity have an increased risk to develop 
CKD (Chagnac et  al., 2000; Bosma et  al., 2004; Ejerblad et  al., 
2006; Hsu et  al., 2006; Jacobs et  al., 2010). Both childhood 
and adult obesity are associated with proteinuria and albuminuria 
(Chagnac et  al., 2000; Bosma et  al., 2004; Burgert et  al., 2006; 
Ejerblad et  al., 2006; Hsu et  al., 2006; Jacobs et  al., 2010). 
With childhood obesity increasing at an alarming rate there 
is a growing need to understand the underlying mechanisms 
involved. The early stage of renal disease in obese subjects is 
associated with elevations in GFR or renal hyperfiltration 
(Ribstein et  al., 1995; Chagnac et  al., 2000; Zhang and Reisin, 
2000; Price et  al., 2002; Griffin et  al., 2008; McPherson et  al., 
2020). These functional changes in renal hemodynamics lead 
to increased transmission of systemic pressure to the glomerulus, 
which causes damage to the glomerular filtration barrier leading 
to proteinuria. Previous studies have demonstrated that lowering 
arterial pressure and GFR attenuates proteinuria, indicating 
that development of obesity-related proteinuria is due, in part, 
to alterations in renal hemodynamics (Praga et al., 1999; Chagnac 
et  al., 2000; Bosma et  al., 2004; McPherson et  al., 2020). These 
studies suggest that functional changes in the kidney occur 
in response to weight gain or obesity. Recently, we  observed 
elevations in GFR and glomerular injury in the absence of 
diabetes and elevations in arterial pressure in obese SSLepRmutant 
rats prior to puberty (McPherson et  al., 2016, 2020; Poudel 
et  al., 2018, 2020; Ekperikpe et  al., 2021; Shields et  al., 2021). 
Therefore, the current study examined whether treatment with 
lisinopril to reduce GFR decreases renal inflammation and 
slows the early progression of proteinuria in SSLepRmutant rats. 
Arterial pressure was similar between SS and SSLepRmutant rats 
treated with vehicle. Interestingly, lisinopril treatment only 
reduced arterial pressure in SS rats. Chronic treatment with 
lisinopril significantly reduced proteinuria in SS and SSLepRmutant 
rats compared to their vehicle counterparts. Similar results 
were observed in nephrin excretion as seen in proteinuria. 
GFR was significantly elevated in SSLepRmutant rats compared 
to SS rats, and lisinopril treatment reduced GFR by 30% in 
SSLepRmutant rats. The kidneys from SSLepRmutant rats displayed 
glomerular injury and inflammation versus SS rats. Treatment 
with lisinopril significantly decreased glomerular injury and 
renal inflammation in the SSLepRmutant rats. Overall, these data 
indicate that inhibiting renal hyperfiltration with an ACE 
inhibitor is advantageous in preventing the early development 
of glomerular injury and renal inflammation associated 
with obesity.

In individuals with and without hyperglycemia, proteinuria 
is an indicator of future decline in renal function, augmented 
atherosclerosis, and increased cardiovascular morbidity and 
mortality (Mogensen, 1984; Gerstein et al., 2001; Hillege et al., 
2002). Moreover, patients and animals with high levels of 
proteinuria display a secondary form of dyslipidemia (Jones 
et al., 1989; Trevisan et al., 1992; Bruno et al., 1996). Therapies 
that reduce proteinuria also significantly decrease plasma lipid 
levels (Gansevoort et  al., 1994, 1995; Wapstra et  al., 1996; 
Navis et  al., 1997; Buter et  al., 2000; Ruggenenti et  al., 2003). 

A

B

C

FIGURE 2 | Endpoint measurement of glomerular filtration rate (GFR) by the 
clearance of FITC-sinistrin not-normalized [Panel (A)], normalized to 100 g 
body weight [Panel (B)] and normalized to total kidney weight [Panel (C)] in 
vehicle and lisinopril-treated Dahl salt-sensitive (SS) rats and obese 
SSLepRmutant rats. Numbers of rats studied (n = 5–8 per group). Female rats in 
each group are represented by partially filled symbols. Values are presented 
as means ± SEM. The significance of the difference in mean values for a 
single time point was determined by a two-way ANOVA followed by Tukey’s 
multiple comparisons test. †indicates a significant difference from the 
corresponding value in SS rats within the same treatment, and #indicates a 
significant difference from the corresponding value in vehicle within the same 
strain.
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In the current study, SSLepRmutant rats display progressive 
proteinuria and a three-fold increase in total cholesterol levels 
compared to their SS counterparts, and chronic treatment 
with lisinopril significantly reduced both, proteinuria and total 
cholesterol levels. The lipid-lowering effect of lisinopril could 
be  considered a rare observation, since ACE inhibition does 
not have a direct impact on plasma lipid levels. However, 
previous studies have demonstrated therapies, such as ACE 
inhibitors, which decrease proteinuria, reduce plasma lipid 
levels as well. There are two possible hypotheses by which 
progressive proteinuria contributes to dyslipidemia. One 
hypothesis is that proteinuria causes reduced plasma albumin 
levels by stimulating liver-derived albumin synthesis, which 
in turn also involves the synthesis and secretion of other 
lipoproteins and lipids into the circulation (Marsh and Drabkin, 
1960; Jones et al., 1967; Vaziri et al., 2001, 2003). This hypothesis 
would explain the increased lipogenesis observed during 
progressive proteinuria but does not account for the removal 

A

B

FIGURE 3 | Representative images of renal histopathology: comparison of 
Periodic acid-Schiff staining [Panel (A)] and glomerular injury [Panel (B)] in 
vehicle and lisinopril-treated Dahl salt-sensitive (SS) rats and obese 
SSLepRmutant rats. Numbers of rats studied (n = 6 per group). Female rats in 
each group are represented by partially filled symbols. Values are presented 
as means ± SEM. The significance of the difference in mean values for a 
single time point was determined by a two-way ANOVA followed by Tukey’s 
multiple comparisons test. †indicates a significant difference from the 
corresponding value in SS rats within the same treatment, and #indicates a 
significant difference from the corresponding value in vehicle within the same 
strain.

A

B

C

FIGURE 4 | Comparison of renal cytokines levels in vehicle and lisinopril-
treated Dahl salt-sensitive (SS) rats and obese SSLepRmutant rats: 
macrophage inflammatory protein-3 alpha [Panel (A)], interleukin-2 [Panel 
(B)], and interleukin-4 [Panel (C)]. Numbers of rats studied (n = 5–8 per 
group). Female rats in each group are represented by partially filled symbols. 
Values are presented as means ± SEM. The significance of the difference in 
mean values for a single time point was determined by a two-way ANOVA 
followed by Tukey’s multiple comparisons test. †indicates a significant 
difference from the corresponding value in SS rats within the same treatment, 
and #indicates a significant difference from the corresponding value in vehicle 
within the same strain.
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of these elevated lipids. The other hypothesis involves the 
urinary loss of heparin sulfate, which is a cofactor for the 
liporegulator, lipoprotein lipase, and ultimately causes defective 
removal of lipids from the circulation. In support of this 
hypothesis, patients with severe proteinuria and renal injury 
have high levels of heparin sulfate lost in the urine (Staprans 
et al., 1980, 1987; Vaziri, 2003). These data suggest that chronic 
ACE inhibition provides beneficial effects, such as lowering 
lipid levels secondary to reducing proteinuria during the early 
progression of renal injury associated with obesity.

Another major finding in the current study is that chronic 
treatment with lisinopril significantly reduced arterial pressure 
in lean SS rats but not in the obese SSLepRmutant rats. Although 
ACE inhibitors have been shown to effectively reduce arterial 
pressure in both hypertensive and normotensive patients, they 
have proven to have a greater efficacy in decreasing arterial 
pressure in patients with the highest levels of plasma renin 
activity (Vidt et  al., 1982; Todd and Heel, 1986; Pool et  al., 
1987). Previous studies have demonstrated that SS rats are 
considered a low renin model of hypertension and are resistant 
to ACE inhibitors (Jama et  al., 2021). However, there are three 
possible explanations for this interesting finding. (Chagnac et al., 
2000) While we  did not measure food intake in the current 
study, leptin signaling deficient models of obesity eat more food 
than their lean control counterparts (Fantuzzi and Faggioni, 2000; 
Zhang and Reisin, 2000). This would lead to a higher sodium 
intake in the SSLepRmutant rats contributing to a lower plasma 
renin activity compared to SS rats, therefore explaining the 
contrasting effects of ACE inhibition on arterial pressure between 
the two strains. Moreover, the rats in the current study were 
not fed your typical high salt diet (diet containing 1% NaCl 
vs. diets containing 4–8% NaCl). To our knowledge, this is one 
of the first studies examining the effects of an ACE inhibitor 
on cardiorenal disease in obese SS rats. (Ejerblad et  al., 2006) 
Another possible reason for the lack of arterial pressure reduction 
to an ACE inhibitor in the SSLepRmutant strain is the impact of 
other obesity-related mediators (i.e., endothelin, 20-HETE, and 
catecholamines) that could contribute to the maintenance of 
arterial pressure. (Jacobs et al., 2010) The third potential explanation 
is the age at which the rats were treated with an ACE inhibitor. 
Previous studies have reported that ACE inhibitors reduce MAP 
in older age obese rats with proteinuria (González-Albarrán 
et  al., 2003; Toblli et  al., 2004; Moulana and Maranon, 2018). 
In the current study, treatment with lisinopril occurred prior 
to puberty (≤ 8 weeks of age), which may explain the lack of 
an arterial pressure-lowering effect in response to ACE inhibition 
in SSLepRmutant rats. These results suggest that the arterial pressure-
lowering effects of ACE inhibitors in obese individuals and 
animals may be  salt- and age-sensitive, and further studies are 
needed to investigate these effects in obese young children.

ACE inhibitors are considered one of the standard treatments 
for obese and diabetic patients with renal disease (Agodoa et al., 
2001; Jafar et  al., 2001; Progression of Chronic Kidney Disease, 
2003; Chu et  al., 2021). During the early stages of obesity and 
diabetes-induced renal disease, constriction of the efferent arteriole 
of the glomerulus by AngII contributes to elevations in GFR 
(Hall, 1986, 1991). We  hypothesize that the elevations in GFR 

trigger the early development of glomerular injury and proteinuria 
in obese and diabetic individuals. Treatment with ACE inhibitors 
block the formation of AngII and causes vasodilation of the 
efferent renal artery, which results in a decrease in GFR (Navis 
et  al., 1996). In the current study, GFR was increased by 30% 
in SSLepRmutant rats compared to SS rats and preventing the 
elevation in GFR with the ACE inhibitor, lisinopril, markedly 
decreased glomerular injury and proteinuria. Similar results were 
observed in studies performed by Kojima et al., in which lisinopril 
deceased arterial pressure and GFR and attenuated the progression 
of proteinuria in diabetic SS and type-2 diabetic nephropathy 
rats (Kojima et  al., 2013, 2015). However, the beneficial effects 
of lisinopril observed in SSLepRmutant rats were independent of 
reducing arterial pressure. These data suggest the early progression 
of proteinuria in SSLepRmutant rats is attributed to elevations 
in GFR and the chronic treatment with lisinopril is effective 
in reducing proteinuria without affecting arterial pressure.

Similar to our previous studies SSLepRmutant rats developed 
progressive glomerular injury and proteinuria compared to SS 
rats prior to puberty (<8 weeks of age) (McPherson et  al., 2016, 
2020; Poudel et  al., 2018, 2020; Ekperikpe et  al., 2021; Shields 
et al., 2021). The early progression of proteinuria in SSLepRmutant 
rats is associated with elevations in GFR and renal inflammation 
(McPherson et  al., 2020; Poudel et  al., 2020). Therefore, the 
current study examined the effects ACE inhibition on proteinuria 
and glomerular injury during the prepubescent stage in SSLepRmutant 
rats. Since ACE inhibition had such a profound effect on GFR, 
the decrease in glomerular injury and proteinuria in SSLepRmutant 
rats was not surprising. Moreover, renal disease is associated 
with increased inflammation and pro-inflammatory cytokines 
(Bemelmans et al., 1993; Himmelfarb et al., 2002; Glorieux et al., 
2004; Garibotto et  al., 2007; Carrero et  al., 2009; Massy et  al., 
2009; Gosmanova and Le, 2011; Schepers et  al., 2011; Gupta 
et  al., 2012; Adesso et  al., 2013). Inflammation amplifies renal 
damage contributing to both acute kidney injury and CKD and 
has been suggested as a potential therapeutic target for the 
treatment of renal injury (Bonventre and Yang, 2011; Meng et al., 
2014; Jang and Rabb, 2015). When stressed or injured, numerous 
cells types in the kidney (endothelial cells, podocytes, mesangial 
cells, tubular epithelial cells, and interstitial fibroblasts) produce 
inflammatory mediators (i.e., chemokines and cytokines) and 
stimulate an immune response (Woltman et al., 2005; Villa et al., 
2013; Lu et  al., 2017; Zhao et  al., 2017; Srivastava et  al., 2018). 
In the current study, the pro-inflammatory chemokine, MIP3-α, 
was significantly increased in the kidneys from SSLepRmutant rats 
compared to SS rats. Turner et  al. demonstrated that increasing 
MIP3-α stimulates immune cell recruitment, renal injury, 
albuminuria, and reduced renal function in a mouse model of 
nephrotoxic nephritis (Turner et  al., 2010). Chronic treatment 
with lisinopril decreased MIP3-α in the kidneys from SSLepRmutant 
rats. Moreover, we  previously reported that chronic blockade of 
MIP3-α reduced renal injury in SSLepRmutant rats (Ekperikpe 
et  al., 2021). Renal IL-2 and IL-4 were significantly decreased 
in SSLepRmutant rats versus SS rats, and both have been shown 
to play a major role in immune cell differentiation and homeostasis 
(Abbas et al., 2018; Junttila, 2018; Ross and Cantrell, 2018; Kassem 
et  al., 2020). We  observed that lisinopril prevented the decrease 
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in the renal levels of IL-2 and IL-4. How these cytokines influence 
the early progression of glomerular injury during obesity remains 
to be  determined. Similarly, we  also observed that chronic 
treatment with lisinopril reduced proteinuria in lean SS rats, 
which is more than likely due to the arterial pressure-lowering 
effect of ACE inhibition in this strain. However, lisinopril did 
not reduce inflammation in SS rats, but the degree of glomerular 
injury and proteinuria in SS rats was not as severe as observed 
in SSLepRmutant rats, which may explain the differences between 
the two strains. Overall, these results suggest that ACE inhibition 
reduces the early development of glomerular injury by not only 
reducing GFR but also via decreasing renal inflammation.

Clinical Translational Perspective
With childhood obesity on rise and obese children displaying 
early signs of proteinuria and hypertension, there is an important 
need to study the mechanisms involved in the early development 
of proteinuria-associated obesity. Although dysfunctional leptin 
signaling obese models are not the ideal model to study obesity 
renal disease, SSLepRmutant rats display progressive proteinuria 
and glomerular injury that is associated with renal hyperfiltration 
prior to puberty (McPherson et  al., 2020). The current study 
examined whether renal hyperfiltration plays important role 
in the early progression of proteinuria in SSLepRmutant rats by 
using the ACE inhibitor, lisinopril. ACE inhibitor therapy is 
a common method of treatment for obese individuals with 
proteinuria (Agodoa et  al., 2001; Jafar et  al., 2001; Progression 
of Chronic Kidney Disease, 2003; Chu et al., 2021). We observed 
that chronic treatment with lisinopril prevented renal 
hyperfiltration and reduced glomerular injury, proteinuria, and 
renal inflammation in SSLepRmutant rats independent of lowering 
arterial pressure. To our knowledge, the current study is one 
of the first studies to examine effects of ACE inhibition on 
the early changes in GFR and progression of renal disease in 
an obese animal model during the prepubescent stage. Moreover, 
further studies are needed to investigate the alterations in GFR 
and renal disease and the impact of ACE inhibitors on renal 
hemodynamics within this young obese population.
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