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Abstract: Dietary nitrate (NO3
−) supplementation has been evidenced to induce an ergogenic effect in

endurance and sprint-type exercise, which may be underpinned by enhanced muscle contractility and
perfusion, particularly in type II muscle fibers. However, limited data are available to evaluate the
ergogenic potential of NO3

− supplementation during other exercise modalities that mandate type II
fiber recruitment, such as weightlifting exercise (i.e., resistance exercise). In this systematic review, we
examine the existing evidence basis for NO3

− supplementation to improve muscular power, velocity
of contraction, and muscular endurance during weightlifting exercise in healthy adults. We also
discuss the potential mechanistic bases for any positive effects of NO3

− supplementation on resistance
exercise performance. Dialnet, Directory of Open Access Journals, Medline, Pubmed, Scielo, Scopus
and SPORT Discus databases were searched for articles using the keywords: nitrate or beetroot and
supplement or nut*r or diet and strength or “resistance exercise” or “resistance training” or “muscular
power”. Four articles fulfilling the inclusion criteria were identified. Two of the four studies indicated
that NO3

− supplementation could increase aspects of upper body weightlifting exercise (i.e., bench
press) performance (increases in mean power/velocity of contraction/number of repetitions to failure),
whereas another study observed an increase in the number of repetitions to failure during lower limb
weightlifting exercise (i.e., back squat). Although these preliminary observations are encouraging,
further research is required for the ergogenic potential of NO3

− supplementation on weightlifting
exercise performance to be determined.

Keywords: beetroot; ergogenic aid; exercise; nutrition; muscle

1. Introduction

Weightlifting exercise is well established as an exercise modality of resistance exercise to improve
skeletal muscle mass [1,2], strength [3–5], endurance [6,7] and power [8,9]. These positive adaptations in
skeletal muscle function translate into athletic performance [10–14] and health-related [15–19] benefits
in a range of populations [20–22]. To achieve specific muscular adaptations, resistance exercise training
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programs can manipulate variables such as muscle action, loading and volume, exercise selection and
order, free weights vs. resistance machines, rest periods, number of repetitions and sets, velocity of
muscle action and frequency [23]. It is well documented that a propensity for high muscular power
production, velocity of contraction and endurance are required for optimal performance in various
sports [13,24] and that resistance exercise training can improve these performance determinants [8].

There are different methods to assess muscle strength and power [25]. Static methods include
isometric muscle strength assessments to evaluate maximal voluntary isometric contraction (MVIC)
force and/or the rate of force development (RFD) at a fixed muscle joint angle. Single limb isokinetic
methods allow for the assessment of muscle torque, work and power along a joint’s full range of
motion (ROM) (i.e., single knee extension and/or flexion movement). A dynamic method can assess
one repetition maximum (1RM) strength and maximum power developed against either a constant (i.e.,
free weights and exercise machine) or variable (i.e., exercise machine) resistance along a single joint’s
full ROM (i.e., bicep curl: elbow joint) or exercises involving multiple-joints (i.e., back squat: ankle,
knee and hip joints). Most actions performed in daily physical activities (i.e., walking up and down
stairs, handling, press and push) and sports actions (i.e., run, jump, throw) include dynamic muscle
contractions, which involve repetitive concentric and eccentric muscle contractions and an associated
stretch-shortening cycle (SSC) [26]. However, since isometric methods only assess muscle strength at
a fixed joint angle, isokinetic methods measure strength only within a single limb in a specific joint
range of motion, and neither of these assessment approaches involve an SSC [27], the application of
the findings from such assessments into sporting actions is limited [28–32].

There is also interest in the application of dietary interventions in conjunction with resistance
exercise training in an attempt to augment resistance training adaptations and, by extension,
sport-specific exercise performance [11,33]. Dietary supplements, such as creatine, caffeine and sodium
bicarbonate, have a strong historical evidence basis to support ergogenic effects in certain exercise
settings [34]. More recently, inorganic nitrate (NO3

−) ingestion, often administered as concentrated
NO3

−-rich beetroot juice (BR), has been reported to confer ergogenic effects in various exercise
modalities [35], including running [36–47], rowing [48,49], kayaking [50], knee extensions [37,51]
and cycling [52–64]. Although an ergogenic effect of NO3

− supplementation appears less likely
in endurance-trained individuals, i.e., [65–74], recent systematic reviews support its efficacy as an
ergogenic aid during continuous endurance-type exercise [75–77] and high-intensity intermittent-type
exercise [78].

Dietary NO3
− supplementation has been observed to elevate nitric oxide (NO) bioavailability

via the reduction of exogenous NO3
− to nitrite (NO2

−) by commensal anaerobic bacteria in the oral
cavity [79], followed by the one-electron reduction of NO2

− to NO (and other nitrogen intermediates)
catalyzed by various NO2

− reductases [80–84] in the tissue and blood. The reduction of NO2
− to NO is

potentiated under conditions of hypoxia [85] and acidosis [86], as are known to occur intramuscularly
during exercise [87]. Elevations in [NO3

−] and [NO2
−] following NO3

− supplementation have been
observed in skeletal muscle [88–91] and plasma [53,64,92], and are associated with positive physiological
effects [41,64,74,93] that facilitate a greater capacity for muscular work [51,53,59] and/or improved muscle
contractile efficiency (i.e., a lower high-energy phosphate cost of force production) [51,94]. The elevation
of plasma [NO2

−] is dependent on methodological considerations, such as the supplementation regimen
(i.e., dosage of NO3

−, timing and duration) [64], and there is evidence to suggest that performance
enhancement may be more likely after chronic, compared to acute, NO3

− supplementation [56,63,67].
Although the effects of NO3

− supplementation on performance during continuous endurance
and high-intensity intermittent exercise have been investigated in numerous studies [35], its effects on
the contractile properties of isolated muscle groups completing weightlifting exercise has received
comparatively limited empirical investigation. There is some evidence that NO3

− supplementation can
enhance force production during voluntary and evoked isometric assessments [73,95,96] and isokinetic
voluntary knee extensor power and velocity [97]. Data from animal studies support these observations
and have indicated that 7 days of NO3

− supplementation increased evoked force production in rodents
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at low-stimulation frequencies and the rate of force development at high-contraction frequencies
compared to age-matched controls [98]. These improvements in skeletal muscle contractile function
were accompanied by increased protein expression of calcium (Ca2+)-handling proteins in the extensor
digitorum longus, which is predominantly comprised of type II muscle fibers, but not the soleus, which
is predominantly comprised of type I muscle fibers [98]. However, in contrast to the rodent studies,
there was an increase in evoked contractile force after NO3

− supplementation without an effect on
muscle Ca2+-handling proteins in human skeletal muscle [96]. Collectively, these findings suggest that
dietary NO3

− supplementation has the potential to increase contractile force production, skeletal muscle
power and velocity of contraction, particularly in type II muscle fibers, which are heavily recruited
during weightlifting exercise [99]. However, findings regarding involuntary contractions evoked
by neuromuscular electrostimulation (NMES) may not readily translate to voluntary contractions,
since there are some important differences between NMES and voluntary actions [100]. Specifically.
motor unit recruitment during NMES is spatially fixed, temporally synchronous and nonselective
(i.e., randomized), such that it may not conform to the orderly recruitment of motor units during
voluntary contractions [101].

In addition to enhancing force production during single muscle contractions, NO3
−

supplementation has the potential to enhance performance during repeated sub-maximal knee-extensor
contractions continued to failure [51]. This increased time to task failure following NO3

−

supplementation was accompanied by lower rates of ATP and PCr turnover, and ADP and Pi
accumulation, factors that would be expected to lower skeletal muscle fatigue [102]. In addition, it has
been reported that NO3

− supplementation can lower the PCr cost of muscle force production at the end
of a protocol comprising 50 MVIs of the knee extensors [94] and is more effective at improving skeletal
muscle contractile function after the muscle has become fatigued [103]. Since resistance exercise
training sessions typically comprise a series of sets to task failure using the same exercise modality
with a relatively short recovery period, overall performance in a resistance exercise training session
will also be influenced by the ability to recover between sets. The recovery of muscle force during
repeated bouts of high-intensity exercise is linked to muscle PCr resynthesis [104–106], which is largely
an O2-dependent process [107,108]. Since NO3

− supplementation has been reported to increase skeletal
muscle blood flow, with a preferential shunting of blood flow to type II muscle fibers [109], this has
the potential to aid recovery between sets during a resistance exercise training session, which might
translate into more repetitions completed in the training session.

Despite the evidence outlined above, which suggests that NO3
− supplementation has the

potential to enhance resistance exercise performance during voluntary isometric and/or isokinetic
assessments, and muscle isometric contractions evoked by NMES, a limited number of studies have
assessed the potential for ergogenic effects of NO3

− supplementation on a more transferable form
of resistance exercise, such as weightlifting performance. The aim of this review was to provide an
up-to-date summary of data from experimental studies that have examined the efficacy of dietary
NO3

− supplementation to improve weightlifting performance (i.e., muscle force production, velocity of
contraction, muscular endurance) in healthy adults and to discuss potential physiological mechanisms
that may underpin these effects.

2. Methodology

A systematic search using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis
(PRISMA) guidelines [110] was conducted for studies that investigated NO3

− supplementation on
weightlifting exercise performance using Dialnet, Directory of Open Access Journals, Medline, Pubmed,
Scielo, Scopus and SPORTDiscus databases until April 2020, using the following terms: (concept 1)
(nitrate OR beet *) AND (concept 2) (supplement * OR nutr * OR diet *) AND (concept 3) (strength
OR “resistance exercise” OR “resistance training” OR “muscular power”). The original search yielded
a total of 619 studies. After the elimination of duplicate articles and screening for inclusion criteria,
a total of 291 articles were independently read and reviewed by three authors (RD, JJM and ASF).
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A quality assessment procedure was performed by three authors (ALR, RD and JJM) using the PEDro
scale [111]. A total of four articles met the eligibility criteria for the present systematic review (Figure 1).
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To ensure that the selection of studies assessed the effects of NO3
− supplementation on weightlifting

exercise performance, the authors applied a set of inclusion criteria [112]:

1. Studies that were published as a full article (i.e., not a conference abstract) and performed in
healthy humans (aged 18 to 65 years).

2. Studies that included a NO3
− and a placebo intervention.

3. Studies which assessed voluntary dynamic resistance strength (i.e., not isometric or isokinetic
strength and not involuntary muscle contractions evoked by NMES).

4. Studies that included any of the following variables: i) one repetition maximum (1RM); ii) power
or velocity movement; iii) number of repetitions to failure with submaximal loads.

The four studies selected for our systematic review included a total of 49 men, all of whom were
resistance trained (i.e., performed resistance exercise a minimum of twice per week).

In two of the selected studies [113,114], the influence of acute BR ingestion was assessed by
adminstering 1 × 70 mL of BR (~6.4 mmol of NO3

− per 70 mL) ~2 h prior to the commencement of
exercise. In the remaining two studies [115,116], longer-term (≥ 3 days) dosing strategies of NO3

−

supplementation were employed. Mosher et al. [116] administered 1 × 70 mL of BR per day (~6.4 mmol
of NO3

− per 70 mL) for 6 consecutive days, although the authors did not report the timing of ingestion,
which has important implications for the elevation of plasma NO3

− and NO2
− [64]. Flanagan et al. [115]
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administered 2 × NO3
−-rich performance bars (32.5 mg of NO3

− per two bars) for 3 consecutive
days with the final two NO3

−-rich performance bars ingested ~60 min prior to the commencement
of exercise.

3. Results and Discussion

The exercise modalities used to assess weightlifting exercise performance were bench press
using free weights [113], bench press using a Smith machine [114,116] and box squats using a Smith
machine [114,115]. The details of the performance tests employed are summarized in Table 1.

Table 1. Studies assessing the effects of dietary NO3
− supplementation on resistance exercise

performance in humans.

Reference Subjects Supplementation Exercise Protocol Findings

Flanagan et al.
(2016) [115]

Fourteen
resistance-trained

men

Three days and 60 min
prior to exercise
ingestion of 2 ×

NO3
−-rich bars (32.5 mg

NO3
−
·d−1)

Smith machine box squats:
three sets x 3-s isometric

squats interspersed with 120-s
rest, then dynamic box squats
@ 60%1RM with 10% increases

up to 90%1RM, then 10%
decreases to 60%1RM, then

RTF on last 60%1RM set

↔ RTF: −1.5% (599 ± 5 vs.
608 ± 5 reps)

↑ EMG amplitude: +5%
(83 ± 3 vs. 79 ± 4%)

Mosher et al.
(2016) [116]

Twelve
resistance-trained

men

Six days of 1 × 70 mL
NO3

− rich BR
supplementation

(~6.4 mmol NO3
−
·d−1)

Smith machine bench press:
three sets of RTF @ 60%1RM
interspersed with 2 min of

recovery between sets

↑ RTF: +19.4%
↑ total weight lifted:

+18.9% (2583 ± 864 vs.
2172 ± 721 kg)

Williams et al.
(2020) [113]

Eleven
resistance-trained

men

Two hours prior to
exercise ingestion of 1 ×

70 mL NO3
− rich BR

(~6.4 mmol NO3
−)

Free-weight bench press: two
sets x 2 explosive reps, 5 min
rest, then three sets x RTF @
70%1RM interspersed with 2
min of recovery between sets

↑ RTF: +10.7% (31 ± 6 vs.
28 ± 6 reps)

↑ Pmean: +19.5% (607 ± 112
vs. 508 ± 118 W)

↑ Vmean: +6.5% (0.66 ±
0.08 vs. 0.62 ± 0.08 m·s−1)

Ranchal-Sanchez
et al. (2020)

[114]

Twelve
resistance-trained

men

Two hours prior to
exercise ingestion of 1 ×

70 mL NO3
− rich BR

(~6.4 mmol NO3
−)

Smith machine bench press
and back squat: three sets x

RTF @ 60−70−80%1RM with 2
min of recovery between sets.
After the eccentric phase of
each rep, participants rested

for 1.0−1.5 s

↑ RTF back squat: +23.4%
(60 ± 20 vs. 46 ± 16 reps)
↑ RTF total (sum bench
press and back squat):

+17.7% (89 ± 25 vs.
75 ± 21 reps)

↑ = significant increase; ↔ = no change; 1RM = one-repetition maximum; BR = beetroot juice; EMG = surface
electromyography; m·s−1 = meters per second; min = minutes; NO3

− = nitrate; Pmean = mean power of bench press;
reps = repetitions; RTF = repetitions to failure; s = seconds; Vmean = mean velocity of bench press; W = Watts.

This is the first systematic review to have focused on the ergogenic effect of dietary NO3
−

supplementation on weightlifting exercise performance. The main findings were that dietary NO3
−

supplementation can increase muscular power and velocity, and the number of repetitions to failure
during bench press exercise, but not box squat exercise, in resistance-trained males.

3.1. The Effects of Dietary Nitrate Supplementation on Weightlifting Exercise Performance

Williams et al. [113] examined the effect of acute dietary NO3
− supplementation (BR ingested 2 h

prior to exercise) on muscle power, velocity and number of repetitions to failure during free-weight
bench press exercise at 70%1RM in resistance-trained men. The authors observed a 19.5% increase
in mean power, a 6.5% increase in mean velocity, and a 10.7% increase in the number of repetitions
to failure [113]. In another study, Ranchal-Sánchez et al. [114] observed an enhancement in the
number of repetitions to failure (+17.7%) in the sum of sets for bench press and back squat with
loads of 60%, 70% and 80% 1RM after NO3

− supplementation (BR ingested 2 h prior to exercise),
although authors failed to find an effect on muscular velocity and power. These conflicting findings
may be attributed to inter-study differences in the protocols used to assess muscular power and
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velocity. Indeed, whereas Williams et al. [113] assessed muscle power and velocity during two
single explosive repetitions with full recovery (5 min rest between sets), Ranchal-Sánchez et al. [114]
assessed power and velocity during sets of repetitions until failure. Muscle velocity and muscle
power assessment require optimal neuromuscular conditions and, as such, studies analyzing the effect
of different supplements on muscular velocity and power selected a maximum of two repetitions
with a submaximal load, with recovery periods of 2−5 min [117–122]. Thus, the procedure used by
Ranchal-Sánchez et al. [114] to assess muscle power and velocity may not be suitable to detect a
potential effect of NO3

− supplementation. Longer-term NO3
− supplementation was also observed to

be effective, as 6 days of BR supplementation increased the number of repetitions to failure (+19.4%)
and increased the total amount of weight lifted (+18.9%) during Smith machine bench press exercise
at 60%1RM in resistance-trained men [116]. Therefore, the existing evidence suggests that acute
and short-term NO3

− supplementation can improve bench press performance in resistance-trained
males. In contrast, Flanagan et al. [115] did not observe any change in the number of repetitions to
failure during box squat exercise at 60%1RM in resistance-trained men following the administration
of NO3

−-rich performance bars over 3 days. A limitation in Flanagan et al. [115] was the low NO3
−

dose administered. Specifically, Flanagan et al. [115] administered 32.5 mg (~0.5 mmol) of NO3
−

daily, which is markedly lower than Williams et al. [113] (6.4 mmol NO3
− acutely) and Mosher et

al. [116] (6 days of 6.4 mmol NO3
− daily), both of whom observed improved resistance exercise

performance. Since plasma [NO2
−] increases dose-dependently after NO3

− supplementation and
is correlated with enhanced exercise capacity [64], the low NO3

− dose administered in the study of
Flanagan et al. [115] is likely to have underpinned the lack of effect of NO3

− supplementation in that
study. This interpretation is reinforced by Coggan et al. [123] who reported that the relative magnitude
of the increase in knee-extensor peak power output following NO3

− ingestion was positively correlated
with the increase in plasma [NO2

−]. However, a limitation of all existing studies assessing the effect of
NO3

− supplementation on resistance exercise performance is the lack of plasma [NO2
−] determination.

In addition to inter-study differences in the dosing strategies, the exercise modality (upper body
vs. lower body) employed might also have contributed to the disparate findings across studies
assessing the ergogenic potential of NO3

− supplementation on resistance exercise performance to date.
Indeed, two studies reported improved resistance exercise performance after NO3

− supplementation
during bench press exercise [113,116], whereas squat performance was not improved after NO3

−

supplementation in the study by Flanagan et al. [115], but the total number of repetitions during three
sets of back squats was enhanced in the study by Ranchal-Sánchez et al. [114]. Given that there is
evidence to suggest that NO3

− supplementation may be more effective at enhancing physiological
responses in type II muscle fibers [124] and since the proportion of type II muscle fibers may be greater
in the upper body musculature, i.e., [125], this might account for the improved bench press and the
inconsistent effects observed on squat performance after NO3

− supplementation. However, there is
evidence that weightlifting training increases both the hypertrophy and proportion of type II muscle
fibers, such that the proportion of type II muscle is greater in resistance-trained individuals [126,127].
Accordingly, this could partly account for the improvements observed in Mosher et al. [116], Williams
et al. [113] and Ranchal-Sánchez et al. [114], who recruited resistance-trained men.

Taken together, the existing, albeit limited, evidence suggests that acute and short-term
dietary NO3

− supplementation can enhance weightlifting exercise performance by increasing muscle
power production, velocity of contraction and muscular endurance in healthy resistance-trained
adults. However, the results are incongruous with inconsistencies likely linked to differences in
supplementation strategies and exercise modality. Therefore, further research is required to assess
the weightlifting exercise settings and populations in which NO3

− supplementation is more or less
likely to be ergogenic. Moreover, while encouraging preliminary evidence suggests that dietary NO3

−

supplementation may enhance weightlifting training quality, further research is also required to assess
whether this translates into greater adaptations to chronic resistance exercise training.
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3.2. Physiological Mechanisms

Consistent with the potential for improved weightlifting exercise performance after NO3
−

supplementation, enhanced skeletal muscle contractile function has been observed during electrically
stimulated contractions [95,96,103], and enhanced peak power output has been observed during
isokinetic dynamometry [97,123,128] and cycling [45,57,60,129–133] exercise. Although the exact
physiological mechanisms responsible for enhanced exercise performance following dietary NO3

−

supplementation are unclear, a number of putative mechanisms have been identified which could
contribute to improved weightlifting exercise performance.

Using a mouse model, Hernández et al. [98] demonstrated that 7 days of NO3
− supplementation

increased the rate of force development at 100 Hz by 35% and force production at 50 Hz during evoked
skeletal muscle contractions at a supraphysiological PO2. The increase in evoked force production
was accompanied by the increased expression of Ca2+-handling proteins, dihydropyridine receptors
(DHPRs) and calsequestrin (CASQ) in type II but not type I skeletal muscle [98]. There is also previous
evidence indicating that NaNO2 administration can increase cytosolic [Ca2+] without altering force
production at a supraphysiological PO2 [134], or lower cytosolic [Ca2+] concomitant with lower
submaximal, but not maximal, force at a physiological PO2 [118], during single evoked isometric
contractions in isolated mouse muscle fibers. However, during a repeated, fatigue-inducing contraction
protocol, NaNO2 administration increased time to task failure by offsetting the reductions in Ca2+

pumping rate and Ca2+ sensitivity [135]. While these data suggest that increasing the exposure of
mouse skeletal muscle to NO3

− and/or NO2
− can modulate skeletal muscle contractility via changes

in skeletal muscle Ca2+ handling, the findings from Whitfield et al. [96] challenge the notion that
improved skeletal muscle contractile function after NO3

− supplementation in human skeletal muscle
is linked to increased content of Ca2+-handling proteins. Specifically, these authors observed an
increased force production and rate of force production during evoked isometric twitches in healthy
humans without changes in skeletal muscle CASQ, DHPR or SERCA protein content following 7 days
of BR supplementation.

Another mechanism that could improve skeletal muscle contractile function after NO3
−

supplementation is the post-translational modification of the skeletal muscle contractile or
Ca2+-handling proteins [136]. Indeed, NO can react with protein thiols (i.e., moieties containing
sulfhydryl groups, RSH or RS−) to form RSNO groups in a reversible process termed S-nitrosylation [137].
S-nitrosylation and denitrosylation alter the structural conformation and thus function of proteins [138].
For example, NO has been reported to S-nitrosylate myosin heavy chains in skeletal muscle, leading to
increased contractile force [139]. The potential influence of S-nitrosylation on excitation–contraction
coupling is complex given that various contractile-related proteins can undergo reversible
post-translation modifications at cysteine residues on thiols, such as myosin [140], troponin [141],
SERCA [142] and ryanodine receptors (RyRs) [143,144], and that these post-translation protein
modifications are likely dependent on interactions between NO, reactive oxygen species and glutathione
bioavailability [145]. In addition, RyR proteins contain a markedly greater number of sulfhydryl
groups compared to other contractile proteins [146], which supports the proposed hypothesis that
NO-mediated RyR modulation and Ca2+ release could contribute to enhanced muscle contractility
following NO3

− supplementation [123]. Importantly, these effects could occur independent of changes
in the content of Ca2+-handling proteins. An interesting observation by Flanagan et al. [115] was
that EMG amplitude increased during weightlifting exercise after NO3

− supplementation despite no
change in weightlifting exercise performance. However, other studies have not observed changes in
EMG after NO3

− supplementation [95,103] and, as such, it is unclear whether NO3
− supplementation

alters neural drive. Further research is required to evaluate how NO3
− supplementation can modulate

excitation–contraction coupling in human skeletal muscle.
In addition to potential changes to excitation–contraction coupling proteins, NO3

−

supplementation has been reported to alter high-energy phosphate turnover and phosphorus
metabolites in human skeletal muscle [51,94]. Specifically, NO3

− supplementation has been reported



Nutrients 2020, 12, 2227 8 of 16

to lower the high-energy phosphate cost of skeletal muscle contractile force production [51,94] and
the intramuscular accumulation of ADP and Pi [51], factors which would be expected to abate
the development of skeletal muscle fatigue [102]. Dietary NO3

− supplementation has also been
shown to increase muscle blood flow [109], which might aid muscle PCr resynthesis between sets to
failure [107,108] and the recovery of force and performance [104–106].

Taken together, the existing evidence suggests that NO3
− supplementation can improve skeletal

muscle contractile function and might enhance weightlifting exercise performance in humans. Therefore,
NO3

− supplementation holds promise as an effective nutritional ergogenic aid for weightlifting exercise.
The potential candidate mechanisms for improved weightlifting exercise performance after NO3

−

supplementation include enhanced excitation–contraction coupling, via modulation of Ca2+-handling
and contractile proteins [98,134,135,139]; improved skeletal muscle metabolic control, via lowering
the high-energy phosphate cost of contraction and fatigue-related metabolite accumulation [51,94];
and improved skeletal muscle perfusion [109]. However, further research is required to resolve
the mechanisms for improved weightlifting exercise performance after NO3

− supplementation.
Furthermore, while NO3

− supplementation appears to potentially enhance resistance training quality,
it is unclear if this will translate into improved weightlifting training adaptations. Notably, although
NO3

− supplementation has been reported to enhance the adaptations to sprint interval training [62,147],
the molecular bases for skeletal muscle oxidative metabolism and hypertrophy training adaptations
are different and can be potentially antagonistic [148,149]. For example, NO2

− has been reported to
activate AMPK [150], which is a key regulator of skeletal muscle oxidative metabolism adaptations, but
interferes with mTORC1 signaling, which is a master regulator of skeletal muscle hypertrophy [148,149].
Therefore, further research is required to assess how NO3

− supplementation impacts chronic adaptations
to weightlifting exercise training.

4. Limitations

Although there are numerous studies analyzing the effect of NO3
− on various aspects of exercise

performance, the number of high-quality studies (i.e., randomized controlled trials) focused on
weightlifting exercise is limited, which restricted the sample analyzed in the present systematic review.
In addition, existing between-study differences in the supplementation dosage (from 32.5 mg NO3

−

to 6.4 mmol NO3
−) and the period of supplementation (from acute to chronic over 6 days), along

with differences regarding the type of exercise selected, prevented a firm conclusion on the ergogenic
potential of NO3

− supplementation on weightlifting exercise performance at this stage. Nevertheless,
this systematic review is an important contribution to the literature as it highlights both the potential
promise of NO3

− supplementation as an ergogenc aid for weightlifting exercise performance and the
necessity to conduct further studies to improve understanding on this topic.

5. Conclusions

In conclusion, the limited exisiting literature suggests that acute and short-term dietary NO3
−

supplementation holds promise as a nutritional intervention to enhance weightlifting performance in
resistance-trained males. Indeed, NO3

− supplementation can improve muscular power production,
velocity of contraction, and the number of repetitions to failure during weightlifting exercise. Given
the important athletic and clinical implications of improved weightlifting exercise performance, NO3

−

supplementation might offer potential as an ergogenic and therapeutic nutritional aid. The mechanistic
bases responsible for the potential ergogenic effect of NO3

− supplementation on weightlifting exercise
performance may be linked to improvements in skeletal muscle excitation–contraction coupling,
high-energy phosphate metabalism and perfusion. However, further research is required to resolve
the putative underlying mechanisms for, and the conditions in which, NO3

− supplementation might
enhance weightlifting exercise performance, as well as its effects on chronic adaptations to weightlifting
exercise training.
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