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Abstract

A measure to quantify vulnerability under perturbations (attacks, failures, large fluctuations) in ensembles (networks) of
coupled dynamical systems is proposed. Rather than addressing the issue of how the network properties change upon
removal of elements of the graph (the strategy followed by most of the existing methods for studying the vulnerability of a
network based on its topology), here a dynamical definition of vulnerability is introduced, referring to the robustness of a
collective dynamical state to perturbing events occurring over a fixed topology. In particular, we study how the collective
(synchronized) dynamics of a network of chaotic units is disrupted under the action of a finite size perturbation on one of its
nodes. Illustrative examples are provided for three systems of identical chaotic oscillators coupled according to three
distinct well-known network topologies. A quantitative comparison between the obtained vulnerability rankings and the
classical connectivity/centrality rankings is made that yields conclusive results. Possible applications of the proposed
strategy and conclusions are also discussed.
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Introduction

From coupled biological and chemical systems, to neural

networks, to social interacting species, to the Internet and the

World Wide Web, the behavior of many natural, social and

technological systems can be conveniently modeled as the

dynamics emerging from networks composed of a large number

of highly interconnected units. Recent studies have revealed that

such systems are characterized by peculiar topological properties

(relatively short distance between any pair of nodes, high

clustering, and fat tailed distributions in the node’s connectivity),

starting a movement of interest and research in the study of

complex networks [1].

Given the high level of heterogeneity in the nodes’ connectivity,

a central issue in the analysis of such systems was, since the

beginning, the assessment of the nodes’ centrality, and of the

network’s security and stability. The main aim was to properly

rank each one of the networking units in terms of the response of

the whole system under attacks or disfunctions of any type that

may affect that specific element. In particular, a very important

concept that was used to assess stability and robustness of the

global behavior (or performance) of networks under the action of

external perturbations (as failures or malicious attacks) is that of

vulnerability.

So far, many different approaches have been proposed to define

a measure for network vulnerability, relating it to, for instance,

decreased cohesion and network fragmentation under random

failures and attacks [2–5] and variations of the network efficiency

after topological damages or improvements [6]. A formalization of

the concept in terms of vulnerability functions that meet certain

basic mathematical properties consistent with the intuitive notion

of the vulnerability of a graph (somehow related to regularity and

to the number of alternative edges existing between nodes) has also

been proposed [7]. These early efforts were essentially devoted to

the study of how certain properties of a generic graph are affected

by changes in the topology, such as the accidental (random) or

intentional removal of elements of the network.

In this paper, we introduce an alternative approach to the

definition of network vulnerability, that connects it to the way the

network dynamics abandons a collective (synchronized) state

under the action of a perturbation acting on one of the nodes of

the graph. Thus, the graph topology is assumed to be constant

over the time scales that are relevant for the propagation of the

perturbation, and we deal with the vulnerability of a given

collective state (the synchronous evolution of the network), making

this approach substantially different from the studies previously

referred to. The strategy, albeit close in spirit to the studies on the

linear stability of synchronized states in chaotic systems, differs

considerably from those studies in that it provides a ranking of the

nodes in a network in terms of the vulnerability of the collective

state under finite size perturbations applied on them. Relevant

applications can be found, indeed, in technological or infra-

structural networks, where a practical issue is often to design the

better protection strategy for each one of the units to avoid the

spreading over the system of an occasional breakdown or

intentional large damage. Furthermore, we will show that the

approach is actually suggesting the definition of a finite time ranking

of the units, thus offering a way to distinguish the most vulnerable
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network’s nodes in all cases in which the goal is to repair or restore

the network dynamics over a finite time.

Methods

In order to illustrate our method, we refer to three different

networking systems, each one made of N~500 nodes and

K~8 � N~4,000 links. Topologically, the three networks are: 1)

an Erdös-Rényi random graph (ER) [8], 2) a Barabási-Albert

scale-free network (BASF) [9], and 3) a Configuration Model scale-

free network (CMSF) [10]. Denoting by ki the degree of the i-th
node in the network (the number of its connections to the rest of

the graph), we choose a CMSF with a degree distribution

following the scaling law P(k)!k{3, so as to make the network

connectivity comparable to the case of BASF.

Without lack of generality, we consider each node i of the

network to be represented by a vector state ri:(xi,yi,zi)[R3, with

internal evolution following the Rössler system [11] in one of its

chaotic regimes, namely the one whose equations of motion are
_rri~F(ri) are: _xxi~{yi{zi, _yyi~xiz0:2yi, _zzi~0:2zzi(xi{7:0).

Furthermore, we consider each node as diffusively coupled with

its nearest neighbors in the graph, so that the network’s evolution

equations read as:

_rri~F(ri)zs
XN
j~1

Aij H(rj){H(ri)
� �

~F(ri)zs
XN
j~1

AijH(rj){kiH(ri)

 !

~F(ri){s
XN
j~1

(dijki{Aij)H(rj)~F(ri){s
XN
j~1

LijH(rj),

ð1Þ

where A and L are, respectively, the adjacency and the Laplacian

matrix of the network, and s is the coupling strength. The

adjacency matrix of an unweighted network is defined as the

matrix with elements Aij such that Aij~1 if there is a link incident

in the nodes i and j and Aij~0 otherwise, which is a symmetric

matrix with zero diagonal elements in the case of undirected

simple graphs such as those considered here. The Laplacian

matrix results from subtracting the adjacency matrix from a

diagonal matrix with the node degrees along the diagonal. In

equation (1), the connected nodes are linearly coupled through

their x variable by the output function H(r)~x. Notice that we

consider all node systems to be identical. This, together with the

zero row-sum condition associated with the Laplacian matrix, is

warranting the existence of a synchronization state

r1~r2~:::~rN:rS , which is an invariant manifold.

As for the choice of the coupling constant s, for each one of the

considered networks we refer to the linear stability properties of the

synchronization manifoldM. The Master Stability Function (MSF)

approach [12] leads [after linearization and block-diagonalization

of Eq. (1)] to N variational equations (one for each eigenvector of

the Laplacian matrix) of the form _ffj~½JF(rS){nJH(rS)�fj , where

n~scj is the product of s and the corresponding eigenvalue cj of L,

and J is the Jacobian operator.

Let us recall that in the present case all eigenvalues of L are real

and non-negative. Furthermore, after ordering them by size

(c1ƒc2ƒ:::ƒcN ), we have c1~0 (corresponding to the synchro-

nization manifold) and, as we deal with connected graphs, cjw0
for j[f2,3,:::,Ng, whose corresponding eigenvectors span (and

form an orthogonal basis of) the space transverse to M.

For all three networks s was chosen so as: i) sc2~(n1{0:0002);
and ii) scNvn2 (where n1~0:1395 and n2~4:4780 are, to our

best numerical evidence, the first and second zero of the MSF,

respectively). The result of this choice is that all the networks are

considered in a dynamical regime in which the manifold M is

slightly linearly unstable along the eigenmode corresponding to the

second smallest eigenvalue of the Laplacian matrix (with an

associated maximum Lyapunov exponent which amounts, accord-

ing to our computations, to lmax(0:1393)~1:36:10{4), whereas it

is linearly stable along all other eigenmodes. This allows for an

unbiased comparison between the three considered topologies.

The MSF describes the local linear stability properties of the

synchronized dynamics and, as so, it describes the evolution of

infinitesimal perturbations affecting the dynamics on M. Since

our aim is, instead, to study how the systems diverge from

synchronization under the action of finite perturbations applied on

individual nodes, and to relate this divergence to the topological

features of the perturbed nodes, it is evident that a different

strategy has to be followed.

To this purpose, the first step is to evolve a single Rössler oscillator

from an arbitrary initial condition for a given time well beyond its

initial transient. The final state of such an evolution is then taken as the

initial condition rini for the synchronous evolution of the full

networked system (r1(t~0)~r2(t~0)~:::~rN (t~0)~rini).

An identical copy of the system is also started, with a finite

perturbation applied on the arbitrary node j. The initial conditions

of this second system are ~rrj(t~0)~rinizvpert, and ~rri(t~0)~rini

for i=j. The chosen perturbation is of finite size, namely, it is a

4.0-norm vector (approximately 17% of the radius of the Rössler

attractor) with the norm equally divided into the three components

[vpert~(4,4,4)=
ffiffiffi
3
p

]. It is the comparison of the networks states

resulting from the simultaneous integration of both systems that

allows one to monitor how the perturbed system’s dynamics

deviates in time from that of the unperturbed, synchronized

system.

To quantify this deviation we use the global divergence rate (DR), a

sort of Lyapunov exponent for finite perturbations and bounded time

intervals. The DR for a perturbation applied on node j as a function of

time is denoted as DRj(t). The DR is defined as the cumulative time

average of the natural logarithm of the Euclidean distance (in 3N -

phase space d(~rr,r):(
P

i~1,:::,N ½(~xxi{xi)
2z(~yyi{yi)

2z(~zzi{zi)
2�)1

2)

between the perturbed system state and the unperturbed (synchro-

nized) system state divided by the norm of the initial perturbation.

DRj(t)~
1

t

ðt

0

log(d(~rr(t’),r(t’))=jvpertj)dt’

Interested as we are in the time evolution under perturbations of

individual oscillators, we also consider the local divergence rate

(dr). By drij(t) we denote the local divergence rate corresponding

to the deviation from synchronization of the dynamics of the

specific node i of the network for a perturbation applied on node j.
This latter quantity is calculated as the cumulative time average of

the natural logarithm of the Euclidean distance (this time, in 3-

space) between the specific i-th node state in the perturbed and the

unperturbed system, again divided by the norm of the initial

perturbation.

drij(t)~
1

t

ðt

0

log(d(~rri(t’),ri(t’))=jvpertj)dt’

In the following, we report numerical results obtained with a

classical 4th order Runge-Kutta integration algorithm, with double

precision and 0.01 integration time step. Furthermore, all values of

the local and global divergence rates shown in the Figures refer to a

Node Vulnerability under Perturbations in Networks
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further ensemble average over 50 independent integrations of the

system, each one corresponding to a different choice of the initial state

rini, on top of which the perturbation is applied.

Results

We start by showing in Figure 1 A, B, and C the main

topological and synchronizability features of the chosen ER, BASF

and CMSF networks. Precisely, the upper left hand side plot of

each panel shows a histogram of the degree sequence, together

with a least-squares fit curve (providing an estimate of the

underlying degree distribution). The right hand side of each panel

contains a sketch of a representative subgraph of the network, with

nodes colored according to their degree following the color code of

the bar in Figure 1 D. The lower left hand side, in its turn, shows

the corresponding distribution of the eigenvalues of L (red crosses)

Figure 1. Topology and synchronizability (following the MSF approach) of the considered networks, and the effect of finite
perturbations. A) ER random graph: degree sequence and least-squares fit curve (upper left plot), graphical representation of a subgraph
containing 80 randomly chosen nodes (right plot) with color depending on node degree according to color bar in D), localization of the eigenvalues
of the Laplacian matrix superimposed on MSF curve (lower left plot), and eigenvalues around the first zero of the MSF (lower right plot). B) Same for
BASF network. C) Same for CMSF network. D) Divergence rates of the perturbed (global) dynamics from the synchronization manifold (see text for
definition), for perturbations applied on 100 randomly selected nodes. Curves are colored according to the degree of the node upon which the
perturbation is applied.
doi:10.1371/journal.pone.0020236.g001
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superimposed on the MSF curve (which is equal for the three cases

in that it is independent of the topology). The spectra of the scale-

free networks span a larger portion of the positive semi-axis than

does the spectrum of the ER random graph, which turns out to be

the easiest to synchronize of all three networks in spite of its

homogeneity, a seemingly paradoxical fact that has been reported

and previously explained in the literature [13,14]. Another plot

zooming on the area in the proximity of the first zero n1 is shown

on the lower right hand side, where one can see how the slightly

linearly unstable regime is obtained by our choice of the coupling

strength s.

Figure 1 D reports the DR as a function of time for the CMSF

network. Each curve corresponds to DRj(t) for a perturbation

applied on node j, and the colors of the curves are indicative of the

degree of the perturbed node kj (to avoid cluttering, the Figure

reports the evolution of DR for perturbations applied on only 100

randomly selected nodes). Initially, there is a sort of damping or

dissipation of the perturbation up to reaching a minimum in the

curve, followed by a steady increase that eventually approaches an

asymptotic value. As shown in Figure S1, the same qualitative

evolution of DR holds for different subsets of nodes spanning the

entire degree range (Figure S1 C), as well as for the other two

networks (Figure S1 A and B).

By a closer inspection of Figure 1 D (as well as of the analogous

plots in Figure S1), it becomes clear that, in all cases, the DR’s

corresponding to perturbations applied on top of the most isolated

nodes (those having the lowest k) undergo the lightest damping

and diverge rapidly from synchronization. Therefore, it is

appropriate to refer to these nodes as the most vulnerable to a finite

perturbation. On the other hand, as we inspect perturbations upon

more and more connected nodes, the DR goes through a heavier

damping and the divergence is slower. However, such a behavior

happens to reverse at some point (at least for the BASF and CMSF

networks, the ER having only nodes of low or intermediate

connectivity), so that the least vulnerable nodes are not the hubs as

one could have expected from the above observations.

While the data of Figure 1 D suggest a definition of a time

dependent vulnerability, as the ranking of nodes (at a given time ~tt)
that follows the corresponding distribution of DRj(~tt), a remark-

able result is that the curves appear to show, in fact, relatively few

crossings between them. Precisely, the node ranking is almost

conserved along the entire time epoch, a fact that can be used to

simplify the operational relationship between vulnerability of a

node under finite perturbations and its degree (or other centrality

measures), by assuming the minimum of the DRj(t) as a reliable

measure of vulnerability. The idea is that the more negative the

minimum is the larger the damping and the more inertia the

system shows in escaping from synchronization.

Guided by the above discussion, we show in Figure 2 the

minimum of each DRj(t) for all three networks as a function of kj

(Figure 2 A) and as a function of the eigenvector centrality [15].

Based on the qualitative time evolution of the global divergence

rates and its dependence on the connectivity/centrality as seen in

the Figure, we have grouped the nodes into three classes that

roughly correspond to the isolated nodes (ISOL in the Figure), the

nodes of intermediate connectivity (MEDIUM) and the hubs

(HUBS). The transition between the isolated nodes and the nodes

of intermediate connectivity has been further adjusted so as to

correspond approximately to the point on the connectivity/

centrality axis at which the stabilizing effect of the rest of the

network becomes strong enough to cause a visible damping of the

initial perturbation in the local divergence rate of the perturbed

node drjj(t) (such a phenomenon will be apparent in Figure 3).

As we anticipated, isolated nodes are the most vulnerable: a

perturbation applied on them rapidly takes the system away from

M (see the region labeled as ISOL in Figure 2 A). As we perturb

nodes that are more and more connected (those inside the region

labeled MEDIUM in Figure 2 A) the escape from synchroniza-

tion becomes slower: these nodes are less vulnerable to the

perturbation, the speed at which the system desynchronizes is

smaller, and, from the point of view of control of dynamical

systems, a restoring or protecting action in technical applications

could wait a bit more than in the previous case. In the case of the

scale-free networks there are also nodes whose centrality/

connectivity is still much higher (those inside the region labeled

HUBS in Figure 2 A). As we perturb nodes of higher and higher

degrees, we reach a point at which the trend is reversed into a

situation where centrality and vulnerability to a perturbation are

positively correlated quantities. This trend continues up to the

most connected hubs as seen in the Figure.

Figure 2. Minimum of the divergence rate as a function of connectivity/centrality. A) Minimum DR vs k. A simplifying partition of the
nodes into three sets according to their connectivity (ISOL: isolated nodes; MEDIUM: nodes of intermediate connectivity; HUBS) is sketched for
discussion of results. B) Minimum DR vs eigenvector centrality.
doi:10.1371/journal.pone.0020236.g002
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The mechanism that underlies such a nontrivial dependence of

the vulnerability on the centrality must be related to the way the

perturbations are propagated over the network. The local

divergence rates for individual nodes, drij(t) (where i is the node

under study and j is the node initially perturbed) are then used to

elucidate the situation. Figure 3 shows drij(t) for every individual

node i, for perturbations applied on a few nodes which are either

clearly isolated (left column), intermediately connected around the

the region of lowest vulnerability shown in Figure 2 (middle

column), or undisputed hubs of the network (right column); the

degree of the perturbed node is shown on each plot. In each case,

the thick black line corresponds to drjj(t) (the node under study is

the node initially perturbed). The remaining curves corresponding

to drij(t) for i=j are represented as dotted lines whenever i is a

first neighbor of j or as continuous lines whenever it is not.

Our results show that perturbations applied on very isolated

nodes (those that are the most vulnerable) have some peculiar

properties that become less distinct as we approach the boundary

between isolation and intermediate connectivity. Indeed, the

relatively light global damping (visible in Figures 1 D, S1 and 2) is

seen to be due mainly to the fact that the perturbed node hardly

suffers from any damping itself. As for the propagation of the

perturbation, it is very heterogeneous, first affecting only the first

neighbors in a way that seems to be inversely related to their

degree (the most isolated are the fastest in abandoning the

synchronized state), but eventually reaching the rest of the

network. This second stage of the propagation occurs, instead,

somewhat accordingly to the nodes’ degree: hubs respond

generally faster than intermediate or isolated nodes. As the region

of intermediate connectivity is approached, the damping starts to

be more and more prominent and the propagation of the

perturbation more homogeneous.

When the perturbation is applied on nodes of intermediate to

high connectivity, the generic behavior corresponds to a more

homogeneous divergence of the full network from M. The way

the individual nodes escape from synchronization as a function of

connectivity is similar to that described in the previous paragraph.

The reason why the hubs are more vulnerable than the nodes of

Figure 3. Propagation of the perturbation over the network. Local divergence rates drij(t) (see text for definition) vs time for the ER network
(upper plots), the BASF network (middle plots) and the CMSF network (lower plots). The degree of the specific node j on which the perturbation is
applied is reported on each plot. In each case, the divergence rate of the perturbed node, drjj(t), is shown in black, while the other (i=j) nodes’
degrees follow the color bar in the second plot of the first row. Dotted lines correspond to the first neighbors of the perturbed node, continuous lines
to the rest of the nodes.
doi:10.1371/journal.pone.0020236.g003
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intermediate connectivity, as previously observed, appears to be

that for the hubs the damping turns out to be smaller, and the

propagation over the network facilitated by a high connectivity

makes the divergence from synchronization not only more

coherent but also faster.

A complementary way to look at the propagation of the

perturbations over the network is provided by the Videos S1, S2,

and S3. In them, one can see how the natural logarithm of the

Euclidean distance of each node in the perturbed BASF system to its

counterpart in the unperturbed BASF system evolves in time when

the perturbation is applied on an isolated node (Video S1), a node of

intermediate connectivity (Video S2), or a hub (Video S3). As in all

the Figures, averages across 50 independent integrations are used

here. The same qualitative features are seen for perturbations

applied on other nodes of similar connectivities in the BASF

network, and also in the other two networks under study.

These results are robust for nodes of similar degree regardless of

the specific topology of the considered network, suggesting that (at

least for the networks under study) the differences in vulnerability

under finite perturbations are largely (but not trivially) dependent

on local (first-neighbors) properties. Moreover, the same qualita-

tive features were found for other realizations of the three

topologies of size N~500 and N~2,000, and also, in the CMSF

case, for networks with a degree distribution P(k)!k{c with

c~2:5 and 3.5.

Discussion

In this paper we propose a novel method to study the

vulnerability under perturbations (attacks, failures, large fluctua-

tions) in large ensembles (networks) of coupled dynamical systems.

Our method differs significantly from those of the classical studies

on vulnerability in networks in that we do not address the issue of

how the network properties change upon removal of elements of

the graph. Rather, we consider a dynamical definition of

vulnerability, namely, the vulnerability of a collective dynamical

state to perturbing events occurring over a fixed topology.

Specifically, we study how the collective (synchronized) dynamics

is disrupted depending on the topological properties of the node in

the network on which a perturbation acts. Moreover, we put the

method to work by measuring the node vulnerability of three

systems of identical chaotic oscillators coupled according to three

distinct well-known topologies. We find conclusive results

regarding the relationship between vulnerability under perturba-

tions and node connectivity/centrality that seem to be robust and

generally valid for different topologies.

The method consists of monitoring simultaneously both the

original system and a copy of it subjected to a relatively large

perturbation (a large additive term in the initial conditions of one

of the networking units), and measuring the divergence rate

between both systems, both globally and at the node level (if one is

to study the propagation of the perturbation over the network in

some detail). In some technological, physical, chemical or

biological experimental settings where the systems are simple

enough and highly controlled, a similar strategy could be followed

with the same system used successively in two separate

experimental runs, one for each initial condition.

Our numerical results highlight that there is a clear (yet non-

trivial) dependence of the vulnerability on the nodes’ degree and

centrality. This dependence turns out to be highly robust and

largely dependent on local properties, different topologies yielding

essentially equal qualitative features. We have studied separately

the action of a perturbation on isolated nodes, nodes of

intermediate connectivity/centrality, and hubs. According to our

results, a perturbation is taking the system out of a synchronized

state most rapidly when applied on the most isolated nodes, and

becomes less destructive as the perturbed node approaches the

region of intermediate connectivity/centrality, showing a negative

correlation between vulnerability and connectivity/centrality.

After a certain value of connectivity/centrality is reached (where

the vulnerability is at its lowest point), vulnerability and

connectivity/centrality start to correlate positively, and the hubs

of the network turn out to be as vulnerable under perturbations as

some of the relatively isolated nodes.

When inspected at the node level, the divergence rates show

that the propagation of the perturbation from the initially

perturbed node to the rest of the network is very different

depending on the connectivity/centrality of the perturbed node

and of the other nodes. Some of the most conspicuous features are:

a tendency for the most isolated nodes to stay away from the

synchronization manifold since right after the perturbation, while

recruiting more and more neighbors in a heterogeneous manner

starting by the most isolated ones; and a tendency for the rest of

the nodes to undergo some kind of damping after being perturbed

and then diverge from synchronization with the rest of the network

in a more homogenous way. Also, generally speaking, the first

neighbors of the perturbed node seem to abandon the synchro-

nized state with rates inversely proportional to their degree,

whereas the rest of the nodes seem to do so at rates roughly

proportional to their connectivity/centrality.

These results can perhaps be interpreted as the interplay of two

opposite forces or factors. On the one hand, there is the stabilizing

influence of the other nodes in the network, which pulls the dynamics

of the perturbed node onto the synchronization manifold and seems

to be responsible for the damping of the perturbations. On the other

hand, there is the fast propagation of information over such inter-

connected networks, which helps the perturbation to reach all the

nodes relatively rapidly (at least for the topologies considered, for

which the geodesic distances are of necessity quite short). The first

factor by itself would result in a monotonic decreasing dependence of

the vulnerability on the connectivity/centrality; the second factor by

itself would result in a monotonic increasing dependence of the

vulnerability on the connectivity/centrality. The fact that we find a

non-trivial dependence that is decreasing up to a minimum value

and then increasing suggests that both factors (and probably others)

are present to an extent, and become more or less prominent at

different regions of the connectivity/centrality axis. Actually, results

found at the local level (as shown in Figure 3) seem to agree pretty

well with this explanation: isolated nodes are hardly subject to any

damping but they propagate the perturbation relatively heteroge-

neously, nodes of intermediate connectivity are subject to a heavier

damping and propagate the perturbation more homogeneously,

whereas hubs behave qualitatively as nodes of intermediate

connectivity, but with a still more efficient propagation over the

whole network (which is assumed to make the damping lighter

because the whole network is more rapidly taken away from

synchronization). For the purpose of illustration, Figure 4 shows a

simplifying, idealized version of this speculative explanation

superimposed on the global results (shown in Figure 2 A). Further

work along these lines is in progress to assess the full validity of the

present interpretation as well as the generality of the results.

The relationship between the effect of large perturbations on a

network of synchronized oscillators and the connectivity of the

perturbed oscillator has been previously studied in the context of

Kuramoto oscillators coupled following a scale-free topology [16].

Although the results are not strictly comparable with those

reported here –in our paper there is an irreversible disruption of

the (unstable) synchronized dynamics whereas Moreno and

Node Vulnerability under Perturbations in Networks
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Pacheco work on a system where (asymptotically stable) synchro-

nized states are spontaneously reached–, they find an interesting

inverse proportionality between the vulnerability of the synchro-

nized dynamics under perturbations (as measured by the

resynchronization time) and the degree of the perturbed node.

There is an obvious analogy between this finding and the damping

of the divergence rates that we attribute to the stabilizing influence

of the rest of the network on the node that has been perturbed,

which, in our interpretation, should become more and more

important as the perturbed nodes are more connected/central.

The fact that the trend we see for small degrees/centralities in

Figure 2 is reversed at some point is the effect of the propagation of

the perturbation over the network, the second competing force.

Nevertheless, the absence of any trace of an analogous effect in the

results reported in [16] is not surprising, as only the first force is

relevant in that context. Therefore these previous results are in

good agreement with those reported here, and we believe they

somehow lend support to our interpretation of the results in this

study.

To summarize, the approach we introduce to the study of the

vulnerability under finite perturbations in complex networks may

be useful to unveil which nodes in a network are the most

vulnerable to large damages or attacks, and thus those that are in

more need of protection or rapid restoring action, when the

collective dynamics is desirable, or those to be subject to an

intentional attack if the build up of collective dynamics is to be

prevented. For instance, the ranking of the nodes in terms of our

measure of vulnerability could be of interest in the study of

simulated networking systems and also experimentally in systems

created for testing complex communication protocols (a pertur-

bation could be a failure in one of the subsystems), neuronal

cultures (an electric pulse applied on one neuron), etc. Moreover,

we have tested the method numerically with three systems that are

representative idealizations of many cases of interest. The results

reported in this paper show a very definite dependence of the

vulnerability on the connectivity/centrality of the perturbed node,

which turns out to be relatively independent of the detailed

coupling topology. This makes them potentially fit for extrapola-

tion to a greater variety of systems. The protection of

infrastructural networks, such as power grids, and the localization

of the best spot for an intentional attack (electric current pulse or

magnetic stimulation) meant to prevent or reduce undesired highly

synchronized behavior in the central nervous system (e.g.,

Parkinson’s disease, epilepsy, and other pathological rhythmic

activities) are two relevant cases where the main results shown in

our paper may be applied.

Supporting Information

Figure S1 Divergence rates of the perturbed (global)
dynamics. Divergence rates from the synchronization manifold

(see text for definition), for perturbations applied on 100 randomly

selected nodes. A) ER network, B) BASF network, C) CMSF

network (subset of nodes different from that shown in Figure 0 D).

Curves are colored according to the degree of the node upon

which the perturbation is applied.

(TIF)

Video S1 Propagation over the BASF network of a
perturbation applied on an isolated node (k~8). The

perturbed node is shown in the center surrounded first by a circle

of first neighbors, further away by another circle of second

neighbors, and so on, with lines between connected nodes. (In this

and the other videos, to avoid cluttering, if there are more than

100 neighbors of a certain order, only 100 of them are randomly

selected for visualization.) Azimuthal coordinate values (angles) are

randomly assigned. Values along the z-axis represent the natural

logarithm of the Euclidean distance between the state of the node

in the perturbed system and its counterpart in the unperturbed

system at the corresponding instant of time. Colors represent the

degree of each node according to the scale shown in Figures 0 D

and 0. Gray empty balls are just a visual aid to see the paths traced

since the initial time.

(MP4)

Video S2 Propagation over the BASF network of a
perturbation applied on a node of intermediate connec-
tivity (k~52). See legend of Video S1 for a description of the

objects in the video.

(MP4)

Video S3 Propagation over the BASF network of a
perturbation applied on a hub (k~111). See legend of

Video S1 for a description of the objects in the video.

(MP4)
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Figure 4. Illustration of a plausible interpretation of the results.
The relationship between vulnerability and connectivity is assumed to
result from the interplay between two opposing factors: 1) the more
isolated a node is, the more free it is to remain perturbed, whereas the
more connected the node, the heavier the damping it is subject to
(magenta line); 2) the more isolated a node is, the weaker the
propagation to other nodes, whereas the more connected the node,
the better it is at propagating the perturbation throughout the network
(orange line). The combined effect is represented by the black line,
which is assumed to capture the main qualitative features of the
numerical results.
doi:10.1371/journal.pone.0020236.g004
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8. Erdös R, Rényi A (1959) On random graphs I. Publ Math-Debrecen 6:
290–297.

9. Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science

286: 509–512.

10. Bender EA, Canfield ER (1978) Asymptotic number of labeled graphs with given

degree sequences. J Comb Theory A 24: 296–307.
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