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Abstract
The assessment of gaze behaviour is essential for understanding the psychology of communication. Mobile eye-tracking glasses
are useful to measure gaze behaviour during dynamic interactions. Eye-tracking data can be analysed by using manually
annotated areas-of-interest. Computer vision algorithms may alternatively be used to reduce the amount of manual effort, but
also the subjectivity and complexity of these analyses. Using additional re-identification (Re-ID) algorithms, different partici-
pants in the interaction can be distinguished. The aim of this study was to compare the results of manual annotation ofmobile eye-
tracking data with the results of a computer vision algorithm. We selected the first minute of seven randomly selected eye-
tracking videos of consultations between physicians and patients in a Dutch Internal Medicine out-patient clinic. Three human
annotators and a computer vision algorithm annotated mobile eye-tracking data, after which interrater reliability was assessed
between the areas-of-interest annotated by the annotators and the computer vision algorithm. Additionally, we explored interrater
reliability when using lengthy videos and different area-of-interest shapes. In total, we analysedmore than 65min of eye-tracking
videos manually and with the algorithm. Overall, the absolute normalized difference between the manual and the algorithm
annotations of face-gaze was less than 2%. Our results show high interrater agreements between human annotators and the
algorithm with Cohen’s kappa ranging from 0.85 to 0.98. We conclude that computer vision algorithms produce comparable
results to those of human annotators. Analyses by the algorithm are not subject to annotator fatigue or subjectivity and can
therefore advance eye-tracking analyses.

Keywords Gaze behaviour . Eye-tracking glasses . Areas-of-interest . Computer vision algorithm . Pose estimation . Person
re-identification

Introduction

Human gaze direction can provide information about attention
and social cognition (Frischen, Bayliss, & Tipper, 2007; Itier
& Batty, 2009; Pfeiffer, Vogeley, & Schilbach, 2013;
Schilbach, 2015). The assessment of gaze direction, and there-
fore a person’s attention, during interpersonal interaction is
relevant to understand the psychology of communication
and natural behaviour (Jongerius, Hessels, Romijn, Smets, &

Hillen, 2020; Tatler, Hayhoe, Land, & Ballard, 2011). Mobile
eye-tracking glasses are increasingly used to measure gaze
behaviour during face-to-face interactions (Jongerius et al.,
2020). These glasses register the gaze behaviour of the person
wearing them. The glasses have one forward-looking video
camera on the nose bridge which captures the environment the
person is looking at and infrared video cameras facing the
wearer’s eyes. The infrared video cameras facing the eyes
register pupil movements through a technique called pupil
centre corneal reflection. These data, amongst other geomet-
rical features of the pupil reflections, are combined to calcu-
late the gaze direction (Tobii Pro, 2019a). The output of mo-
bile eye-tracking registrations is often visualised as a video of
the viewer’s perspective with information about the focus of
people’s gaze, depicted as a dot on the video image (i.e. a 2D
position (pixel) on a video screen).

Eye-tracking glasses in their current and most advanced
form are more novel and, therefore, have been used less in
studies of the psychology of communication compared to
screen eye-tracking (Cognolato, Atzori, & Muller, 2018;
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Tatler et al., 2011). Mobile and screen eye-tracking differ in
how gaze is registered. Screen eye-trackers can only register
a person’s gaze location on a computer screen and conclu-
sions drawn based on screen eye-tracking experiments can-
not be generalized to many real-world situations (Tatler
et al., 2011). When screen eye-tracking is used to understand
social, dyadic interactions, this is unavoidably done in video-
call-like settings (Hessels, 2020). Wearable eye-tracking
glasses offer an advanced technique to capture whatever a
persons’ head is directed at, meaning that gaze direction is
registered while the wearer of the eye-tracking glasses is
moving around in the real world (Tatler et al., 2011).
Therefore, wearable eye-tracking glasses can be used in
any setting and capture gaze direction of individuals acting
in a dynamic world.

Because eye-tracking glasses permit freedom of move-
ment, this technique is particularly suitable to study gaze in
face-to-face interactions between two individuals (Franchak,
Kretch, & Adolph, 2018; Honma, 2013; King et al., 2013;
Macdonald & Tatler, 2018; Spezio, Huang, Castelli, &
Adolphs, 2007; Vabalas & Freeth, 2016; M. Ye et al.,
2020). . This method has been used to study eye contact in a
variety of settings, e.g. to investigate the effects of autistic
traits, social anxiety, amygdala impairment in face-to-face in-
teractions (Franchak et al., 2018; Honma, 2013; King et al.,
2013; Macdonald & Tatler, 2018; Spezio et al., 2007; Vabalas
& Freeth, 2016; Z. Ye et al., 2012). Eye-tracking glasses have
been used to study unidirectional gaze behaviour if only one
interactor wears the glasses (King et al., 2013; Spezio et al.,
2007; Vabalas & Freeth, 2016) or to study mutual gaze be-
haviour if both interactors wear the glasses (Franchak et al.,
2018; Honma, 2013; Macdonald & Tatler, 2018). Currently,
there is variation among studies in how mobile eye-tracking
data are analysed. Some studies have used manual frame-by-
frame coding (Franchak et al., 2018; Macdonald & Tatler,
2018), e.g. to register the onset and end of mutual gazing
(Macdonald & Tatler, 2018). Others have used heat maps
generated by eye-tracking software, illustrating with colours
the data where the gaze was located the most (e.g. red for high
level of gazing and green for low level of gazing) (King et al.,
2013). Yet, other studies have analysed eye-tracking data by
manually drawing areas-of-interest on the eye-tracking data
(Vabalas & Freeth, 2016). Research using eye-tracking data
would benefit from a more standardized analyses and from
more efficient methods to enhance comparison between stud-
ies and assessment of study quality. Moreover, studies to date
using mobile eye-tracking during face-to-face interaction gen-
erally have relatively small sample sizes (Franchak et al.,
2018; Honma, 2013; King et al., 2013; Macdonald & Tatler,
2018; Spezio et al., 2007; Vabalas & Freeth, 2016; Z. Ye et al.,
2012). This may be because analysis of these mobile eye-
tracking data so far has been labour-intensive and not straight-
forward to automate.

Areas-of-interest are commonly used in eye-tracking data
to assess how often and how long participants fixate their gaze
within a certain area – for instance, another person’s face or a
specific part thereof. This information is used to infer the level
of gaze on the eyes (Horley, Williams, Gonsalvez, & Gordon,
2003). Based on such analyses, researchers have for example
concluded that individuals with social phobia avoided looking
at facial features, in particular the eyes, compared to controls
(Horley et al., 2003). Whereas for screen eye-tracking several
methodologies have been developed to automatically generate
areas-of-interest (Chawarska, Shic, & disorders, 2009;
Hessels, Benjamins, Cornelissen, & Hooge, 2018; Hunnius
& Geuze, 2004), creating areas-of-interest for wearable eye-
tracking videos is more challenging (R. S. Hessels et al.,
2018). Because mobile eye-tracking glasses offer freedom of
movement and can be used “in the wild” (De Beugher, Brône,
& Goedemé, 2016), they lack a fixed reference frame (as in
screen-based eye-tracking). Thus far researchers have mostly
manually annotated areas-of-interest in wearable eye-tracking
videos for each video frame – i.e. around 25 times per second
of video material (depending on characteristics of the eye-
tracking device) (Franchak et al., 2018; Garrido-Jurado,
Munoz-Salinas, Madrid-Cuevas, & Medina-Carnicer, 2016;
R. S. Hessels et al., 2018). However, the manual creation of
these areas-of-interest makes this process vulnerable to sub-
jective interpretations which can negatively influence the re-
liability of the areas-of-interest identification. In addition, this
process is extremely labour-intensive and thus time-
consuming (R. S. Hessels et al., 2018). To summarize, small
sample sizes, subjective interpretations and labour-intensive
analysis are downsides of manual creation of areas-of-interest.

; Computer vision algorithms may reduce the complexity
and subjectivity of mobile eye-tracking data analysis of face-
to-face interactions (Callemein, Van Beeck, Brône, &
Goedemé, 2018; De Beugher, Brône, & Goedemé, 2014;
Duchowski et al., 2019). Computer vision algorithms are able
to construct areas-of-interest through automatic detection of
human body parts such as faces, torsos, or hands in dynamic
videos (Callemein et al., 2018; Duchowski et al., 2019). Using
mobile eye-tracking data in combination with computer vision
algorithms could enable researchers to automatically identify
when, and how long, individuals fixate their gaze on specific
areas of other people. However, studies so far that used algo-
rithms to analyse eye-tracking data either report limited ana-
lytic details (Honma, 2013; Spezio et al., 2007), or may be
using sub-optimal algorithms (Duchowski et al., 2019; Z. Ye
et al., 2012). Ye and colleagues documented an accuracy of
73% on one video of 7 min when comparing the algorithm to
the ground truth (Z. Ye et al., 2012). Duchowski and col-
leagues automatically analysed five laboratory eye-tracking
sessions of less than 30 s with good light and little movement
(Duchowski et al., 2019). They reported an accuracy ranging
from 9.6% (mouth) to 99.5% (left eye) for the different facial
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features, when comparing the instructed (expected) gaze time
(100%) to the measured gaze time within an area-of-interest.
Although these authors concluded that their algorithm was
successful, we believe it can be improved. Because wearable
eye-tracking data often involves highly mobile (blurry) and
low-quality footage, specific areas-of-interest (e.g. the face)
can be supplemented with full-body detection and specific
techniques to distinguish between different people in an inter-
action (Bashbaghi, Granger, Sabourin, & Parchami, 2019).
These specific detection techniques can be used to automati-
cally identify areas-of-interest around faces, thus reducing the
complexity of analysis of wearable eye-tracking data.
Callemein and colleagues compared two publicly available
frameworks for head detection, YOLOv2 and OpenPose,
and found that the average precision is 57% for YOLOv2
and 72% for OpenPose when comparing the automatic anal-
yses to an existing dataset (INRIA) (Callemein et al., 2018;
Dalal and Triggs, 2005). The authors concluded that
OpenPose outperformed the YOLOv2 model. Using comput-
er vision algorithms to identify areas-of-interest may offer a
more reliable, accurate and quick method as compared to
manual annotations. However, it is currently unclear how
computer vision algorithms perform compared to manual
analysis.

Therefore, the aim of this study is to compare gaze-to-face
levels identified by a computer vision algorithm to those iden-
tified by human annotators on mobile eye-tracking data in
interpersonal interactions using an area-of-interest. The results
of this study can be used to improve the state of the art of
assessing gaze direction in face-to-face human interactions.

Methods

Design

A computer vision algorithm and three human annotators
(AM, LO, and TB) annotated mobile eye-tracking data, to
assess interrater variability between the computer algorithm
and the human annotators. Data for the present analyses were
collected as part of a larger prospective observational study,
designed to assess the effect of eye contact between physi-
cians and their patients on the patient–physician relationship.
Internal medicine residents in an out-patient clinic wore a
wearable eye-tracker (Tobii Pro Glasses 2) during regular
follow-up consultations with patients (N = 100) (Tobii Pro
AB, Stockholm, Sweden). Consultations were additionally
recorded on camera and all participants responded to question-
naires before and after the consultation. Data collection started
in February 2018 and ended in May 2019. The study was
exempted from the Medical Research Regulations Involving
Human Subjects Act by the Medical Ethics Committee of the

Amsterdam University Medical Centres, location AMC.
Patients and residents gave written informed consent.

Procedure

First, for the primary analysis we performed manual and com-
puter vision algorithm analyses on the first minute of seven
eye-tracking videos. One complete video (#6) was annotated
by two annotators to assess the interrater reliability between
manual annotations. Second, we additionally conducted ex-
plorative analyses on two videos (#6 and #7), to test the ro-
bustness of the computer vision algorithm when using lengthy
eye-tracking videos (of which one (#7) included an additional
interactor) and different area-of-interest shapes. The default
shape of the area-of-interest by our algorithm is rectangular.
However, an oval area-of-interest might better approximate
the shape of a face by reducing the degree of overestimation
of face-gaze (in the angles). Therefore, we assessed the differ-
ence between a rectangular and an oval area-of-interest by
comparing a manual oval area-of-interest shape to the auto-
matically created rectangular area-of-interest. We refer to Fig.
1 for an illustration of the area-of-interest shapes. We have
chosen large areas-of-interest around the face over smaller
areas-of-interest around the eye region, because overall large
areas-of-interest are more noise-robust compared to smaller
areas-of-interest (Hessels, Kemner, van den Boomen, &
Hooge, 2016).

Participants and eye-tracking videos

We randomly selected seven eye-tracking videos of consulta-
tions between patients and physicians. This limited number of
videos was chosen due to the time- and labour intensity of the
manual annotations. Patients that participated in our study (N
= 7) were on average 61 years old (range, 41–77 years) and
four were female. Physicians (N = 7) were on average 35 years
old (range, 33–38 years) and four were female. Visual acuity
was normal or corrected to normal for all physicians. No eye-
tracking data needed to be discarded because of data loss.

Fig. 1 An illustration of the primary area-of-interest (right) and the ex-
plorative area-of-interest (left)
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Beforehand, it was tested whether their eyes were suitable
for a sufficient calibration quality as indicated by our eye-
tracking software (the Tobii Pro Glasses Controller software).
Calibration was done by having the participant’s gaze focus
on a specific calibration target (black dot on a calibration card)
at 0.75–1.25-m distance. The calibration ensures the accuracy

of the measurement of the eye-tracking glasses and sufficient
calibration quality is a prerequisite for collecting precise eye-
tracking data (Nyström, Andersson, Holmqvist, & Van De
Weijer, 2013). A recent study shows that the calibration qual-
ity of the mobile eye-tracking equipment we used remains of

Fig. 3 A graphical example of how the aspect ratios and margin scales for frontal and profile faces were determined

Fig. 2 A screenshot of the eye-tracker analysis software in operation

Behav Res (2021) 53:2037–20482040



good quality even when suffering from slippage (Niehorster
et al., 2020).

All physicians wore the eye-tracking glasses throughout
the consultation. All recordings started from the moment the
physician opened the door of the consultation room and invit-
ed the patient (and caregiver) in. Next, the physician and pa-
tient (and caregiver) sat down on either side of a desk.
Occasionally a physical examination took place (see
Appendix). A screenshot of the physician’s outlook can be
seen in Fig. 2.

Manual analysis

All manual analyses were performed by three human an-
notators using Tobii Pro Lab Analyzer software for eye-
tracking analysis. This software displays the forward-
looking video camera frames (located on the nose bridge
and capturing the environment the person is looking at).
Annotators can manually draw an area-of-interest on each
video frame (25 times per second), using an area-of-
interest tool (Tobii Pro AB, Stockholm, Sweden). The

gaze location is not shown on screen while drawing the
area-of-interest. Annotators judge whether the face of an
individual is displayed in the video image and create one
or multiple areas-of-interest. The annotators were
instructed to draw the area-of-interest around the face,
similar to the areas-of-interest shown in Fig. 1. Both the
rectangular and the oval drawn area-of-interest should
capture the whole face including a small margin around
it. The annotators were able to drag the area-of-interest
from frame to frame, although each movement of the per-
son wearing the eye-tracker and the interactors shown on
screen demanded manual adjustment of the previously set
area-of-interest. When two areas-of-interest are present in
the frames (e.g. both a patient and a caregiver) this dou-
bles the manual workload. The size and rotation of the
area-of-interest need to be manually adjusted depending
on the position in the frame. The time it takes to analyse a
video of 1 min depends on the annotator’s characteristics,
we estimate it to be around 50 min. The output of the
manual analysis is a spreadsheet indicating per video
frame (40 ms) whether or not the physician’s gaze was

Table 2 Multiple class identification accuracy and agreement results for all videos between human annotators and the computer vision algorithm using
the Re-ID technique

Video Duration of identity - manual (s) Duration of identity – algorithm (s) Δ (s) Normalized Δ (%) Cohen’s kappa Re-ID accuracy (%)

Patient Caregiver Researchers Patient Caregiver Researchers

#1 30.16 0.28 30.44 0.16 – 0.16 0.27 0.93 96.26

#2 26.90 0.10 26.5 0.10 0.40 0.66 0.88 94.18

#3 28.76 1.32 30.16 1.24 – 1.32 2.20 0.92 95.94

#4 34.20 1.16 35.72 0.84 – 1.20 1.98 0.93 96.50

#5 24.80 0.00 26.00 0.00 – 1.20 1.99 0.96 98.01

#6 24.56 0.08 26.56 0.12 – 2.04 3.40 0.91 95.80

#7 24.00
10.36

0.04 23.68
10.80

0.08 – 0.16 0.27 0.91 94.53

Note:Duration of identity: the time (in s) a specific individual is identified. The identities are patients and researchers, in video #7 additionally a caregiver
is identified, the time (in s) the caregiver is identified is shown in italics

Table 1 Single class agreement results on the first minute of all seven eye-tracking videos between manual annotators and the computer vision
algorithm

Video Duration (s) Face-gaze duration (s) Δ (s) normalized Δ (%) Cohen’s kappa

Manual Algorithm

#1 59.84 30.44 30.60 – 0.16 0.27 0.97

#2 60.50 27.00 26.60 0.40 0.66 0.89

#3 60.04 30.08 31.40 – 1.32 0.22 0.94

#4 60.46 35.36 36.56 – 1.20 1.98 0.96

#5 60.20 24.80 26.00 – 1.20 1.99 0.98

#6 60.00 24.64 26.68 – 2.04 3.40 0.91

#7 60.00 34.4 34.56 – 0.16 0.27 0.90
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focused within the face (the area-of-interest). This was
indicated by a value of ‘1’ when the gaze matched the
face-area, and a value of ‘0’ when it did not. All manual
analyses were displayed on video and the areas-of-interest
were visually checked for shape, size and location accu-
racy by the first author (CJ) to assure that the manual
analysis would suffice as ground truth. No major empiri-
cal errors were detected. Videos #1 to #5 were all coded
once by one annotator each, video #6 was coded twice by
a single annotator (the second time using a different area-
of-interest size) and once by a different annotator, and
video #7 was coded twice by the same annotator (the
second time using a different area-of-interest size). We
have randomly chosen video #6 to be double coded. For
an overview of annotators, videos, numbers of frames,
area-of-interest shape and number of individuals shown
in the videos we refer to our Appendix.

Computer vision analysis

For the computer vision analyses we first we performed
a single class automated analysis, indicating whether the
gaze was located on any face (resulting in a ‘1’ on the

spreadsheet) or not (resulting in a ‘0’ on the spread-
sheet). Second, we performed a multiple class automated
analysis indicating whether the gaze was located on a
specific individual’s face resulting in a ‘1’ when it was
located on for example the patient’s/caregiver’s/re-
searcher’s face, and a ‘0’ when not. The output was
specified per 40 ms.

Using the computer vision annotation requires less
manual work. The algorithm performs the calculations
based on the processor speed. The algorithm processes a
video of 1 min in less than 1 min, when using a NVIDIA
1080 Ti GPU. Therefore, using the computer vision soft-
ware for analyses requires less time than the manual
analyses.

The computer vision analysis was operated using soft-
ware specifically designed for this study which we coined
‘Eye Tracker Analysis’. See Fig. 2 for a screenshot of
eye-tracker analysis operating on wearable eye-tracking
data. The software is available and can be downloaded
following this link: https://osf.io/4uy35/?view_only=
785a011774cf4c4f8c5e4608b34a2a38. To operate the
software, we used raw data, i.e. the wearable eye-
tracking video and the gaze location (i.e. the gaze screen

Table 4 Identification accuracy and agreement results for the explorative videos between human annotators and the computer vision algorithm using
the Re-ID technique

Video, condition Duration of identity – manu-
al (s)

Duration of identity – algo-
rithm (s)

Δ (s) Normalized Δ
(%)

Cohen’s
kappa

Re-ID Accuracy
(%)

Patient
Caregiver

Researchers Patient
Caregiver

Researchers

#6 long duration, rectangular
AOI

173.84 0.08 183.4 0.12 –
9.-
52

0.86 0.95 98.61

#6 long duration, oval AOI 173.56 0.04 183.4 0.12 –
9.-
76

0.88 0.95 98.65

#7 long duration, rectangular
AOI

195.6
33.52

0.04 189.72
49.16

0.52 22 2.90 0.87 93.92

#7 long duration, oval AOI 182.16
26.88

0.2 189.72
49.16

0.52 15.04 1.98 0.85 93.18

Note:Duration of identity: the time (in s) a specific individual is identified. The identities are patients and researchers, in video #7 additionally a caregiver
is identified, the time (in s) the caregiver is identified is shown in italics

Table 3 Results of agreement analysis on videos #6 and #7 of long duration, and with a different shape of area-of-interest

Video, condition Face-gaze duration (s) Δ (s) Normalized Δ (%) Cohen’s kappa

Manual Algorithm

#6, long duration, rectangular AOI 173.92 183.52 – 9.60 0.87 0.95

#6, long duration, oval AOI 174.6 183.52 – 8.92 0.81 0.95

#7, long duration, rectangular AOI 229.16 239.4 – 10.24 1.35 0.89

#7, long duration, oval AOI 209.24 239.4 – 30.16 3.97 0.87
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coordinates) without any fixation or attention filter (Tobii
Pro, 2019b). Beware that all data were synchronised (eye-
tracking video and gaze location), which we were able to
verify in the video display, as shown in Fig. 2. The area-
of-interest was calculated using parameters (aspect and
profile ratio) as illustrated in Fig. 3. These parameters
can be either kept constant or manually adjusted to a
bigger or smaller size when desired, making the software
semi-automatic. In our approach, we first calculated the
mean parameters of the manual annotations and used
these to create the areas-of-interest. The software offers
default parameters, based on our calculations, but these
can be adjusted if desired. For a detailed description of
the technique of the computer vision algorithm, see Box
1.

Box 1. A detailed description of the techniques used in the
computer vision analysis.

To calculate the areas-of-interest we used an OpenPose base head detec-
tion based on a previously published study (Callemein et al., 2018;
Cao, Hidalgo, Simon, Wei, & Sheikh, 2018). The OpenPose frame-
work detects 18 anatomical key-points in the images that together
represent the full human pose skeleton. In the present study, only the
five key-points located in the head region, comprising the location of
the nose and both ears and eyes, were used (see Fig. 3 for an
illustration). Whenever two or more of these key-points are visible the
head region is identified, when only one key-point is visible, the head
remains undetected. Defining a bounding box around these points
creates a rectangular area-of-interest. This bounding box enables a
dynamic and autonomous definition of the head area-of-interest around
each person’s face visible in the image. In most cases, a simple
bounding box around these points would not suffice, since the full head
region is not covered by these five points. This issue is solved using the
relative distance and orientation of these points to first determine the
face orientation (Callemein et al., 2018). We defined a frontal face
when all five face points were available, or a profile face when fewer
points were visible due to for example turning of the face. Using the
largest distance between the available points as the area-of-interest
width in pixels, we calculated the area-of-interest height bymultiplying
the width with the aspect ratio parameter. To ensure the complete
coverage of the face, we also used an additional scale (margin) pa-
rameter. Different parameters are needed depending on whether the
image shows a frontal or a profile face and this accounts for variation in
centre location for the area-of-interest. The areas-of-interest are thus
calculated based on these parameters.

The single class algorithm is not able to distinguish
between different people participating in an interaction.
To address this issue, we additionally used multiple class
analysis with re-identification (Re-ID) techniques. This
technique is able to recognize and re-identify individuals
using specific characteristics of their appearance (De
Feyter, Van Beeck, & Goedemé, 2018; He, Zhang, Ren,
& Sun, 2016; Li, Zhao, Xiao, & Wang, 2014). In partic-
ular, we first used OpenPose to establish person detection
(Cao et al., 2018; Cao, Simon, Wei, & Sheikh, 2017). We
supplemented this detection with a ResNet artificial neural
network architecture to produce a 128-dimensional

description vector, called embedding, that is able to en-
close the identity of a person using features such as colour
and shape (De Feyter et al., 2018; He et al., 2016; Li
et al., 2014). We used a ResNet-34 network trained on
the CUHK03 dataset (the Chinese University of Hong
Kong-03 dataset including 1467 identities) to extract such
a deep face embedding for each upper-body area-of-
interest of a person detected in the video. The embeddings
for the upper-body poses were stored and used to compare
each detected person in the videos against a gallery of
labelled persons, using the Euclidean distance.

We saw that a few manually labelled occurrences of
each person in this gallery suffice for each person
appearing in the video to be automatically assigned to
an identity. For most persons in the video, one labelled
occurrence in the gallery suffices. However, if additional
embeddings are added to the identity list throughout the
video and frames, the Re-ID system improves throughout
the analysis. Especially whenever wardrobe changes oc-
curred, and therefore the embedding changed, we had to
add the embeddings to the list accordingly, resolving this
issue with only a limited effort. When no more than a
single individual is present in the eye-tracking video,
use of the multiple class Re-ID technique could be unnec-
essary. The multiple class Re-ID technique could also be
used to adjust single class misclassifications.

Agreement between manual and automated analyses

Cohen’s kappa (κ) (Cohen, 1986) was calculated to assess
interrater reliability, i.e. agreement, between human anno-
tators and the computer vision algorithm. A Cohen’s kap-
pa of 1.0 indicates perfect agreement and a score of 0.0
indicates no agreement. Moreover, for all comparisons
(both single class and multiple class) agreement was cal-
culated using accuracy results. Accuracy results were cal-
culated by comparing assessments frame-by-frame.
Manual analysis was used as ground truth. Whenever as-
sessment of the manual analysis matched the algorithm
results this was classified as “true positive”. A “false pos-
itive” result occurred when the algorithm analysis did not
match the manual analysis. For the multiple class analyses
both the manual and the Re-ID analyses were labelled
with identities. A “true-positive” result was when the gaze
was located on a specific person according to both the
algorithm and the manual analysis. A “false-positive” re-
sult in the multiple class analysis was similar to a “false
positive” result in the single class analysis, and occurred
when the algorithm did not match the manual analysis.
Accuracy is then displayed in percentages of “true posi-
tives”. Furthermore, we used absolute normalized differ-
ences to illustrate the differences between the manual and
the automated analyses. Absolute normalised differences
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were calculated using the absolute difference (the sum of
both over and under identification) in seconds, divided by
the total amount of time of the video. First, as a back-
ground check, we compared the two manual analyses on
video #6. In case of sufficient agreement, we would pro-
ceed to compare the manual analyses of the seven videos
to the computer vision algorithm. Second, for our primary
aim we compared the manual annotations to both the sin-
gle and to the multiple class analyses. Third, for our ex-
plorative aim we compared manual annotations of two
longer videos (one involving an additional interactor)
both with the regular and with a different shaped area-
of-interest to the single- and multiple class automatic
annotations.

Results

Primary aim: Comparing manual with automated
analyses

The first minutes of all analysed seven videos, totalled
421.04 s of recorded data, comprising 10,526 frames.
Overall, the manual annotators identified 204.48 s of
face gaze vs. 212.40 s identified by the algorithm. The
average absolute difference between the manual and the
algorithm face-gaze annotations was 0.93 s (mean nor-
malized absolute difference of 1.5%). Disagreements
may be due to the set size of the parameters (which
define the size of the areas-of-interest) in the algorithm.
In the annotations performed by the algorithm, the size
of the areas-of-interest is standard, whereas in the man-
ual analysis it may vary.

As a background check, agreement between the man-
ual analyses by two different human coders was calcu-
lated on one complete video (#6), resulting in a Cohen’s
kappa of 0.99. Hence, we proceeded to compare the sin-
gle class output of the manual analyses to the algorithm
analyses (see Table 1). Results indicated high agreement
scores (all κ ≥ .89) between the manual annotators and
the algorithm.

Next, we compared the manual annotations and the
multiple class output of the algorithm (see Table 2). The
manual annotations identified in total 192.52 s of face-
gaze on the patients, compared to 199.06 s for the algo-
rithm. Overall, the average difference of the level of face-
gaze between the manual annotations and the algorithm
annotations was 0.92 s (absolute), normalized = 1.54%.
The results displayed in Table 3 indicate high agreement
scores of over (all κ ≥ .88) between the manual annotators
and the algorithm.

For the Re-ID confusion matrices, indicating the accu-
racy of the person identification of the algorithm

compared to the human annotations, see Appendix. All
confusion matrices show a limited amount of confusion
between the different identities (researchers, patients, and
caregiver). Most confusion can be accounted for by the
single class annotations.

Explorative aims: Testing the robustness of the
computer algorithm

We had explorative aims comparing the workings of the
algorithm to empirical challenges. We compared the algo-
rithm on manual annotations of two longer videos (one
with an additional interactor) and the same videos with a
different area-of-interest shape (oval), using the single
class algorithm and the multiple class algorithm. Video
#6 had a duration of 1102.76 s (27569 frames) and video
#7 had a duration of 758.92 s (18,973 frames). In video
#6 the manually identified face-gaze was 173.92 s with a
rectangular area-of-interest and 174.6 s with an oval area-
of-interest, versus the algorithm that identified 183.52 s of
face-gaze. In video #7 the manually identified face-gaze
was 229.16 s with a rectangular area-of-interest and
209.24 s with an oval area-of-interest. The algorithm
identified 239.4 s of face-gaze. We refer to Table 3 for
our agreement analyses with the single class output and to
Table 4 for our agreement analyses with the multiple class
output. In all explorative conditions, the Cohen’s kappa
values remain above κ ≥ .85.

Discussion

The primary aim of this study was to test whether gaze-
to-face levels identified by a computer vision algorithm
are comparable to those identified by human annotators
on mobile eye-tracking data using areas-of-interest. For
our primary aim, our results show high interrater agree-
ments between the human annotators and the algorithm,
with Cohen’s kappa ranging from 0.88 to 0.98 and ab-
solute normalized differences of less than 2%. The Re-ID
algorithm can help to distinguish different individuals
when there are two people visible on the eye-tracking
data (with an accuracy of > 94% compared to the human
annotators). Moreover, for our exploratory aims we
found that the algorithm performed well compared to
manual analyses in variable conditions, such as when
using long videos, different area-of-interest shapes or
when analysing videos involving an additional interactor.
Our results indicate that computer analyses may be used
as an alternative to manual analyses on mobile eye-
tracking data.

The algorithm used in this study automatically iden-
tifies area-of-interest, i.e. human faces “in-the-wild” (De
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Beugher et al., 2016), which is an advancement on the
software currently available, which does not automatically
generate areas-of-interest on moving objects (Tobii Pro,
2019b). Previous software aimed at face identification
has limitations: it is only suitable for data acquired in
good conditions, e.g. with sufficient lighting, an accept-
able distance between individuals and no background
noise (Duchowski et al., 2019). Our software, based on
previous work by Callemein et al. uses full body detection
to identify the heads of individuals (Callemein et al.,
2018; Cao et al., 2018; Redmon & Farhadi, 2017).
Using full-body detection, the algorithm can identify
faces even when the targeted individuals tilt or yaw their
heads. Furthermore, compared to previous studies, we
analysed more, longer, and more variable videos includ-
ing movement, different light conditions and more indi-
viduals. Possible downsides of our approach may be that
it only identifies faces of individuals, while manual anno-
tations may be extended to objects.

Until present, “in-the-wild” technologies for studying
communication often used manual annotation and were
unable to distinguish between different individuals in the
video (Calvitti et al., 2017; Farber et al., 2015; Street
et al., 2014). The latter is needed to provide a more de-
tailed analysis of specific communication styles in differ-
ent (applied) settings and involving several participants.
Moreover, the algorithm is able to provide additional meta
data that could be useful for future analysis, such as the
location of the head, whether a specific person is present
and how many people are visible (Callemein et al., 2018).
Our results are preliminary and show that even in non-
ideal situations, e.g. when using highly mobile and blurry
footage, head detection is still comparable to detection by
human annotators. In the future, it would be interesting to
investigate the exact frames where the manual analysis
and the algorithm analysis differ. This would create more
valuable understanding about the limitations of each anal-
ysis method.

Analyses by a computer vision algorithm are not sub-
ject to annotator fatigue or subjectivity, which may in-
crease reliability, although this needs to be further tested.
The algorithm performs consistently whereas humans are
subject to uncontrollable external factors. The use of the
software is considerably more efficient compared to man-
ual analysis. Furthermore, when using the software, visual
inspection of the area-of-interest is possible in the repre-
sentation of the eye-tracking video on screen. The face-
gaze can be checked frame-by-frame. Therefore, re-
searchers using this algorithm can check (and possibly
correct) the accuracy of the detected face-gaze, such that
a fully accurate analysis can be performed with much less
manual labour.

A limitation of our study is the relatively small sample size
(N = 7 videos). However, the data that we used, resulted in
100,613 frames. A comparison between the algorithm and a
manual annotator is made for each of these frames. Moreover,
we tested the robustness of the algorithms by posing addition-
al challenges and using extremely mobile eye-tracking data,
including in difficult indoor lighting conditions. Furthermore,
the underlying techniques that we applied in this setting have
previously been tested on very large datasets (Callemein et al.,
2018; Cao et al., 2018; Cao et al., 2017; Simon, Joo,
Matthews, & Sheikh, 2017; Wei, Ramakrishna, Kanade, &
Sheikh, 2016), where they have proven their effectiveness.
A second limitation is that we have not tested the algorithm
in videos involving more than four people where other
interactors are extensively visible on screen. Whether the al-
gorithm can successfully and systematically distinguish be-
tween three or more different people remains to be verified.
At present, wemay conclude that our software is most suitable
for dyadic face-to-face interactions.

Very recent technologies offer even more refined detection
compared to the technology used in the present study (Alp
Güler, Neverova, & Kokkinos, 2018). Such technologies
would for instance enable detecting refined head-shaped
areas-of-interest (He et al., 2017 ; Bolya, Zhou, Xiao, &
Lee, 2019a, 2019b). However, our results indicate, in line with
previous findings, that the size of the area-of-interest makes
only a slight difference for the detected amount of face-gaze
(Hessels et al., 2018). Previous comparisons between different
area-of-interest sizes were based on screen eye-tracking and
compared different areas-of-interest sizes for facial features
(R. S. Hessels et al., 2018).

The software is available and could be used to research eye
contact in real-world or observational settings. Whereas the
algorithm is able to unilaterally detect the frequency and du-
ration of people’s gaze towards the face of the interactor,
future research could assess whether the interlocutor is gazing
back, using gaze-locking data (Smith, Yin, Feiner, & Nayar,
2013). This technique detects whether the eyes of the interloc-
utor are faced towards the eye-tracking camera. However, to
date, mobile eye-tracking videos are too low in resolution to
enable measuring mutual eye contact.

Concluding, we have found that algorithm analyses of
face-gaze using areas-of-interest are comparable to face-gaze
of manually annotated areas-of-interest. Therefore, manual
analyses of eye-tracking videos can be replaced or supported
by software. The algorithm we presented here can automati-
cally detect faces inmobile eye-tracking videos and accurately
create areas-of-interest to assess face-gaze. Furthermore, the
algorithm can distinguish between different individuals. This
is an advancement of the state-of-the-art analysis in mobile
eye-tracking research.
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Appendix

Overview of annotators, videos, numbers of frames
and area-of-interest shape and number of people
shown in the video

Confusion matrices of the multiple class output for
comparison between the manual and algorithm
annotations

Video #1

Video #2

Video #3

Video #4

Video #5

Video #6

Annotator Video Frames Area-of-interest
shape

No. of
people
in video

Physical
examina-
tion

AM 1 1496 rectangular 2 No

AM 2 1513 rectangular 2 No

AM 3 1501 rectangular 2 No

AM 4 1514 rectangular 3 No

AM 5 1505 rectangular 1 No

LO 6 27569 rectangular 1 No

LO 6 27569 oval 1 No

TB 6 27569 rectangular 1 No

TB 7 18973 rectangular 3 Yes

TB 7 18973 oval 3 Yes

algorithm

none patient researcher

manual none 93.55 6.33 0.11

patient 0.98 99.02 0

researcher 0 0 100

algorithm

none patient researcher

manual none 96.92 3.95 0.14

patient 2.92 97.08 0

researcher 57.14 0 42.86

algorithm

none patient researcher

manual none 95.35 4.65 0

patient 7.28 92.72 0

researcher 0 0 100

algorithm

none patient researcher1 researcher2

manual none 93.72 0 0 6.28

patient 16.67 83.33 0 0

researcher1 3.7 0 96.3 0

researcher2 1.67 0 0 98.33

algorithm

none patient researcher1 researcher2 researcher3

manual none 93.49 6.51 0 0 0

patient 0.12 99.65 0 0.23 0

researcher1 10 0 75 15 0

researcher2 0 0 0 0 0

researcher3 33.33 0 0 0 66.67

algorithm

none patient

manual none 96.61 3.39

patient 0 100
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Video #7
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