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Abstract: A β-aminoacid ester was successfully derivatized to yield to 4H-1,2-4-triazol-4-
yl-propionate (βAlatrz) which served as a neutral bidentate ligand in the 1D coordination 
polymer [Fe(βAlatrz)3](CF3SO3)2·0.5H2O (1·0.5H2O). The temperature dependence of the 
high-spin molar fraction derived from 57Fe Mossbauer spectroscopy recorded on cooling 
below room temperature reveals an exceptionally abrupt single step transition between  
high-spin and low-spin states with a hysteresis loop of width 4 K (Tc

↑ = 232 K and  
Tc

↓ = 228 K) in agreement with magnetic susceptibility measurements. The material 
presents striking reversible thermochromism from white, at room temperature, to pink on 
quench cooling to liquid nitrogen, and acts as an alert towards temperature variations.  
The phase transition is of first order, as determined by differential scanning calorimetry, 
with transition temperatures matching the ones determined by SQUID and Mössbauer 
spectroscopy. The freshly prepared sample of 1·0.5H2O, dried in air, was subjected to 
annealing at 390 K, and the obtained white compound [Fe(βAlatrz)3](CF3SO3)2 (1) was 
found to exhibit a similar spin transition curve however much temperature was increased 
by (Tc

↑ = 252 K and Tc
↓ = 248 K). The removal of lattice water molecules from 1·0.5H2O is 

not accompanied by a change of the morphology and of the space group, and the chain 

OPEN ACCESS



Int. J. Mol. Sci. 2011, 12             
 

 

5340

character is preserved. However, an internal pressure effect stabilizing the low-spin state  
is evidenced. 

Keywords: spin crossover; aminoacid triazoles; iron(II); coordination polymers 
 

1. Introduction 

Bistable molecular systems, particularly materials exhibiting captivating scenario of spin crossover 
(SCO) [1], are versatile switchable units in the thriving field of molecular electronics [2]. In a typical 
SCO material, the electron repositioning via singlet-quintet transitions is substantiated to be 
technologically significant [2]. Indeed, the reversible electron transfer from a diamagnetic low-spin 
(LS, 1A1g) state to a thermally populated paramagnetic high-spin (HS, 5T2g) state is recognized  
as an entropy driven process and could be addressed thermally, optically, electrically and under 
pressure/shock with highly profound spectroscopic, optical, magnetic, dielectric readout signal [3].  
In the solid state, the presence of intra and intermolecular interactions acts as communication media 
between iron centers promoting cooperative first order spin transitions leading to a large memory 
domain [4] that can be suitable for potential applications [5]. Indeed, a SCO compound meeting 
display and data processing requirements would, in addition, have a good shelf life and an easily 
detectable optical response, and would ideally operate near room temperature [6,7]. 

Applications envisioned in these fields largely depend on molecular conformations precursors adopt 
during the coordination process which directs structure-properties relationships. In some cases, 
magnetic properties can even be modified by a structural perturbation as demonstrated on a 1D 
polyelectrolyte system [8–11]. Our interest in amino acid derivatization was fuelled by promising 
results shown by 1,2,4-triazole-carboxylate derivatives in synthetic chemistry [12], spin crossover  
area [13], nanoporous MOFs [14], biological interest in several metallo-proteases [15] and ‘soft’ 
sacrificial precursors to produce CdO with shape and phase selectivity [16]. As a continuation of our 
work on amino acid functionalization, [12] ethyl-4H-1,2,4-triazol-4-yl-acetate was used as a prospective 
precursor for magnetic sensors [13]. Here we introduce a new tailored 4-R-1,2,4-triazole from  
β-amino-acid, namely 4H-1,2,4-triazol-4-yl-propionate (βAlatrz) (Chart 1). The reason for introducing 
β-Alanine ethyl ester substituted on the 4 position of a 1,2,4-triazole core was to use an appropriate 
length of substituent which compromises the distance between 1D chains in complexes which can 
introduce supramolecular interactions with H-acceptors substituent. Thus, the spin transition (ST) 
properties of two one-dimensional FeII chains, [Fe(βAlatrz)3](CF3SO3)2·0.5H2O (1·0.5H2O) and its 
dehydrated form, [Fe(Alatrz)3](CF3SO3)2 (1) were studied. 
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Chart 1. Molecular structure of (a) ethyl 4H-1,2,4-triazol-4-yl-propionate (βAlatrz); and 
(b) complex [Fe(βAlatrz)3]2+. 

 

2. Results and Discussion 

2.1. Preparation and Characterization of 1·0.5H2O and 1 

The transamination reaction used in the synthesis of ethyl-4H-1,2,4-triazol-4-yl-acetate and  
4H-1,2,4-triazol-4-yl acetic acid [12] proved to be a good synthetic strategy to build a β-amino-acid 
triazole. The synthetic route, starting with β-Alanine ethyl ester hydrochloride and  
N,N-Dimethylformamide-azine, helped us to obtain a new molecule, βAlatrz, with a good yield.  
The synthesis time is relatively longer than the synthesis of previous ligands and the final product had 
to be purified by “flash” column chromatography. 

A 1D coordination polymer was obtained as a white powder by reaction of the corresponding FeII 
inorganic precursor, prepared in air, [Fe(H2O)6](CF3SO3)2 [17] with a methanolic solution of βAlatrz. 
This complex was successfully characterized by elemental analysis, TGA-DTA analyses, atomic 
absorption (AAS), X-Ray powder diffraction, IR, Raman, SEM, DSC, SQUID magnetometry and 57Fe 
Mössbauer spectroscopy. The thermogravimetric and elemental analyses reveal the presence of guest 
water molecules, affording the following general formula [Fe(βAlatrz)3](CF3SO3)2·0.5H2O 
(1·0.5H2O). Compound 1·0.5H2O was dehydrated by annealing, leading to a new compound, 
[Fe(βAlatrz)3](CF3SO3)2 (1), which was also characterized to reveal the influence of solvent 
molecules on the spin state. 1·0.5H2O presents a rather crystalline character as revealed from X-ray 
powder diffraction (XRPD) patterns (Figure 1). 

This result is also illustrated by the SEM analysis with blocks of hexagonal shape of about 2 μm 
widths (Figure 2). FT-IR and Raman analyses were performed: (i) to confirm the identity of the ligand 
framework before and upon complexation as the ester functionality is susceptible to hydrolysis; (ii) to 
ascertain the coordination mode of iron to the ligand and the presence of the trifluoromethane sulfonate 
in the crystal lattice (Figure 3). 

Two sharp IR bands at 3,118(s) and 2,983(m) cm−1 of βAlatrz, are assigned to the νCH2  
modes [18]. The carboxylic group of ester shows two stretching vibrations corresponding to (C=O) and 
(C–O) at 1,728(s) and 1,205(s) cm−1, respectively, which are almost unchanged (1,732 and 1,212 cm−1) 
in 1·0.5H2O ruling out the possible ester hydrolysis and also confirming the non-involvement of 
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carboxylic ester group in coordination. For βAlatrz, the band assigned to ring torsion of triazole at  
ν = 634(m) cm−1, the νC=N stretching vibration at 1,535(m) cm−1 and the N–N stretching band at  
ν = 1,022(s) cm−1, are all shifted upon complexation in 1·0.5H2O to 632 cm−1, νC=N = 1,560 cm−1, and  
νN-N = 1,028 cm−1, respectively. 

These values confirm the coordination of the iron to the 1,2,4-triazole ring [19,20]. Indeed, the 
characteristic bands of the ligand are not only present in the spectra of the complexes but are also 
shifted towards larger wave numbers, from 3 to 15 cm−1, respectively. This energy increase is due to 
the deformation of the ligand upon coordination of the metal, the ligand molecule being indeed more 
constrained to perform vibration and twisting movements [19,21].  

Figure 1. Top: X-ray powder diffraction pattern of 1, (thermally treated compound in 
TGA); bottom: diffractogram of 1·0.5H2O (freshly prepared).  

 

Figure 2. (a) SEM images of microcrystalline particles of 1·0.5H2O at 293 K; a selected 
crystal is highlighted in red; and (b) SEM analysis of 1 confirms the framework integrity 
preservation after thermal treatment. 

(a) 

 
(b) 
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Figure 3. (a) IR and (b) Raman spectra of the ligand (βAlatrz) and complex (1·0.5H2O), 
over the range 400–2,100 cm−1 and 180–2,000 cm−1, respectively. The IR and Raman 
spectra for 1·0.5H2O and 1 (not shown) are identical, except around 3,500 cm−1 with ν(O–H) 
of water molecules clearly identified for 1·0.5H2O.  

(a) 

 

(b) 

 

For a better understanding of the molecular structure of these ligands, Raman spectra were also 
collected (Figure 3). The band present at 1,728 cm−1 for βAlatrz is assigned to a C=O vibration.  
In complexes this band is retained and appears around 1,732 cm−1. The C–C stretching is also active in 
Raman as a medium band at 1,098 cm−1 for βAlatrz and appears in the same wavenumber in 
1·0.5H2O. Presence of the monovalent counter-anion is also confirmed by IR and Raman: IR (cm−1)  
υ(S–O)~1,283(s), (1·0.5H2O); Raman (cm−1) υ(S–O)~1,034(s), 760(m) (1·0.5H2O) [22]. 57Fe Mössbauer 
spectroscopy confirm for 1·0.5H2O the presence of one FeIIN6 site, and exclude any oxidation product 
of iron. These spectroscopic data support a linear chain structure with FeII ions linked by triple  
N1,N2-1,2,4-triazole bridges [23,24].  

1·0.5H2O was prepared as a white powders and presents a reversible thermochromism on cooling to 
pink (Figure 4). These colors depend on the spin state of the FeII centers, as the ST involves a change 
in the electronic configuration which modifies the absorption spectrum of the complex. 

Figure 4. UV-Vis diffuse reflectance spectrum of 1·0.5H2O showing d–d transitions at 293 K. 
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The white color of 1·0.5H2O, is due to the location of the spin-allowed lowest energy d-d transition, 
5T2g → 5Eg, for the HS sites in the near infrared region (~11,500 cm−1) [25,26]. Two supplementary 
bands, corresponding to the 1A1g → 1T1g and 1A1g → 1T2g d-d transitions of LS FeII sites are observed at 
~18,727 cm−1 and ~30,300 cm−1, respectively suggesting that some proportion of FeII may be in the LS 
state at room temperature. The ligand field strengths for the HS and the LS state, given by equations 
10Dq

HS = E(5E) − E(5T2) and 10Dq
LS = E(1T) − E(1A1) + (E(1T2) − E(1T1))/4, [25,26] allowed us to 

estimate 10Dq
HS and 10Dq

LS to be approximately 11,500 cm−1 and 26,302 cm−1, respectively. These 
values are characteristic for SCO complexes [25,26]. Presence of LS state at room temperature has 
been confirmed by 57Fe Mössbauer spectroscopy (vide infra). 

The reversibility of the rehydration/dehydration process within a given framework structure with 
the change of crystallinity can play an important role on the SCO properties [27]. This process was 
investigated for 1·0.5H2O by thermogravimetric analysis, and the XRD powder pattern and SEM 
imaging recorded after annealing treatment. The sample was first deposited in a crucible and slowly 
heated at 1 K/min in air atmosphere (air flow 130 mL/min) to the temperature of complete dehydration 
(390 K) leading to 1. After a short standby period, the sample was cooled (1 K/min) slowly to reach 
room temperature revealing no rehydration. Thus the dehydration-rehydration process is irreversible 
and 1 is air stable which will ease any further physical studies on this compound. Comparison of the 
powder XRD patterns (Figure 1) and SEM images (Figure 2) of 1·0.5H2O and 1 allow to exclude any 
framework rupture. Indeed, these two compounds are isostructural, 1 showing higher peak intensities 
indicating a better crystalline character. No deterioration is observed by SEM. 

2.2. SQUID Magnetometry 

The temperature dependent magnetic properties of 1·0.5H2O and 1 were determined by 
temperature-dependent susceptibility measurements using a SQUID magnetometer operating at 1000 
Oe (Figure 5).  

For complex 1·0.5H2O, χΜT is 3.10 cm3 K mol−1 at 300 K, which is in the region expected for an 
FeII complex essentially in the HS state, with a small % of LS species. Upon cooling, χΜT remains 
almost constant until 240 K where it drops sharply to Tc

↓ = 228 K down to ~0.14 cm3 K mol−1 at 77 K, 
which is typical for a diamagnetic FeII complex with possibly a few HS ions.  

Figure 5. Thermal variation of χΜT of 1·0.5H2O (depicted in red) and 1 (depicted in blue). 
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Upon warming, the χΜT curve differs slightly revealing a small hysteresis width (4 K) at Tc
↑ = 232 K 

for this very sharp spin transition. An hysteretic behavior of width 4 K was observed too for 1 with a 
ST shifted upwards (Tc

↓ = 248 K and Tc
↑ = 252 K). The same curve shape is observed too which 

confirms the preservation of the 1D chain character [27] and does not support the appearance of a 
structural phase transition following the annealing process. The stabilization of the LS state upon water 
release is uncommon for this family of complexes [28] and was only observed for the 1D chain 
compounds [Fe(4-(2'-hydroxyethyl)-1,2,4-triazole)3](anion)2·nH2O (anion = ClO4

−, n = 2, 0; anion = I−, 
n = 1, 0) [29], [Fe(4-amino-1,2,4-triazole)3](anion)·nH2O (anion = TiF6

2−, n = 1, 0.5; anion = ZrF6
2−,  

n = 0.5, 0) [23] as well as for [Fe(ethyl-4H-1,2,4-triazol-4-yl-acetate)3](ClO4)2·nCH3OH (n = 1,0) but 
with methanol as solvent [13]. The effect of the release of non-coordinated solvent molecules on the 
spin state can be translated here as an internal positive pressure effect [5,23].  

2.3. 57Fe Mössbauer Spectroscopy 

An inspection of electronic and structural features for 1·0.5H2O and 1 using 57Fe Mössbauer 
spectroscopy was undertaken over the temperature range 77–300 K (Figure 6). At 77 K, the spectrum 
of 1·0.5H2O consists of two quadrupole doublets of different resonance area fractions. The major 
quadrupole doublet with isomer shift δLS = 0.51(2) mm/s and quadrupole splitting, ΔEQ

LS = 0.23(2) 
mm/s correspond to the LS state of FeII. The presence of an LS quadrupole splitting stems from a 
lattice contribution to the electric field gradient and therefore reveals a distorted character for the LS 
octahedron as expected within a chain, where constraints may not be negligible [30]. Another doublet, 
corresponding to HS FeII ions of weaker population (7%), with parameters (δHS = 1.14(1) mm/s and 
ΔEQ

HS = 3.15(2) mm/s) confirms the incomplete nature of the ST at 77 K. Upon warming to 300 K, the 
intensity of the HS doublet slowly increases to 8% at 225 K, after which it increases dramatically to 
87.5% at 300 K, confirming an incomplete thermally induced LS → HS conversion for a single FeII 
site. The presence of LS ions at room temperature could be related to crystal defects or end of chains. 
The hysteresis effect is clearly evidenced at 225 K (Figure 6a).  

At 80 K, the spectrum of 1 shows a single LS quadrupole doublet (δLS = 0.52(1) mm/s and  
ΔEQ

LS = 0.25(2) mm/s) indicating a complete spin transition. The compound remains mostly in the LS 
state on warming up to 250 K, after which a second quadrupole doublet attributed to HS FeII ions 
grows in intensity (e.g., at 297 K, δHS = 1.03(1) mm/s and ΔEQ

HS = 2.75(1) mm/s). The asymmetry of 
the lines observed in the HS state is attributed to a texture effect. Upon cooling to low temperature, the 
reverse situation is observed with a clear hysteresis effect at 250 K (Figure 6b).  

The isomer shift (δLS~0.51(1) mm/s at 77–80 K and ΔEQ
HS = 1.03(1) mm/s at 297–300 K) is not 

affected by the dehydration process which indicates that non coordinated water molecules are not  
H-bonded to the triazole ligand [31], but should be located at a remote position to the complex in the 
crystal lattice, either isolated or hydrogen bonded to the sulfonate group of the non coordinated anions. 
Their releases have no influence on the structural organization as demonstrated by the similarity in  
X-ray powder diffraction data. However, a clear influence on the transition temperatures, i.e., on the 
respective energy levels of the HS and LS states [25], has been detected.  
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Figure 6. 57Fe Mössbauer spectra cycles for 1·0.5H2O (a) and 1 (b) at selected  
temperatures. Grey and dark grey correspond to the high-spin (HS) and low-spin (LS) 
doublets, respectively. 

(a) (b) 

2.4. Differential Scanning Calorimetry 

Compound 1·0.5H2O and 1 were investigated by differential scanning calorimetry over the 
temperature range 100–300 K, at 10 K/min for both cooling and heating modes (Figure 7).  

Figure 7. Heat capacity profiles for 1·0.5H2O and 1. The arrows indicate the cooling (←) 
and warming (→) modes, respectively. 
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An endothermic peak is observed on warming for 1·0.5H2O at Tmax
↑ = 235(1) K and an exothermic 

peak is recorded at Tmax
↓ = 233(1) K, on cooling. These peaks correspond to a first-order phase 

transition in agreement with the transition temperatures determined by both SQUID and Mössbauer 
spectroscopy. The enthalpy and entropy variations associated to the active SCO centers are  
ΔH = 12(2) kJ/mol and ΔS = 51(2) J/mol/K. A similar profile, although with more abrupt peaks, was 
detected for 1 with phase transitions shifted upwards to Tmax

↑ = 254(1) K and Tmax
↓ = 247(1) K. The 

peaks are separated by a narrow temperature domain, which is indicative of the presence of a 
hysteresis loop. The enthalpy and entropy associated to the ST, considering only the switching sites, 
were derived as follows: ΔH = 13(1) kJ/mol and ΔS = 59(2) J/mol/K.  

3. Experimental Section  

3.1. Chemicals  

All reagents and solvents were used as received from commercial source: benzene (Fluka 
analytical), Methanol (VWR), SOCl2 (Sigma-Aldrich), glycine ethyl ester hydrochloride (ACROS), 
CF3SO3H (ACROS), Fe powder (Merck). Ethyl 4H-1,2,4-triazol-4-yl-propionate (βAlatrz) were 
prepared by a similar method described in reference [12].  

3.2.1. Ethyl 4H-1,2,4-Triazol-4-yl-Propionate (βAlatrz) 

N,N-Dimethylformamide azine dihydrochloride (I) and its free base (II) were obtained following 
the reported method [12]. The free base was recrystallized twice from benzene with charcoal and used 
in transamination reactions [12]. To a suspension of β-alanine ethyl ester hydrochloride (3 g,  
19.53 mmol) in benzene (100 mL) at approx. 60 °C was added solid II (2.14 g, 15.04 mmol) with 
stirring, obtaining a transparent yellow solution. The mixture was refluxed then (at 130 °C) for 93 h 
with vigorous stirring. The reaction was monitored by NMR analysis at interval of time. Finally, the 
solvent was removed under vacuum and a chromatographic purification (SiO2, CH2Cl2 → 5% 
isopropanol in CH2Cl2) of the yellow oil gave pale yellow oil. Yield 2 g (60%). 1H NMR (300 MHz, 
CDCl3, 298 K): δ = 8.25 (s, 2H), 4.34 (t, 3H, J = 6.17 Hz), 4.14 (dd, 2H, J = 7.10 Hz & 7.15 Hz), 2.78 
(t, 2H, J = 6.17 Hz), 1.23 (t, 3H, J = 7.16 Hz). 13C NMR (300 MHz, CDCl3 298 K): δ = 170.1, 143, 
61.6, 40.6, 35.5, 14.1. MS: m/z = 170.03 (M + H+). FTIR (thin film from CH2Cl2 on ZnSe HATR 
through plate, cm−1): 3,118(s), 1,728(vs), 1,535(s), 1,236(s), 1,205(s), 1,186(s), 1,022(m), 637(s). Anal. 
Calcd. for C7H11N3O2 (169.18 g/mol): C, 49.70, H, 6.55, N, 24.84; Found C, 49.7, H, 6.81,  
N, 22.61.  

3.2.2. [Fe(βAlatrz)3](CF3SO3)2·0.5H2O (1·0.5H2O) 

[Fe(H2O)6](CF3SO3)2 was first synthesized as a very pale green powder using a described  
procedure [16], starting with an aqueous solution (1 mL) containing an iron powder in excess (2 g) 
carefully mixed to triflic acid (5 mL, 56.5 mmol). Yield: 9.8 g, 74%. [Fe(H2O)6](CF3SO3)2 (183.2 mg, 
0.396 mmol) was dissolved in CH3OH (5 mL) with a pinch of ascorbic acid and added to the above 
solution of βAlatrz (205.7 mg, 1.216 mmol) dissolved in CH3OH (5 mL). The mixture was stirred for 
15 min at room temperature, after which a white precipitate was obtained. It was filtered, washed with 



Int. J. Mol. Sci. 2011, 12             
 

 

5348

CH3OH (2 mL) and dried in air. Yield: 265.9 mg, 75.4%. Anal. for FeC23H34N9O12.5F6S2  
(870.54 g/mol): calcd. C, 31.73; H, 3.94; N, 14.48; F, 13.09; S, 7.37; Fe, 6.42%. Found C, 31.64; H, 
3.76; N, 14.41; F, 12.12; S, 6.37; Fe, 6.59%. IR (KBr, cm−1): υ(C=O)~1,732(vs), υ(C–O)~1,211, 
1,093(s), υ(C=N)~1,560(m), υ(C–H out of plane)~1,028(m), υ(C–H ring torsion)~632(m),  
υ(S–O)~1,282, 1,255 (vs, with shoulders).  

3.3. Physical Measurements 

Elemental analyses were performed at University College London (UK) and at S.C.A. CNRS 
Solaize (France). 1H and 13C NMR spectra were recorded at 300 MHz and 75 MHz, respectively, on a 
Bruker AC300 instrument. The residual solvent peak was used as internal reference. Mass spectral data 
were obtained on Thermo Finnigan LCQ Ion trap spectrometer (APCI mode). HRMS were carried out 
on a Micromass Q TOF 2 spectrometer in ESI mode, detecting positive mode. Raman spectra with 
1,064 nm excitation were recorded between 2,300 to 400 cm−1 with a Bruker RFS 100/s FT-Raman 
spectrometer (I = 200 mW) at r.t using a diode-pumped, air-cooled Nd:YAG laser as the excitation 
source. IR spectra were collected on a Shimadzu FTIR-84005 spectrometer using KBr pellets. 
Thermogravimetric analyses (TGA) were performed in air (100 mL/min) at the heating rate of 1 °C/min 
from 293 K to 400 K using a Mettler Toledo TGA/SDTA 851e analyzer. Diffuse reflectance spectra on 
solids were recorded with a CARY 5E spectrophotometer using polytetrafluoroethylene as a reference. 
Powder X-ray diffraction patterns were recorded on a Siemens D5000 counter diffractometer working 
with Cu-Kα radiation and operating at room temperature. The samples were mounted on the support 
with silicon grease. 57Fe Mössbauer spectra were recorded in transmission geometry over the 
temperature range (78–300 K) with a conventional Mössbauer spectrometer equipped with a Cyclotron 
Ltd 57Co(Rh) radioactive source operating at room temperature. The samples were sealed in aluminum 
foil and mounted on an Oxford nitrogen bath cryostat. The spectra were fitted to the sum of 
Lorentzians by a least-squares refinement using Recoil 1.05 Mössbauer Analysis Software [32].  
All isomer shifts refer to α-Fe at room temperature. Magnetic susceptibilities were measured in the 
temperature range 4–390 K using a MPMS-XL (7T) SQUID magnetometer. Data were corrected for 
magnetization of the sample holder and diamagnetic contributions, which were estimated from the 
Pascal constants. Differential scanning calorimetry measurements were carried out in a He(g) 
atmosphere using a Perkin-Elmer DSC Pyris 1 instrument equipped with a cryostat and operating 
down to 98 K. Aluminum capsules were loaded with 20–50 mg of sample and sealed. The heating and 
cooling rates were fixed at 10 K min−1. Temperatures and enthalpies were calibrated over the 
temperature range of interest (298–400 K) using the solid-liquid transitions of pure In (99.99%) [33], 
and the crystal-crystal transitions of pure cyclopentane (≥99%) [34], over the range 78–298 K. 
Scanning electron microscopy (SEM) was performed using a Gemini Digital Scanning Microscope 
982 with 1 kV accelerating voltage with an aluminum sample holder.  

4. Concluding Remarks 

We have presented two novel FeII 1D ST chain compounds switching in the range 225–250 K. 
Release of non coordinated water molecules has a paramount effect on the LS state stabilization of 1. 
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Its air stability and absence of solvent will ease further physical measurements, particularly using 
hydrostatic pressure [5] so as to shift its hysteresis loop towards the room temperature region.  
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