

Received 10 December 2015 Accepted 26 January 2016

Edited by S. Parkin, University of Kentucky, USA

Keywords: crystal structure; indol-2-one; pyrazole; indole; Schiff base; N—H···O and O— H···O hydrogen bonds; C—H··· π interactions.

CCDC reference: 1450044

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of 3-{5-[3-(4-fluorophenyl)-1isopropyl-1*H*-indol-2-yl]-1*H*-pyrazol-1-yl}indolin-2one ethanol monosolvate

Md. Lutfor Rahman,^a* Ajaykumar D. Kulkarni,^b Mashitah Mohd. Yusoff,^a Huey Chong Kwong^c and Ching Kheng Quah^d

^aUniversity Malaysia Pahang, Faculty of Industrial Sciences and Technology, 26300 Gambang, Kuantan, Pahang, Malaysia, ^bDepartment of Chemistry, KLS's Gogte Institute of Technology, Jnana Ganga, Udyambag, Belagavi-590008 Karnataka, India, ^cSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia. *Correspondence e-mail: lutfor73@gmail.com

The title indolin-2-one compound, $C_{28}H_{23}FN_4O \cdot C_2H_6O$, crystallizes as a 1:1 ethanol solvate. The ethanol molecule is disordered over two positions with refined site occupancies of 0.560 (14) and 0.440 (14). The pyrazole ring makes dihedral angles of 84.16 (10) and 85.33 (9)° with the indolin-2-one and indole rings, respectively, whereas the dihedral angle between indolin-2-one and indole rings is 57.30 (7)°. In the crystal, the components are linked by N-H···O and O-H···O hydrogen bonds, forming an inversion molecule–solvate 2:2 dimer with $R_4^4(12)$ ring motifs. The crystal structure is consolidated by π - π interaction between pairs of inversion-related indolin-2-one rings [interplanar spacing = 3.599 (2) Å].

1. Chemical context

Heterocyclic compounds containing the pyrazolone nucleus, indole, and its derivatives play an important role in biological activities. The synthesis and biological activity of some new indole derivatives containing a pyrazole moiety have been reported (Raju et al., 2013). Pyrazole and its analogues have been found to exhibit industrial and biologically active applications (el-Kashef et al., 2000; Taha et al., 2001; Brzozowski & Sączewski,, 2002). Consequently, synthesis of indole derivatives has been a major topic in organic and medicinal chemistry over the past few decades. Nitrogen-containing heterocycles are universal systems in nature and are consequently considered as privileged structures in drug discovery (Raju et al., 2013). A literature survey shows that some pyrazoles plays an essential role in biologically active compounds and also in medicinal chemistry (Penning et al., 2006), exhibiting phenomena such as antibacterial (Pevarello et al., 2006), antifungal, antiviral (Meghashyam et al., 2011), anti-oxidant (Singarave & Sarkkarai, 2011), anti-inflammatory (Mana et al., 2010), and anticancer (Pathak et al., 2010) effects etc. Certain indole derivatives have also been reported to exhibit widespectrum activities such as antiparkinsonian and anticonvulsant effects (Siddiqui et al., 2008; Archana et al., 2002). In addition, pyrazoles have played a crucial role in the development of theory in heterocyclic chemistry, and are also used extensively as useful synthons in organic synthesis. Isatin, an endogenous indole and its derivatives have been shown to exhibit a wide range of biological activities (Daisley & Shah,

research communications

1984; Pandeya *et al.*, 1999). In addition, the biological significance of fluvastatin, an indole derivative, is well established (Repič *et al.*, 2001). As part of our studies in this area, we now present a pyrazole as a central unit linked with 3-[3-(4-fluorophenyl)-1-isopropylindolin-2-yl]acrylaldehyde and 3-hydrazonoindolin-2-one, synthesized according to a procedure reported in the literature (Elkanzi, 2013).

2. Structural commentary

The asymmetric unit of the title compound (Fig. 1) comprises of a $3-\{5-[3-(4-fluorophenyl)-1-isopropyl-1H-indol-2-yl]-1H$ pyrazol-1-yl]indolin-2-one and an ethanol solvent molecule.The pyrrolidin-2-one ring has an essentially planar conformation, with maximum deviation from the mean plane of thering of 0.04 (2) Å at C25. The pyrazole ring is almost planar

ing an open conta geometry (11,).					
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$	
$\begin{array}{c} N4 - H1N1 \cdots O2^{i} \\ O2 - H1O2 \cdots O1^{ii} \end{array}$	0.85 (2) 0.98 (9)	1.92 (3) 1.67 (9)	2.750 (19) 2.650 (2)	165 (2) 172 (11)	

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, y - 1, z.

[maximum deviation of ± 0.006 (2) Å for atoms N2 and C15], as are the fluorophenyl [maximum deviation of ± 0.011 (2) Å for atoms C10 and C13] and indole [maximum deviation of \pm 0.0019 (2) Å for atom C14] rings. The connecting pyrazole ring is almost normal to both indol-2-one and indole rings with dihedral angles of 84.16 (10)° and 85.33 (9)°, respectively, while the indole and fluorophenyl rings are tilted toward one another by 40.74 (8)°. The bond lengths and angles in the fluorophenyl-indole moiety of the title molecule are comparable to those of previously reported compounds (Kulkarni *et al.*, 2015*a*,*b*).

3. Supramolecular features

In the crystal, the main molecules and ethanol solvate molecules are linked *via* pairs of N4-H1*N*1····O2 and O2-H1*O*2···O1 hydrogen bonds (Table 1), forming an inversion-related molecule-solvate 2:2 dimer with an $R_4^4(12)$ ring motif (Fig. 2) (Bernstein *et al.*, 1995). The crystal structure also features π - π interactions between pairs of inversion-related (1 - x, 1 - y, 1 - z) indolin-2-one rings with an interplanar spacing of 3.599 (2) Å.

Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Only the major component of the disordered ethanol solvent molecule is shown.

Figure 2

The crystal packing of the title compound viewed along the *b* axis. The $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

Table 2	
Experimental details.	
Crystal data	
Chemical formula	$C_{28}H_{23}FN_4O \cdot C_2H_6O$
M _r	496.57
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	297
<i>a</i> , <i>b</i> , <i>c</i> (Å)	9.9754 (8), 10.2139 (8), 14.0294 (11)
$lpha,eta,\gamma$ (°)	75.7386 (15), 71.0062 (14), 83.1264 (14)
$V(Å^3)$	1308.73 (18)
Z	2
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.09
Crystal size (mm)	$0.42 \times 0.22 \times 0.22$
Data collection	
Diffractometer	Bruker APEXII DUO CCD area detector
Absorption correction	Multi-scan (SADABS; Bruker, 2009)
T_{\min}, T_{\max}	0.884, 0.955
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	32072, 5778, 3733
R _{int}	0.032
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.650
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.057, 0.130, 1.21
No. of reflections	5778
No. of parameters	375
No. of restraints	3
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm A}^{-3})$	0.15, -0.19

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 35.6, last update May 2015; Groom & Allen, 2014) using 4-(λ^1 -azanyl)-5-methyl-2,4-dihydro-3*H*-1,2,4-triazole-3thione as the main skeleton, revealed the presence of 57 structures containing the triazole-thione moiety but only four structures containing the fluvastatin nucleus. These include 5-[3-(4-fluorophenyl)-1-isopropyl-1*H*-indol-2-yl]-1-(*X*)penta-2,4-diene-1-one, where X = 4-nitrophenyl (NUHNAH), 2-hydroxyphenyl (NUHNEL), 4-methoxyphenyl (NUHNIP) and 4-chlorophenyl (NUHNOV) (Kalalbandi *et al.*, 2015). In these four compounds, the 4-fluorophenyl ring of the fluvastatin nucleus is inclined to the indole ring by dihedral angles ranging from *ca* 46.66 to 68.59°, compared to 40.74 (8)° for the title compound.

5. Synthesis and crystallization

The title compound was synthesized by refluxing a hot methanolic solution (30 mL) of 3-(3-(4-fluorophenyl)-1-iso-propylindolin-2-yl)acrylaldehyde (0.01mol) and a hot methanolic solution (30 mL) of 3-hydrazonoeindolin-2-one

(0.01mol) for 5 h with addition of 4 drops of conc. hydrochloric acid (Ajaykumar *et al.*, 2009). The product obtained after evaporation of the solvent was filtered, washed with cold MeOH and recrystallized from ETOH. The single crystal used for the crystal analysis was grown by the slow evaporation of a solution in chloroform–ethanol (1:1). Yield (m.p.): 78% (551 K). ¹HNMR (CDCl₃) in p.p.m.: 7.94 (*s*, 1H, NH, indole), 7.76 (*d*, 1H, Ar-H), 7.72 (*m*, 2H, Ar–H), 7.37 (*m*, 2H, Ar-H), 7.32 (*t*, 1H, Ar-H), 7.20 (*t*, 1H, Ar-H), 7.13 (*d*, 1H, Ar-H), 7.10 (*d*, 2H, Ar-H), 6.77 (*t*, 1H, Ar-H), 6.70 (*d*, 1H, Ar-H), 6.67 (*d*, 1H, pyrazole), 5.48 (*d*, 2H, pyrazole), 5.37 (*s*, 1H, indole), 4.73 (*m*, 1H, isopropyl), 1.73 (*m*, 6H, methyl). IR (KBr) cm⁻¹: 3250 (N–H, indole), 2827 (–CH₃), 1720 (C=O, ketone), 1618 (C=C, Ar), 1520 (C–C, Ar), 1469 (–CH₃), 1221 (C–N).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The ethanol molecule is disordered over two positions with refined site occupancies of 0.560 (14): 0.440 (14). The disorder components were restrained to have similar geometry. The N-bound H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were positioned geometrically (C-H = 0.93–0.98 Å) and refined using a riding model with $U_{iso}(H) = 1.5U_{eq}(C$ methyl) and $1.2U_{eq}(C)$ for other H atoms.

Acknowledgements

This research was supported by a PRGS Research Grant (No. RDU 130121).

References

- Ajaykumar, K., Sangamesh, A. P. & Prema, S. B. (2009). Int. J. Electrochem. Sci. 4, 717–729.
- Archana, V. K. S., Srivastava, V. K. & Kumar, A. (2002). Eur. J. Med. Chem. 37, 873–882.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Brzozowski, Z. & Sączewski, F. (2002). Eur. J. Med. Chem. 37, 709–720.
- Daisley, R. W. & Shah, V. K. (1984). J. Pharm. Sci. 73, 407-408.
- Elkanzi, N. A. A. (2013). Int. J. Res. Pharm. Biomed. Sci. 4, 17-26.
- el-Kashef, H. S., el-Emary, T., Gasquet, M., Timon-David, P., Maldonado, J. & Vanelle, P. (2000). *Pharmazie*, **55**, 572–576.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662– 671.
- Kalalbandi, V. K. A., Seetharamappa, J. & Katrahalli, U. (2015). RSC Adv. 5, 38748–38759.
- Kulkarni, A. D., Rahman, M. L., Mohd. Yusoff, M., Kwong, H. C. & Quah, C. K. (2015a). Acta Cryst. E71, 1411–1413.
- Kulkarni, A. D., Rahman, M. L., Mohd. Yusoff, M., Kwong, H. C. & Quah, C. K. (2015b). Acta Cryst. E71, 1525–1527.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Mana, S., Pahari, N. & Sharma, N. K. (2010). *The Pharma. Res.* **3**, 51–59.

research communications

Meghashyam, N. N. (2011). J. Chem. Pharm. Res. 3, 38-47.

- Pandeya, S. N., Sriram, D., Nath, G. & DeClercq, E. (1999). Eur. J. Pharm. Sci. 9, 25–31.
- Pathak, T. P., Gligorich, K. M., Welm, B. E. & Sigman, M. S. (2010). J. Am. Chem. Soc. 132, 7870–7871.
- Penning, T. D., Khilevich, A., Chen, B. B., Russell, M. A., Boys, M. L., Wang, Y., Duffin, T., Engleman, V. W., Finn, M. B., Freeman, S. K., Hanneke, M. L., Keene, J. L., Klover, J. A., Nickols, G. A., Nickols, M. A., Rader, R. K., Settle, S. L., Shannon, K. E., Steininger, C. N., Westlin, M. M. & Westlin, W. F. (2006). *Bioorg. Med. Chem. Lett.* 16, 3156–3161.
- Pevarello, P., Fancelli, D., Vulpetti, A., Amici, R., Villa, M., Pittalà, V., Vianello, P., Cameron, A., Ciomei, M., Mercurio, C., Bischoff, J. R., Roletto, F., Varasi, M. & Brasca, M. G. (2006). *Bioorg. Med. Chem. Lett.* 16, 1084–1090.

- Raju, P. A. G., Mallikarjunarao, R., Gopal, K. V., Sreeramulu, J., Reddy, D. M., Krishnamurthi, K. P. & Reddy, S. R. (2013). J. Chem. Pharm. Res. 5, 21–27.
- Repič, O., Prasad, K. & Lee, G. T. (2001). Org. Process Res. Dev. 5, 519–527.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Siddiqui, N., Alam, M. S. & Ahsan, W. (2008). Acta Pharm. 58, 445– 454.
- Singarave, M. & Sarkkarai, A. (2011). J. Chem. Pharm. Res. 3, 402–413.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Taha, M., Moukha-Chafiq, O., Lazrek, H. B., Vasseur, J. & Imbach, J. (2001). Nucleosides Nucleotides Nucleic Acids, 20, 955–958.

supporting information

Acta Cryst. (2016). E72, 283-286 [doi:10.1107/S2056989016001614]

Crystal structure of 3-{5-[3-(4-fluorophenyl)-1-isopropyl-1*H*-indol-2-yl]-1*H*-pyrazol-1-yl}indolin-2-one ethanol monosolvate

Md. Lutfor Rahman, Ajaykumar D. Kulkarni, Mashitah Mohd. Yusoff, Huey Chong Kwong and Ching Kheng Quah

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2015); molecular graphics: *SHELXL2013* (Sheldrick, 2015) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL2013* (Sheldrick, 2015) and *PLATON* (Spek, 2009).

3-{5-[3-(4-Fluorophenyl)-1-isopropyl-1H-indol-2-yl]-1H-pyrazol-1-yl}indolin-2-one ethanol monosolvate

Crystal data

C₂₈H₂₃FN₄O·C₂H₆O $M_r = 496.57$ Triclinic, *P*1 a = 9.9754 (8) Å b = 10.2139 (8) Å c = 14.0294 (11) Å a = 75.7386 (15)° $\beta = 71.0062$ (14)° $\gamma = 83.1264$ (14)° V = 1308.73 (18) Å³

Data collection

Bruker APEXII DUO CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\min} = 0.884, T_{\max} = 0.955$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.130$ S = 1.215778 reflections Z = 2 F(000) = 524 $D_x = 1.260 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9792 reflections $\theta = 2.3-27.6^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 297 KBlock, colourless $0.42 \times 0.22 \times 0.22 \text{ mm}$

32072 measured reflections 5778 independent reflections 3733 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 27.5^\circ, \ \theta_{min} = 1.6^\circ$ $h = -12 \rightarrow 12$ $k = -13 \rightarrow 13$ $l = -18 \rightarrow 18$

375 parameters3 restraintsHydrogen site location: mixedH atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0361P)^2 + 0.3328P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ $\begin{array}{l} \Delta\rho_{\rm max}=0.15~{\rm e}~{\rm \AA}^{-3}\\ \Delta\rho_{\rm min}=-0.19~{\rm e}~{\rm \AA}^{-3} \end{array}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
F1	0.95103 (15)	0.08376 (14)	0.14670 (13)	0.0965 (5)	
N1	0.37863 (16)	0.67252 (16)	0.16316 (12)	0.0496 (4)	
H1N1	0.596 (2)	0.795 (2)	0.5053 (16)	0.059*	
N2	0.66480 (15)	0.68580 (15)	0.23475 (11)	0.0477 (4)	
N3	0.77904 (17)	0.76065 (17)	0.21225 (13)	0.0571 (4)	
N4	0.5929 (2)	0.7342 (2)	0.47443 (14)	0.0662 (5)	
01	0.47523 (17)	0.85895 (18)	0.36321 (13)	0.0801 (5)	
C1	0.28456 (19)	0.5768 (2)	0.17372 (14)	0.0500 (5)	
C2	0.1405 (2)	0.5909 (3)	0.18238 (16)	0.0638 (6)	
H2A	0.0924	0.6749	0.1806	0.077*	
C3	0.0725 (2)	0.4771 (3)	0.19350 (18)	0.0732 (7)	
H3A	-0.0236	0.4841	0.1996	0.088*	
C4	0.1431 (2)	0.3511 (3)	0.19594 (18)	0.0706 (6)	
H4A	0.0935	0.2756	0.2038	0.085*	
C5	0.2849 (2)	0.3364 (2)	0.18689 (16)	0.0587 (5)	
H5A	0.3316	0.2518	0.1882	0.070*	
C6	0.35815 (19)	0.45041 (19)	0.17569 (13)	0.0468 (4)	
C7	0.50280 (18)	0.47104 (18)	0.16459 (13)	0.0436 (4)	
C8	0.62068 (19)	0.36889 (18)	0.16080 (14)	0.0452 (4)	
C9	0.6011 (2)	0.2407 (2)	0.22518 (16)	0.0565 (5)	
H9A	0.5122	0.2197	0.2725	0.068*	
C10	0.7109 (2)	0.1441 (2)	0.22023 (19)	0.0671 (6)	
H10A	0.6964	0.0579	0.2624	0.081*	
C11	0.8413 (2)	0.1780 (2)	0.15208 (19)	0.0640 (6)	
C12	0.8657 (2)	0.3021 (2)	0.08737 (18)	0.0613 (5)	
H12A	0.9556	0.3225	0.0416	0.074*	
C13	0.75482 (19)	0.3966 (2)	0.09108 (16)	0.0522 (5)	
H13A	0.7699	0.4809	0.0460	0.063*	
C14	0.51043 (18)	0.60667 (18)	0.15671 (13)	0.0432 (4)	
C15	0.63180 (18)	0.68060 (17)	0.14957 (14)	0.0428 (4)	
C16	0.7318 (2)	0.75366 (19)	0.06796 (15)	0.0547 (5)	
H16A	0.7398	0.7686	-0.0018	0.066*	
C17	0.8187 (2)	0.8008 (2)	0.11080 (16)	0.0549 (5)	
H17A	0.8957	0.8543	0.0725	0.066*	
C18	0.5866 (2)	0.6370 (2)	0.34278 (14)	0.0502 (5)	
H18A	0.5028	0.5904	0.3490	0.060*	

C19	0.6725 (2)	0.5487 (2)	0.40595 (14)	0.0523 (5)	
C20	0.7444 (2)	0.4273 (2)	0.39863 (18)	0.0666 (6)	
H20A	0.7423	0.3823	0.3490	0.080*	
C21	0.8208 (3)	0.3727 (3)	0.4674 (2)	0.0833 (7)	
H21A	0.8715	0.2906	0.4632	0.100*	
C22	0.8225 (3)	0.4381 (3)	0.5413 (2)	0.0877 (8)	
H22A	0.8746	0.3998	0.5863	0.105*	
C23	0.7486 (3)	0.5592 (3)	0.55029 (17)	0.0770 (7)	
H23A	0.7489	0.6030	0.6010	0.092*	
C24	0.6745 (2)	0.6130 (2)	0.48173 (15)	0.0583 (5)	
C25	0.5419 (2)	0.7586 (2)	0.39376 (17)	0.0593 (5)	
C26	0.3559 (2)	0.8204 (2)	0.14204 (17)	0.0607 (5)	
H26A	0.4430	0.8576	0.1401	0.073*	
C27	0.2370 (3)	0.8682 (3)	0.2271 (2)	0.0910 (8)	
H27A	0.2350	0.9651	0.2145	0.137*	
H27B	0.2526	0.8299	0.2925	0.137*	
H27C	0.1480	0.8401	0.2281	0.137*	
C28	0.3389 (3)	0.8721 (3)	0.0352 (2)	0.0960 (9)	
H28A	0.3347	0.9691	0.0190	0.144*	
H28B	0.2529	0.8400	0.0341	0.144*	
H28C	0.4183	0.8397	-0.0149	0.144*	
O2	0.3483 (14)	0.060 (2)	0.4525 (12)	0.115 (5)	0.560 (14)
H1O2	0.401 (10)	-0.016 (8)	0.423 (8)	0.138*	0.560 (14)
C29	0.1962 (7)	0.0616 (11)	0.4632 (7)	0.088 (2)	0.560 (14)
H29A	0.1654	0.1480	0.4274	0.106*	0.560 (14)
H29B	0.1769	-0.0096	0.4353	0.106*	0.560 (14)
C30	0.1250 (16)	0.039 (2)	0.5740 (8)	0.186 (9)	0.560 (14)
H30A	0.0243	0.0400	0.5871	0.279*	0.560 (14)
H30B	0.1468	0.1100	0.6001	0.279*	0.560 (14)
H30C	0.1569	-0.0464	0.6078	0.279*	0.560 (14)
O2A	0.3340 (15)	0.080 (2)	0.4359 (12)	0.077 (3)	0.440 (14)
H2O2	0.384 (13)	0.024 (9)	0.415 (9)	0.092*	0.440 (14)
C29A	0.2173 (11)	-0.0028 (13)	0.5152 (12)	0.101 (4)	0.440 (14)
H29C	0.1718	-0.0491	0.4822	0.121*	0.440 (14)
H29D	0.2550	-0.0699	0.5632	0.121*	0.440 (14)
C30A	0.1171 (11)	0.089 (2)	0.5688 (13)	0.128 (6)	0.440 (14)
H30D	0.0319	0.0425	0.6102	0.192*	0.440 (14)
H30E	0.0953	0.1644	0.5194	0.192*	0.440 (14)
H30F	0.1573	0.1195	0.6124	0.192*	0.440 (14)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.0752 (9)	0.0731 (9)	0.1446 (14)	0.0267 (7)	-0.0456 (9)	-0.0283 (9)
N1	0.0461 (9)	0.0524 (9)	0.0552 (9)	0.0063 (8)	-0.0226 (7)	-0.0154 (7)
N2	0.0442 (9)	0.0535 (9)	0.0478 (9)	-0.0089 (7)	-0.0156 (7)	-0.0103 (7)
N3	0.0507 (10)	0.0629 (11)	0.0610 (11)	-0.0173 (8)	-0.0171 (8)	-0.0129 (8)
N4	0.0666 (12)	0.0836 (14)	0.0578 (11)	-0.0107 (10)	-0.0164 (9)	-0.0328 (10)

supporting information

01	0.0743 (11)	0.0801 (11)	0.0922 (12)	0.0141 (9)	-0.0286 (9)	-0.0347 (10)
C1	0.0439 (11)	0.0653 (12)	0.0441 (10)	0.0005 (9)	-0.0173 (8)	-0.0139 (9)
C2	0.0469 (12)	0.0835 (16)	0.0632 (13)	0.0037 (11)	-0.0217 (10)	-0.0167 (11)
C3	0.0428 (12)	0.110 (2)	0.0685 (15)	-0.0097 (13)	-0.0182 (11)	-0.0177 (14)
C4	0.0574 (14)	0.0905 (18)	0.0691 (15)	-0.0241 (13)	-0.0209 (11)	-0.0151 (12)
C5	0.0551 (12)	0.0682 (13)	0.0579 (12)	-0.0115 (10)	-0.0187 (10)	-0.0172 (10)
C6	0.0435 (10)	0.0590 (12)	0.0415 (10)	-0.0048 (9)	-0.0152 (8)	-0.0136 (8)
C7	0.0439 (10)	0.0496 (10)	0.0415 (10)	-0.0010 (8)	-0.0165 (8)	-0.0139 (8)
C8	0.0456 (10)	0.0481 (11)	0.0489 (11)	-0.0003 (8)	-0.0200 (8)	-0.0168 (9)
C9	0.0552 (12)	0.0539 (12)	0.0599 (12)	-0.0033 (10)	-0.0186 (10)	-0.0103 (10)
C10	0.0733 (15)	0.0502 (12)	0.0804 (16)	0.0023 (11)	-0.0345 (13)	-0.0066 (11)
C11	0.0553 (13)	0.0572 (13)	0.0909 (17)	0.0167 (11)	-0.0365 (12)	-0.0273 (12)
C12	0.0465 (12)	0.0613 (13)	0.0792 (15)	0.0015 (10)	-0.0182 (10)	-0.0244 (12)
C13	0.0480 (11)	0.0476 (11)	0.0623 (12)	-0.0003 (9)	-0.0169 (9)	-0.0156 (9)
C14	0.0428 (10)	0.0486 (10)	0.0417 (10)	0.0023 (8)	-0.0172 (8)	-0.0126 (8)
C15	0.0440 (10)	0.0412 (10)	0.0469 (10)	0.0044 (8)	-0.0189 (8)	-0.0131 (8)
C16	0.0605 (12)	0.0545 (12)	0.0474 (11)	-0.0048 (10)	-0.0153 (10)	-0.0085 (9)
C17	0.0509 (11)	0.0497 (11)	0.0587 (13)	-0.0071 (9)	-0.0102 (10)	-0.0091 (9)
C18	0.0468 (11)	0.0604 (12)	0.0463 (11)	-0.0129 (9)	-0.0132 (9)	-0.0133 (9)
C19	0.0498 (11)	0.0611 (12)	0.0459 (11)	-0.0156 (10)	-0.0143 (9)	-0.0056 (9)
C20	0.0711 (14)	0.0623 (14)	0.0647 (14)	-0.0098 (12)	-0.0221 (12)	-0.0062 (11)
C21	0.0802 (17)	0.0738 (16)	0.0876 (19)	-0.0054 (13)	-0.0323 (15)	0.0069 (14)
C22	0.0842 (18)	0.106 (2)	0.0709 (17)	-0.0246 (17)	-0.0405 (14)	0.0165 (16)
C23	0.0804 (17)	0.104 (2)	0.0514 (13)	-0.0295 (15)	-0.0261 (12)	-0.0049 (13)
C24	0.0553 (12)	0.0755 (15)	0.0457 (11)	-0.0182 (11)	-0.0141 (9)	-0.0107 (10)
C25	0.0486 (12)	0.0704 (14)	0.0597 (13)	-0.0066 (11)	-0.0112 (10)	-0.0215 (11)
C26	0.0644 (13)	0.0514 (12)	0.0739 (14)	0.0118 (10)	-0.0336 (11)	-0.0173 (10)
C27	0.0857 (18)	0.0839 (18)	0.113 (2)	0.0301 (15)	-0.0360 (16)	-0.0465 (16)
C28	0.133 (2)	0.0728 (17)	0.090 (2)	0.0009 (16)	-0.0625 (19)	0.0015 (14)
O2	0.070 (5)	0.111 (9)	0.192 (12)	0.006 (4)	-0.033 (6)	-0.099 (9)
C29	0.081 (5)	0.095 (5)	0.094 (5)	-0.007 (3)	-0.031 (4)	-0.025 (4)
C30	0.175 (13)	0.31 (2)	0.089 (7)	-0.110 (12)	-0.025 (7)	-0.046 (9)
O2A	0.064 (7)	0.082 (5)	0.085 (4)	-0.007 (5)	-0.006 (4)	-0.041 (3)
C29A	0.089 (7)	0.106 (8)	0.109 (9)	-0.013 (5)	-0.018 (6)	-0.038 (7)
C30A	0.041 (5)	0.148 (9)	0.186 (14)	-0.015 (5)	0.006 (6)	-0.071 (8)

Geometric parameters (Å, °)

F1—C11	1.364 (2)	C17—H17A	0.9300	
N1-C1	1.384 (2)	C18—C19	1.500 (3)	
N1-C14	1.389 (2)	C18—C25	1.532 (3)	
N1-C26	1.470 (2)	C18—H18A	0.9800	
N2-C15	1.353 (2)	C19—C20	1.365 (3)	
N2—N3	1.356 (2)	C19—C24	1.386 (3)	
N2-C18	1.451 (2)	C20—C21	1.391 (3)	
N3—C17	1.317 (2)	C20—H20A	0.9300	
N4—C25	1.344 (3)	C21—C22	1.370 (4)	
N4—C24	1.399 (3)	C21—H21A	0.9300	

N4—H1N1	0.85 (2)	C22—C23	1.374 (4)
O1—C25	1.218 (3)	C22—H22A	0.9300
C1—C2	1.395 (3)	C23—C24	1.371 (3)
C1—C6	1.406 (3)	C23—H23A	0.9300
C2—C3	1.367 (3)	C26—C27	1.515 (3)
C^2 —H2A	0.9300	$C_{26}^{}C_{28}^{}$	1 519 (3)
$C_3 - C_4$	1 389 (3)	C26—H26A	0.9800
C3_H3A	0.9300	C_{27} H27A	0.9600
C_{4} C_{5}	1 371 (3)	$C_{27} = H_{27}R$	0.9600
$C_4 = C_3$	1.371(3)	$C_2 / - H_2 / B$	0.9000
C4—114A	1,209(2)	$C_2 = H_2 A$	0.9000
C_{5}	1.398 (3)	C_{20} H_{20}	0.9600
CS—HSA	0.9300	C28—H28B	0.9600
	1.436 (2)	C28—H28C	0.9600
	1.372 (2)	02-029	1.474 (13)
С7—С8	1.472 (2)	O2—H1O2	0.99 (9)
C8—C13	1.389 (3)	C29—C30	1.456 (12)
C8—C9	1.390 (3)	C29—H29A	0.9700
C9—C10	1.380 (3)	C29—H29B	0.9700
С9—Н9А	0.9300	C30—H30A	0.9600
C10—C11	1.364 (3)	С30—Н30В	0.9600
C10—H10A	0.9300	С30—Н30С	0.9600
C11—C12	1.361 (3)	O2A—C29A	1.497 (13)
C12—C13	1.375 (3)	O2A—H2O2	0.76 (10)
C12—H12A	0.9300	C29A—C30A	1.438 (14)
С13—Н13А	0.9300	С29А—Н29С	0.9700
C14—C15	1.466 (2)	C29A—H29D	0.9700
C15—C16	1.370 (3)	C30A—H30D	0.9600
C16 - C17	1 388 (3)	C30A—H30E	0.9600
C16—H16A	0.9300	C_{30A} H30F	0.9600
	0.7500		0.9000
C1—N1—C14	107.55 (15)	C25—C18—H18A	110.2
C1—N1—C26	127.68 (16)	C20—C19—C24	120.1 (2)
C14—N1—C26	123.80 (16)	C20—C19—C18	131.91 (19)
C15—N2—N3	112.64 (15)	C24—C19—C18	107.96 (18)
C15—N2—C18	129.00 (15)	C19—C20—C21	118.2 (2)
N3—N2—C18	117.92 (15)	С19—С20—Н20А	120.9
C17 - N3 - N2	104 16 (15)	C_{21} C_{20} H_{20A}	120.9
$C_{25} N_{4} C_{24}$	111 97 (18)	$C_{22} = C_{21} = C_{20}$	120.9(3)
$C_{25} = N_{4} = H_{1N_{1}}$	122 7 (14)	$C_{22} = C_{21} = C_{20}$	119.5
C_{24} NA H1N1	122.7(11) 122.9(14)	C_{20} C_{21} H_{21A}	119.5
$C_2 + 11 + 11101$	122.9(14) 120.22(10)	$C_{20} = C_{21} = H_{21} R$	119.5 121.2(2)
N1 = C1 = C2	130.23(19) 108.26(15)	$C_{21} = C_{22} = C_{23}$	121.3(2)
NI = CI = C0	106.20(13) 121.50(10)	C_{21} C_{22} H_{22A}	119.4
$C_2 = C_1 = C_0$	121.30(19) 117.7(2)	$C_{23} = C_{22} = C_{22}$	117.4
$C_2 = C_2 = U_2$	117.7 (2)	$C_{24} = C_{23} = C_{22}$	117.5(2)
C_{1} C_{2} H_{2}	121.2	$U_24 - U_23 - H_23A$	121.3
C1 - C2 - H2A	121.2	U_{22} — U_{23} — $H_{23}A$	121.3
C2—C3—C4	121.7 (2)	C23—C24—C19	122.0 (2)
С2—С3—НЗА	119.1	C23—C24—N4	128.3 (2)

С4—С3—Н3А	119.1	C19—C24—N4	109.66 (18)
C5—C4—C3	121.0 (2)	O1—C25—N4	127.7 (2)
C5—C4—H4A	119.5	O1—C25—C18	124.8 (2)
C3—C4—H4A	119.5	N4—C25—C18	107.5 (2)
C4—C5—C6	119.0 (2)	N1—C26—C27	112.74 (19)
C4—C5—H5A	120.5	N1—C26—C28	110.06 (18)
С6—С5—Н5А	120.5	C27—C26—C28	113.7 (2)
C5—C6—C1	119.09 (17)	N1—C26—H26A	106.6
C5—C6—C7	133.46 (18)	С27—С26—Н26А	106.6
C1—C6—C7	107.45 (16)	C28—C26—H26A	106.6
C14—C7—C6	106.08 (15)	С26—С27—Н27А	109.5
C14—C7—C8	126.39 (16)	C26—C27—H27B	109.5
C6-C7-C8	127 53 (16)	H27A—C27—H27B	109.5
C13 - C8 - C9	117 72 (17)	$C_{26} - C_{27} - H_{27}C$	109.5
$C_{13} - C_{8} - C_{7}$	121.00(17)	H27A - C27 - H27C	109.5
C9-C8-C7	121.00(17) 121.27(17)	H27B-C27-H27C	109.5
C10-C9-C8	121.27(17) 121.3(2)	$C_{26} C_{28} H_{28A}$	109.5
C10-C9-H9A	110 4	$C_{26} = C_{28} = H_{28R}$	109.5
	119.4	$H_{28} = C_{28} = H_{28} = H_{28}$	109.5
C_{11} C_{10} C_{9}	119.4 118.5(2)	$C_{26} C_{28} H_{28C}$	109.5
$C_{11} = C_{10} = C_{23}$	110.5 (2)	H_{28}^{-} $H_{$	109.5
C_{10} C_{10} H_{10A}	120.8	$H_{2}^{0}R_{-}C_{2}^{0}$	109.5
$C_{12} = C_{10} = HIOA$	120.8 118.5(2)	1128D - C28 - 1128C	109.5
C_{12} C_{11} C_{10}	110.3(2) 122.20(10)	$C_{29} = 0_2 = 0_2$	$104 \in (11)$
C12 - C11 - C10	122.39(19)	C_{30} C_{29} U_{20A}	104.0 (11)
FI = CII = CI0	119.1(2)	C_{30} C_{29} H_{29A}	110.8
C11 - C12 - C13	118.7 (2)	$O_2 = C_2 = H_2 $	110.8
C12 - C12 - H12A	120.7	$C_{30} = C_{29} = H_{29B}$	110.8
C13 - C12 - H12A	120.7	$U_2 = U_2 = H_2 B$	110.8
C12-C13-C8	121.40 (19)	H29A—C29—H29B	108.9
C12—C13—H13A	119.3	C29—C30—H30A	109.5
C8—C13—H13A	119.3	C29—C30—H30B	109.5
C/C14N1	110.64 (16)	H30A—C30—H30B	109.5
C/C14C15	128.66 (16)	С29—С30—Н30С	109.5
NI-CI4-CI5	120.57 (15)	H30A—C30—H30C	109.5
N2—C15—C16	105.47 (16)	H30B—C30—H30C	109.5
N2—C15—C14	121.55 (16)	C29A—O2A—H2O2	99 (10)
C16—C15—C14	132.98 (17)	C30A—C29A—O2A	107.1 (13)
C15—C16—C17	105.79 (18)	C30A—C29A—H29C	110.3
C15—C16—H16A	127.1	O2A—C29A—H29C	110.3
C17—C16—H16A	127.1	C30A—C29A—H29D	110.3
N3—C17—C16	111.93 (18)	O2A—C29A—H29D	110.3
N3—C17—H17A	124.0	H29C—C29A—H29D	108.5
С16—С17—Н17А	124.0	C29A—C30A—H30D	109.5
N2	114.71 (15)	С29А—С30А—Н30Е	109.5
N2-C18-C25	108.29 (16)	H30D—C30A—H30E	109.5
C19—C18—C25	102.81 (16)	C29A—C30A—H30F	109.5
N2	110.2	H30D—C30A—H30F	109.5
C19—C18—H18A	110.2	H30E-C30A-H30F	109.5

C15—N2—N3—C17	-0.9 (2)	N3—N2—C15—C16	1.2 (2)
C18—N2—N3—C17	-174.05 (16)	C18—N2—C15—C16	173.39 (17)
C14—N1—C1—C2	-179.41 (19)	N3—N2—C15—C14	-179.04 (15)
C26—N1—C1—C2	-10.4 (3)	C18—N2—C15—C14	-6.9 (3)
C14—N1—C1—C6	1.1 (2)	C7—C14—C15—N2	-82.5 (2)
C26—N1—C1—C6	170.05 (17)	N1-C14-C15-N2	93.0 (2)
N1—C1—C2—C3	-179.1 (2)	C7—C14—C15—C16	97.1 (3)
C6—C1—C2—C3	0.4 (3)	N1-C14-C15-C16	-87.3 (2)
C1—C2—C3—C4	-0.2 (3)	N2-C15-C16-C17	-1.0 (2)
C2—C3—C4—C5	-0.2 (4)	C14—C15—C16—C17	179.33 (18)
C3—C4—C5—C6	0.4 (3)	N2—N3—C17—C16	0.3 (2)
C4—C5—C6—C1	-0.2 (3)	C15—C16—C17—N3	0.5 (2)
C4—C5—C6—C7	180.0 (2)	C15—N2—C18—C19	129.10 (19)
N1—C1—C6—C5	179.39 (16)	N3—N2—C18—C19	-59.1 (2)
C2-C1-C6-C5	-0.2 (3)	C15—N2—C18—C25	-116.7 (2)
N1—C1—C6—C7	-0.7 (2)	N3—N2—C18—C25	55.1 (2)
C2-C1-C6-C7	179.69 (17)	N2-C18-C19-C20	-61.1 (3)
C5—C6—C7—C14	180.0 (2)	C25-C18-C19-C20	-178.4 (2)
C1—C6—C7—C14	0.11 (19)	N2-C18-C19-C24	117.45 (18)
C5—C6—C7—C8	0.8 (3)	C25-C18-C19-C24	0.1 (2)
C1—C6—C7—C8	-179.11 (17)	C24—C19—C20—C21	-1.3 (3)
C14—C7—C8—C13	-40.8 (3)	C18—C19—C20—C21	177.1 (2)
C6—C7—C8—C13	138.22 (19)	C19—C20—C21—C22	0.8 (4)
C14—C7—C8—C9	140.51 (19)	C20—C21—C22—C23	0.2 (4)
C6—C7—C8—C9	-40.4 (3)	C21—C22—C23—C24	-0.8 (4)
C13—C8—C9—C10	0.0 (3)	C22—C23—C24—C19	0.3 (3)
C7—C8—C9—C10	178.73 (18)	C22—C23—C24—N4	-179.4 (2)
C8—C9—C10—C11	1.6 (3)	C20—C19—C24—C23	0.8 (3)
C9—C10—C11—C12	-1.7 (3)	C18—C19—C24—C23	-177.95 (19)
C9—C10—C11—F1	179.68 (19)	C20-C19-C24-N4	-179.49 (18)
F1-C11-C12-C13	178.76 (18)	C18—C19—C24—N4	1.8 (2)
C10-C11-C12-C13	0.1 (3)	C25—N4—C24—C23	176.4 (2)
C11—C12—C13—C8	1.6 (3)	C25—N4—C24—C19	-3.3 (2)
C9—C8—C13—C12	-1.7 (3)	C24—N4—C25—O1	-175.0 (2)
C7—C8—C13—C12	179.65 (17)	C24—N4—C25—C18	3.3 (2)
C6—C7—C14—N1	0.55 (19)	N2-C18-C25-O1	54.6 (3)
C8—C7—C14—N1	179.78 (16)	C19—C18—C25—O1	176.3 (2)
C6—C7—C14—C15	176.46 (17)	N2-C18-C25-N4	-123.82 (18)
C8—C7—C14—C15	-4.3 (3)	C19—C18—C25—N4	-2.0 (2)
C1—N1—C14—C7	-1.0 (2)	C1—N1—C26—C27	62.8 (3)
C26—N1—C14—C7	-170.54 (16)	C14—N1—C26—C27	-129.9 (2)
C1—N1—C14—C15	-177.30 (15)	C1—N1—C26—C28	-65.4 (3)
C26—N1—C14—C15	13.2 (3)	C14—N1—C26—C28	102.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H···A
N4—H1N1····O2 ⁱ	0.85 (2)	1.92 (3)	2.750 (19)	165 (2)
O2—H1 <i>O</i> 2····O1 ⁱⁱ	0.98 (9)	1.67 (9)	2.650 (2)	172 (11)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*, *y*-1, *z*.