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A B S T R A C T   

The widespread of highly infectious disease, i.e., COVID-19, raises serious concerns regarding public health, and 
poses significant threats to the economy and society. In this study, an efficient method based on deep learning, 
deep feature fusion classification network (DFFCNet), is proposed to improve the overall diagnosis accuracy of 
the disease. The method is divided into two modules, deep feature fusion module (DFFM) and multi-disease 
classification module (MDCM). DFFM combines the advantages of different networks for feature fusion and 
MDCM uses support vector machine (SVM) as a classifier to improve the classification performance. Meanwhile, 
the spatial attention (SA) module and the channel attention (CA) module are introduced into the network to 
improve the feature extraction capability of the network. In addition, the multiple-way data augmentation 
(MDA) is performed on the images of chest X-ray images (CXRs), to improve the diversity of samples. Similarly, 
the utilized Grad-CAM++ is to make the features more intuitive, and the deep learning model more interpret
able. On testing of a collection of publicly available datasets, results from experimentation reveal that the 
proposed method achieves 99.89% accuracy in a triple classification of COVID-19, pneumonia, and health X-ray 
images, there by outperforming the eight state-of-the-art classification techniques.   

1. Introduction 

COVID-19 has already caused over 5.7 million causalities and 
infected more than 396 million people, as of February 8, 2022 [1]. Since 
its appearance in December 2019, it has spread throughout the globe, 
which has forced countries to take drastic measures, including closing 
borders, canceling flights and quarantining people in countries with 
related cases, and containing the virus spread appears to be a chal
lenging task [2]. Owing to the critical health risks associated with it, 
COVID-19 was declared by the World Health Organization (WHO) as an 
international public health emergency and pandemic on 30/01/2020 
and 11/03/2020, respectively. And new mutated strains continue to 
emerge. 

The common symptoms of COVID-19 include fever, cough, shortness 
of breath, and pneumonia [3], and it affects the human heart, brain, 
liver and many other organs and requires prompt detection and treat
ment. It relies primarily on real-time reverse transcription polymerase 
chain reaction (PCR) for its determination, however, this method takes a 
longer time to detect. X-ray imaging is a cheaper, faster, and readily 

available method, where the body gets exposed to a much smaller 
amount of harmful radiation compared to CT [4]. Chest X-ray imaging 
(CXRs) is widely used as an assistive diagnostic tool in COVID-19 
screening, and it is reported to have high potential prognostic capabil
ities [5]. However, the diagnosis throughput of human experts is not 
comparable with that of machines, while early symptoms are difficult to 
spot and may be overlooked by human experts [6]. Therefore, there 
exists an urgent need to develop a smarter and more accurate algorithm 
for assisting to detect diseases automatically (e.g. COVID-19). 

In recent years, there has been an increasing amount of research on 
the application of artificial intelligence to disease diagnosis. For 
instance, A. Esteva et al. [7] trained a CNN on fine-grained skin cancer 
images, and obtained the results, which were generally consistent with 
the expert judgment. In another work, M. Guo et al. [8] used a deep 
learning approach to classify thyroid images with better results, 
achieving an accuracy of 83.88%. Likewise, Lu et al. [9] introduced 
wavelet transform and extreme learning machine techniques to predict 
the healthy or abnormal brain MRI pictures, with an accuracy of 
97.04%. Others are the early prognostication of Alzheimer’s disease 
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dementia [10], diagnosis of brain hemorrhage [11], detection of dia
betic retinopathy [12], identification of arrhythmia [13], and classifi
cation of various types of cancer (e.g. breast [14], brain [15], and 
prostate [16]). With the wide application of deep learning, its research 
in the diagnosis of lung diseases is also increasing. For instance, Chen 
et al. [17] proposed the DualCheXNet which used ResNet and DenseNet 
to the extract features, and used weighting of multiple classifiers for 
classification of fourteen diseases of the lung. Gundel et al. [18] pro
posed a location-aware dense network to improve the accuracy of 
thoracic disease classification by using high-resolution image data and 
spatial information of the lesion to accurately find the lesion. 

Most of the COVID-19 studies use a single network to extract fea
tures, but different networks acquire features in different ways and 
therefore focus on different regions, and fusing multiple networks can 
make features richer. Therefore, we fuse the features extracted by Effi
cientNetV2 and ResNet. Deep learning has a strong advantage in feature 
extraction, while SVM classification is a proven machine learning 
method; we combine the two to achieve better classification results. 
Although our network has a strong learning ability, it is poorly inter
pretable. People cannot perceive small changes in grayscale, but they 
can perceive color changes better, so we introduce a color visualization 
method that can present the results of network learning well. 

The main contributions of this work are as follows:  

• We proposed a deep feature fusion classification network (DFFCNet), 
and introduced two modules: deep feature fusion module (DFFM) 
and multi-disease classification module (MDCM).  

• EfficientNetV2 was introduced as the backbone network to fuse with 
the features extracted by ResNet101. The spatial attention (SA) 
module and the channel attention (CA) module are introduced into 
the network.  

• We used four multiple-way data augmentation (MDA) ways to 
enhance the training set. To simplify the interpretation of proposed 
deep learning model, a color visualization approach is employed via 
the Grad-CAM++ technique.  

• We used the same dataset for our experiments. Compared to the 8 
state-of-the-art diagnosis methods for COVID-19, experimental re
sults from this work illustrate very good results achieved through the 
DFFCNet. 

The structure of this paper is organized as below. In Section 2, we 
summarize the current state of research on COVID-19. In Section 3, in
troduces the dataset, the involved deep learning methods and the pro
posed new model. In Section 4, we describe the experimental steps and 
results. In Section 5, finally concludes this paper. 

2. Related works 

The sudden appearance of COVID-19 has led many researchers to 
propose various artificial intelligence methods to study it. These artifi
cial intelligence methods are divided into three categories. First, deep 
learning networks such as DenseNet, AlexNet, ResNet and Xception are 
used for disease diagnosis, and transfer learning can be used to reduce 
the network parameters. Second, weakly supervised learning or unsu
pervised methods are used to solve the problem of small labeled sam
ples, and machine learning such as clustering or support vector 
machines are used as classifiers in order to improve the recognition 
accuracy. Third, methods such as U-Net are used to segment the lesions. 

Some researchers use transfer learning for training because it allows 
higher initial performance of the network, faster training rate, and better 
convergence of the obtained model, which can reduce the network pa
rameters and make the network small. For instance, Narayan et al. [19] 
used transfer learning to pre-train Inception (Xception) parameters first 
on a large dataset and then applied them to the COVID-19 dataset to 
automatically diagnose diseases. Majeed et al. [20] proposed a new 
network, named CNN-X, which had fewer parameters and suitabled for 

smaller datasets. Maghdid et al. [21] used transfer learning to introduce 
AlexNet and proposed a simple CNN network. Experiments were per
formed on collected X-ray and CT images with an accuracy of 98%. 
Katsamenis et al. [22] proposed a simple CNN, which used transfer 
learning to introduce ResNet-50, changed the last fully connected layer. 
Pre-trained on ImageNet and achieved better classification results. 
Montalbo [23] introduced DenseNet as the backbone network through 
transfer learning, optimized migration learning by freezing some layers 
and adding a new layer to improve performance, a method called Fused- 
DenseNet-Tiny, who was able to achieve 97.99% classification accuracy. 

At the beginning of the outbreak of COVID-19, due to the lack of 
samples, many researchers proposed many models suitable for small 
amount of data from this perspective. For example, Aradhya, et al. [24] 
proposed a new model for one-time learning based on the idea of clus
tering, introducing two classifiers GRNN (Generalized Regression Neu
ral Network) and PNN (Probabilistic Neural Network). Voulodimos et al. 
[25] proposed a new online learning model for COVID-19 based on U- 
Net network, called few-shot driven U-Net. It can learn features of small 
datasets and accurately segment COVID-19 lesion regions in CT images. 
Chen et al. [26] developed an end-to-end trainable deep few-shot 
learning framework in the shortage of annotated COVID-19 CT images 
in order to save computational costs. It can expand one image into 
multiple images to accurately diagnose diseases. Yang et al. [27] pro
posed a new semi-supervised learning network based on less labeled 
images, which can be applied to new datasets with better generalization 
performance based on the disease features learned on a limited dataset. 

In the process of learning disease features, deep learning often learns 
some features that are not related to the disease, and the obtained model 
has poor generalization ability. In order to get accurate lesion regions for 
their study, the segmentation task is necessary, and many researchers 
have proposed many methods for this problem. Among them, Voulodi
mos et al. [28] proposed a lightweight segmentation model using U-Net 
and FCN (Fully Convolutional Neural Networks). The model can be 
trained without GPU, meaning that it can be run on a PC (personal 
computer) without parallel computing capabilities. Chen et al. [29] 
improved U-Net by adding an attention mechanism, and the 10-fold 
cross-validation results showed a 10% improvement in segmentation 
performance compared to the traditional U-Net. Saeedizadeh et al. [30] 
proposed a new model with a new regularization term in U-Net, and the 
segmentation performance was improved by 2%, and this model is 
called TV-Unet. Zhou et al. [31] added the spatial attention module and 
the channel attention module to U-Net, effective feature relations can be 
obtained. Meanwhile, the dice loss was changed to the focal tversky loss, 
the obtained model takes only 0.29 s to segment a CT. Chen et al. [32] 
proposed an unsupervised segmentation network with synthetic data 
and limited labeled data, which can guide the segmentation network to 
perform cross-domain learning and improve the segmentation perfor
mance. Liu et al. [33] used transfer learning twice for accurate seg
mentation of COVID-19 lesions, and proposed nCoVSegNet. Due to the 
small amount of labeled data, the model parameters were first trained on 
ImageNet for the first time; the pulmonary nodules image lesion features 
were similar to COVID-19, so the second time was trained on a dataset 
with labeled pulmonary nodules to further refine the parameters and 
find similar lesion areas Finally, the CT images of COVID-19 were 
segmented again, and better results were achieved. 

As mentioned above, most of the current studies on COVID-19 use 
single networks for learning, but different networks extract different 
features, so there is a great need to develop a new method for combining 
multiple networks for learning. 

3. Dataset and methodology 

For better understanding, Table 5 in Appendix A list the abbrevia
tions. Moreover, the detailed methodology is described below. 
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3.1. Improvement I: MDA on training set 

3.1.1. Original dataset 
Sait et al. [34] collected 15 publicly available COVID-19 datasets and 

removed the duplicates to form a new dataset, which is the one used in 
this work. The dataset contains 1281 COVID-19 X-rays, 1656 viral- 
pneumonia X-rays, 3270 Normal X-rays, and 3001 bacterial- 
pneumonia X-rays. We combined viral pneumonia and bacterial pneu
monia in a single category. Fig. 1 shows three samples from the dataset. 
And Fig. 1(a) shows the lesion sites of COVID-19, which we have marked 
with red arrows. The images in this dataset vary in size and are not 
labeled for the severity. The main lesion characteristics are described 
below. The location of infection in COVID-19 is mainly in the bilateral 
subpleural, whereas in common pneumonia the location of infection is 
along the trachea, bronchi and blood vessels. The nature of the lesion in 

COVID-19 is predominantly ground-glass opacities, whereas the main 
feature of common pneumonia is a solid shadow. 

3.1.2. Dataset preprocessing 
The dataset contain COVID-19 X-ray, pneumonia X-ray and healthy 

X-ray images. We resize the set O of original images to a uniform size of 
224 × 224, and obtain a new image set R, as shown in Eq. (1). 

R = Resize(O, [224, 224]) = {o1, o2, o3…, on} (1)  

The abstraction of images in deep learning networks changes from input 
to convolutional layer, pooling layer, and the last layer of feature map to 
fully connected layer. Among them, the feature map can be 3 × 3, 5 × 5, 
7 × 7, etc. Among these sizes, if the size is too small, then the infor
mation is easily lost, and if the size is too large, the abstraction level of 
information is not high enough and the computation is more, so the size 
of 7 × 7 is the most suitable. The input of the image must be 7×
(exponential power of 2) and the size of the dataset images are around 
300, so 224 = 7 × 32 is the most suitable. 

3.1.3. Data augmentation 
Through random hold-out (RHO) method, the dataset was randomly 

divided into three subsets: the testing set (X: 20%), the training set (Y: 
70%), and the validation set (Z: 10%). The relevant information is listed 
in Table 1. Furthermore, to mitigate any potential over fitting, MDA [6] 

Fig. 1. Sample images of CXRs. (a) COVID-19. (b) Normal. (c) Pneumonia.  

Table 1 
Data distribution in the model.  

Dataset COVID-19 Normal Pneumonia Total 

Training (70%) 897 2289 3260 6446 
Testing (20%) 256 654 931 1841 
Validation (10%) 128 327 466 921 
Total (100%) 1281 3270 4657 9208  

Fig. 2. Four multiple-way data augmentation applied to training set. (a) Noise injection. (b) Rotation. (c) Gamma correction. (d) Mirror.  
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technology is utilized in this work. We used four ways to enhance the 
training set 

R ̅→
RHO

{X, Y, Z} (2) 

and the relevant sizes related to these subsets satisfy the following 
equation. 

|R| = |X| + |Y| + |Z| = |{x1, ..., xj}| + |{y1, ..., yi}| + |{z1, ..., zq}| (3)  

where |.| refers to the cardinality of a set, i is the number of training set 
images, j is the number of testing set images, q is the number of vali
dation set images. 

Assuming that there are kMDC MDA technique (kMDC = {k1, k2, k3, 
k4}, in this paper, kMDC including noise injection, rotation, gamma 
correction and mirror), and nMDA images are generated using each MDA 
technique, and finally for all MDAs, kMDC × nMDA images are generated. 
The following four MDA are mainly used in this study: 

① Noise injection (N_I) 
Gaussian noise was injected into all the images of a training set, 

thereby generating many new noisy images. 

yk1 (i)
̅̅̅→

= N I[y(i)] = [yk1
1 (1), ..., y

k1
nMDA

(i)] (4) 

② Rotation (Ro) 
The rotation angle θRo = 90◦ was applied to the images: 

yk2 (i)
̅̅̅→

= Ro[y(i)] = [yk2
1 (1, θ

Ro), ..., yk2
nMDA

(i, θRo)] (5) 

③ Gamma correction (G_C) 
The gamma correction factor rG_C = 1.5 was used to produce new 

images as follows: 

yk3 (i)
̅̅̅→

= G C[y(i)] = [yk3
1 (1, rG C), ..., yk3

nMDA
(i, rG C)] (6) 

④ Mirror (Mir) 

yk4 (i)
̅̅̅→

= Mir[y(i)] = [yk4
1 (1), ..., yk4

nMDA
(i)] (7)  

yk(i)
̅̅ →

= concat
[
yk1 (i)
̅̅̅→

, yk2 (i)
̅̅̅→

, yk3 (i)
̅̅̅→

, yk4 (i)
̅̅̅→]

(8)  

where yk(i)
̅̅ →

means the data augmentation is concatenation of four MDA 
results.. 

y(i) ̅→MDA concat
[
y(i), yk(i)

̅̅→]
(9)  

where y(i) means the training set consists of the original and augmen
tation images. 

As shown in Fig. 2, we used four ways to enhance the training set. We 

can observe that one image will become 5 images. 

3.2. Improvement II: Backbone network of EfficientNetV2 

In classification problems, to achieve better results, methods that 
increase the network depth, expand the input image size, and increase 
the network width are commonly used. However, simply increasing the 
depth of the network limits the accuracy improvement, as it can easily 
lead to gradient explosion or gradient disappearance. Besides, the stor
age requirements increase with an increase in network depth. Addi
tionally, if we simply increase the width of the model, this will allow the 
model to learn more details. However, if the model is not deep enough, 
deeper features are not easily learned. Moreover, increasing the reso
lution of an input image enables the model to acquire more features, but 
increases the computational cost and reduces the training speed. 
Accordingly, EfficientNet [35] combines the above-mentioned three 
trade-off cases to achieve the best result, as demonstrated in Fig. 3. Fig. 3 
(a) shows the basic network, while Fig. 3(b-d) improves the performance 
in terms of increasing the network width, depth, and resolution of the 
input image, respectively. Finally, Fig. 3(e) illustrates the main idea of 
EfficientNet, which is to integrate the above three elements to improve 
the network. 

In this paper, we used EfficientNetV2 [36] as the backbone network, 
which is approximately ten times faster than EfficientNet in training, 

(a)baseline (b)width scaling (c)depth scaling (d)resolution scaling (e) compound scaling

Highter
 resolution Highter 

resolution

#channels
wider

wider

Layer_i

Resolution 
HxW

Fig. 3. Diagrammatic representation of an EfficientNet architecture.  

Fig. 4. Structure of MBConv and Fused-MBConv.  
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and has a better performance. Likewise, Fused-MBconv corresponds to 
the key section of EfficentNetV2, which replaces the 1 × 1 boosted 
convolution and 3 × 3 depth-wise convolution in MBConv with a normal 
3 × 3 convolution to improve the training speed, as demonstrated in 
Fig. 4. Meanwhile, EfficientNetV2 adopts a progressive learning strat
egy, where the overall training process is divided into four stages. Each 
stage has stronger regularization for faster convergence, fewer param
eters, and very high accuracy. The corresponding training speed is 5 to 
11 times faster for the same computational resources. 

3.3. Improvement III: Network adds Convolutional Block attention 
module 

CBAM (Convolutional Block Attention Module) [37] is a lightweight 
module that has two sub-modules: the channel attention (CA) module 
and the spatial attention (SA) module. In the CA module, the average 
pool is used to summarize the feature information, the maximum pool is 
used to get the information of unique objects, and finally the channel 
relationship of features is used to find the desired feature description 
and generate the CA graph. In the SA module, which is mainly a com
plement to the CA module, it can use the spatial relationship between 
features to determine the location of information and get the SA map. 
Finally, the CA is arranged in series with the SA, which can improve the 
representation capability of CNN. 

Residual Neural Network (ResNet) [38] was first introduced by K. He 
et al. Compared to traditional networks, ResNet has fewer parameters (e. 
g., VGG), better classification, flexible structure. In this paper, we use 
EfficientNetV2 and ResNet101 to extract features in parallel. The SE 
module already exists in EfficientNetV2, and we add CBAM to 
ResNet101 so that both networks can extract features accurately. Fig. 5 
shows the exact placement of the modules when integrated into the 
ResBlock, with the spatial attention module inside the blue border and 
the CA module inside the red border. We apply CBAM on the 

convolution output of each block. 

3.4. Improvement IV: Feature fusion 

The two commonly used feature-level fusion (FLF) methods are 
concat and add. Add method corresponds to an increase in information 
amount for the features describing the image; however, the dimensions 
describing the image do not increase, as show in Fig. 6(a). On the other 
hand, concat method refers to a merger of the number of channels, i.e., 
the number of channels describing the image increases, while relevant 
information for each feature stays constant. If the dimensions of the two 
input features × and y are p and q, the dimension of the output feature z 
is p + q, as show in Fig. 6(b). The relevant mathematical expressions are 
given in Eq. (5) and Eq. (6). In this study, we used concat for FLF, as 
show in Fig. 6(a). The number of Fusion(x_y) channels refers to the sum 
of Feature(x) and Feature(y) channels. 

Fflf = concat(fE, fR) (10)  

Fflf = add(fE, fR) (11)  

where fE is the feature extracted by EfficientnetV2, fR is the feature 
extracted by ResNet, and Fflf is the fused features set. 

3.5. Improvement V: SVM as the classifier 

SVM (Support Vector Machine) [39] majorly solves the data classi
fication problem in pattern recognition, and describes the data as points 
in space and maps them into one or more hyperplanes, constructed by 
kernel functions. The core idea is to find the separation interface be
tween different categories so that the samples of two categories fall on 
both sides of the face and as far away from the separation interface as 
possible. This assists in separating the two different categories quickly. 
Eqs.(12) and (13) represent formulas for a line or hyper plane, 

Fig. 5. Structure of ResBlock + CBAM.  

Fig. 6. Two feature fusion methods (a) Concat. (b) Add.  
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respectively. The traditional SVM only performs binary classification, 
while the LibSVM [40] program is small, has few parameters, flexible in 
use, and can perform multi-way classification with a good generaliza
tion. The LibSVM is the core of MDCM, as elaborated in Fig. 7. 

w→xf
→+ b = 0 (12)  

yf = mxf + b (13)  

where w denotes the normal vector of the hyperplane, which determines 
the direction of the hyperplane. b is the displacement term, which de
termines the distance between the hyperplane and the origin. xf is the 
training sample and yf is the output of the training example. 

3.6. Proposed approach 

In this paper, we propose a deep feature fusion classification network 
called DFFCNet, which comprises three major stages. For the first stage, 
the dataset is preprocessed and the training set is enhanced with MDA 
using four methods. In the second stage, feature learning is performed 
using EfficientNetV2 and ResNet101, where the CBAM module is added 
to ResNet101 to enhance its feature extraction capability. The third 
stage involves the classification of the fused features using SVM, which 
allows multi-disease efficient classification. Fig. 8 depicts the overall 
framework. To elaborate further, a pseudo code for DFFCNet algorithm 
is given in Algorithm 1. 

Algorithm 1. Pseudo code of our DFFCNet algorithm.  
Phase I: Preprocessing X → Z 
Step 1 Input: Original Image Set O. 
Step2 Resizing: Resize the image to [224, 224], get dataset R. See Eq. (1). 
Step 3 YRHO: testing set (X), training set (Y) and validate set (Z). See Eq. (2). 
Step 4 MDA(Y):N_I、RO、G_C and Mir to augment training set (Y). 
Phase II: DFFM 
Step 5 Read one raw Pre-trained model EfficientNetV2 and ResNet. 
Step 6 Obtaining MBConv and Fused-MBConv Networks from EfficientNetV2 → 

M1. 
Step 7 Adding CA and SA to ResNet → ResNet (CBAM) 
Step 8 Obtaining residual Networks from ResNet (CBAM) → M2. 
Step 9 Concat (M1, M2). 
Step12 Generate DFFM. 
Phase III: MDCM 
Step13 Get the fusion feature from DFFM → Fflf. See Eq. (10). 
Step14 Create data labels based on feature values. 
Step15 Normalize the feature values. 
Step16 Construct MDCM by radial basis and SVM cross-validation. 

(continued on next page) 

Fig. 7. LibSVM implements triple classification.  

Fig. 8. Structure of the proposed DFFCNet.  

Fig. 9. Relationship between learning rate and loss.  
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(continued ) 

Step17 Classification results were obtained by MDCM. 
Step 18 Test confusion matrix, calculate indicators. 
Step 19 Output: The model DFFCNet and its performances.  

4. Experiments and results 

4.1. The experiment platform 

The experiments are performed in a Linux environment, using an 
NVIDIA DGX Station deep learning workstation with a 32 GB Tesla V100 
graphics card to run the experiments. Python language is used to 
implement the overall code, i.e., data pre-processing and algorithm 
implementation. Libraries such as Numpy and the deep learning toolbox 
Pytorch aree used. The learning rate (LR), batch size (BS), epochs, 
optimizer, and dropout rate (DR) made up the tuned hyper-parameters 
of the model. The values produced the optimal experimental results: 
batch size, epochs, DR, and initial LR are set to 8, 30, 0.4 and 0.003. 
When the loss is reduced, the LR is reduced to the original value of 0.1. 
The main factor affecting the results is LR, which is usually set about 
three times higher or lower, so we choose 0.003, 0.001 and 0.01 for the 
experiment. The trend of Epoch and Loss is shown in Fig. 9, where the 
lower the loss, the better the network performance. When LR is 0.01, the 
loss does not decrease, but increases, as shown in the red line. The 10th 
epoch has converged when LR is 0.001 and 0.003. The loss is not 
minimized when LR is 0.001, as shown in the blue line. The loss is 
minimized when LR is 0.003, as shown in the green line. So neither LR 
less than 0.003 nor greater than 0.003 can achieve the best results, so we 
set LR to 0.003. 

4.2. Experiment to determine the feature-fusion methods 

The commonly used FLF methods are concat and add. To prove that 
concat is the best, we conducted an experimental comparison, we fuse 
the features extracted by EfficientNetV2 and ResNet101 using concat 
and add respectively, as shown in Fig. 10. The accuracy of fusion using 
the add method was 99.40%, and the accuracy of fusion using the concat 
method reached 99.51%. So we used the concat fusion in this paper. 

4.3. Ablation study of DFFCNet 

To determine the effect of each improvement, we performed an 
ablation study, as shown in Table 2, the experiment shows the results on 
the testing set. First we use the backbone network EfficientNetV2 for 

classification and get the accuracy of 97.23%. EfficientNetV2 obtained 
the accuracy of 99.51% after feature fusion with ResNet101. Next, after 
adding CBAM to ResNet, the accuracy is 99.73%. Finally, after we 
replace the classifier with SVM, the accuracy is 99.89%. It can be seen 
that and every improvement is effect for DFFCNet, especially for feature 
fusion. 

To demonstrate the training process of DFFCNet, we add Fig. 11. The 
changes of test accuracy and training loss are shown as the epoch in
creases, where the horizontal axis is epoch, training loss corresponds to 
the left vertical axis and test accuracy corresponds to the right vertical 
axis. As can be seen from Fig. 11, DFFCNet converges around the 10th 
epoch, while the training loss reaches 0.001 and the accuracy is already 
close to 100%, which has a good performance. 

4.4. Experimental results 

4.4.1. Classification performance 
In order to evaluate the performance of the proposed DFFCNet 

method, we used various metrics in the validation set to determine, 
namely accuracy (Acc(Z)), precision (Pre(Z)), sensitivity (Sen(Z)), spec
ificity (Spe(Z)), recall (Rec(Z)), and F1-score (F1 − sc(Z)). The corre
sponding equations are expressed below. 

Acc(Z) =
TP(Z) + TN(Z)

TP(Z) + TN(Z) + FP(Z) + PN(Z)
(14)  

Pre(Z) =
TP(Z)

TP(Z) + FP(Z)
(15)  

Sen(Z) =
TP(Z)

TP(Z) + FN(Z)
(16)  

Spe(Z) =
TN(Z)

TN(Z) + FP(Z)
(17)  

Rec(Z) =
TP(Z)

TP(Z) + FN(Z)
(18)  

F1 − sc(Z) =
2*Pre(Z)*Rec(Z)
Pre(Z) + Rec(Z)

(19) 

Accordingly, Table 3 demonstrates the overall performance of 
DFFCNet for the validation set of 921 CXRs. The Acc(Z), Pre(Z), Rec(Z), 
Sen(Z), Spe(Z) and F1-sc(Z) are 99.9%, 100%, 99.2%, 99.2%, 100% and 
99.6% for COVID-19 X-ray images. The Acc(Z), Pre(Z), Rec(Z), Sen(Z), 
Spe(Z) and F1-sc(Z) are 99.9%, 99.7%, 100%, 100%, 99.8% and 99.8% 
for pneumonia X-ray images. The Acc(Z), Pre(Z), Rec(Z), Sen(Z), Spe(Z) 
and F1-sc(Z) are 99.8%, 99.8%, 99.8%, 99.8%, 99.8% and 99.8% for 
normal X-ray images. In conclusion, the performance in terms of accu
racy, sensitivity, recall and F1-score on the validation set is good, so the 
DFFCNet proposed in this paper is effective. 

4.4.2. Confusion matrix 
To illustrate the classification of data from the validation set, a 

confusion matrix [41] is employed in this work. For each class C = 1, 2, 3 
(1: COVID-19, 2: Pneumonia, 3: Normal), we set that class tag to “pos
itive” and the other two classes to “negative”. Likewise, Fig. 12 presents 
a schematic confusion matrix for the three categories. The True positives 

Fig. 10. Comparison of two fusion methods.  

Table 2 
Ablation study (%).  

backbone network Feature fusion CBAM SVM Acc (X) 

√     97.23 
√ √    99.51 
√ √ √   99.73 
√ √ √ √  99.89  
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(TP), true negatives (TN), false positives (FP), and false negatives (FN) 
are used to identify the diagnosis of CXRs by the model. The TP indicates 
a positive outcome for both real category of the sample and the recog
nition result. Similarly, the FN highlights a positive real category of the 
sample, however, it is identified as negative by the model. Alternatively, 
FP refers to a negative real category of the sample recognized as a 
positive by the model. Finally, TN indicates a negative category for both 
real category of the sample and the recognition result. Fig. 13 show the 
confusion matrix of the DFFCNet model proposed in this paper. 

4.4.3. Explainable deep learning using Grad-CAM++

To enhance the intuitive nature of the features and the interpret
ability of deep learning model, a technique called gradient-weighted 
class activation mapping plus (Grad-CAM++), proposed by A. Chatto
padhay et al. [42], is adopted in this work. Initially, an image is 
normalized, and the trained neural network model parameters are 
loaded. Next, the feature map of the target layer is extracted, and the 
gradient information of the target class on the feature map is recorded. 
Next, the heat map is obtained through the weighted summation oper
ation of all the feature maps of a target layer. Eventually, using linear 
interpolation, the heat map is reduced to the size same as that of original 
image. The obtained heat map is then superimposed on the original 

image to complete the visualization operation. The visualization results 
for the features generated after the last convolution layer of DFFCNet, 
using the Grad-CAM++ method are shown in Fig. 14. Among them, the 
COVID-19 and Pneumonia images possess more obvious features 
whereas the Normal images have no lesion features. 

4.4.4. Comparison with state-of-the-art approaches 
To demonstrate the effectiveness of the DFFCNet method, we 

compared it with eight state-of-the-art methods: ECOVNet [43], Fused- 
DenseNet-Tiny [23], BCNN_SVM [44], COVNet [45], InceptionV3 [46], 
DTL-V19 [47], ResNet152V2 [48], and VGG16 [49]. All methods used 
the unified dataset and MDA preprocessing methods, experiments were 
performed on the testing set. Table 4 illustrates the relevant comparison 
results. It can be seen that, among all methods, the proposed DFFCNet 

Ac
c

Lo
ss

Epoch

Fig. 11. Test accuracy and training loss of DFFCNet.  

Table 3 
The classification of DFFCNet networks after two kinds of validation (%).  

Class Acc (Z) Pre (Z) Rec (Z) Sen (Z) Spe (Z) F1-sc(Z) 

COVID-19  99.9 100 99.2 99.2 100  99.6 
Normal  99.9 99.7 100 100 99.8  99.8 
Pneumonia  99.8 99.8 99.8 99.8 99.8  99.8  

Fig. 12. Confusion matrix of multiple class conditions.  

Fig. 13. Classification results of the DFFCNet visualized with a confu
sion matrix. 
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achieved the best results. Moreover, accuracy achieved 99.89%. The 
high accuracy was mainly achieved through the feature fusion and 
attention mechanism coordination. The use of the newly-proposed 
EfficientNetV2 as the backbone network and SVM as classifier, the 
effectiveness of which is demonstrated through the experimental results. 
In addition, the MDA prevents overfitting of the model, thus improving 
its performance. 

ECOVNet [43], Fused-DenseNet-Tiny [23], COVNet [45] and DTL- 
V19 [47] are the proposed methods for COVID-19 diseases. 
BCNN_SVM [44], InceptionV3 [46], ResNet152V2 [48] and VGG16 [49] 
are better classification networks proposed in recent years, and these 
methods are very representative. Compared to the other methods, the 
strategy proposed in this work is unique. BCNN_SVM [44] used a BCNN 
bilinear fusion of two deep learning networks, VGG16 and VGG19, to 
extract the features, and then used an SVM to classify for the presence of 
COVID-19. Since both fusion networks were VGG, the extracted features 
were similar and the relevant accuracy was lower than our DFFCNet. 
Fused-DenseNet-Tiny [23] used transfer learning to introduce DenseNet 
as a backbone network and optimized transfer learning to improve the 

performance by freezing some layers and adding new ones. It used the 
same dataset as in this paper for experiments and the performance was 
inferior to DFFCNet. Additionally, DTL-V19 [47] used a deep transfer 
learning of VGG19 for COVID-19 classification. There were fewer 
training parameters. However, due to the limited network performance, 
the network had fewer layers and was prone to overfitting. ECOVNet 
[43] and COVNet [45] were trained for classification using Effi
cientNetB3 and ResNet50, respectively. These models were simple, lack 
the fusion of features, and their performance was inferior to our pro
posed network. Furthermore, we compared the proposed method with 
the currently popular classification networks, namely InceptionV3 [46], 
ResNet152V2 [48] and VGG16 [49], and results indicate that these 
networks were not as effective as DFFCNet. To better display the results, 
we have added Fig. 15. 

5. Conclusion 

Coping up with the sudden emergence of COVID-19 virus poses a 
primary challenge for the medical systems. Due to the lack of doctors 
and testing reagents, it is difficult to timely diagnose all the potential 
patients. Nevertheless, the application of AI, which can quickly assist to 
diagnose diseases through CXRs, saves a lot of time. Likewise, this paper 
proposed a deep feature fusion efficient classification network 
(DFFCNet). The proposed network enables an accurate diagnosis of 
COVID-19, health and pneumonia, especially the prediction accuracy of 
COVID-19 diseases reached 99.89%. To validate the performance of 
DFFCNet, we compared the experimental results of 8 state-of-the-art 
methods. DFFCNet achieved good results in terms of accuracy, preci
sion, sensitivity, F1-score. This helps doctors to make faster and more 
accurate diagnosis of COVID-19, and thus, our method makes a signifi
cant contribution to society and hospitals. 

Moreover, the proposed DFFCNet suffers from two disadvantages: 

Class

Normal

COVID-19

Pneumonia

Original Grad-CAM++

Fig. 14. Grad-CAM++ of the DFFCNet.  

Table 4 
Performance comparison of the proposed DFFCNet with other studies (%).  

Method Sen (z) Pre (z) F1-sc (z) Acc (z) 

ECOVNet [43]  97.53  98.15  97.84  97.72 
Fused-DenseNet-Tiny [23]  98.15  98.38  98.26  97.99 
BCNN_SVM [44]  96.53  98.06  97.26  97.39 
COVNet [45]  95.12  94.34  94.65  95.11 
InceptionV3 [46]  98.23  98.31  98.26  97.99 
DTL-V19 [47]  95.15  95.66  95.40  95.33 
ResNet152V2 [48]  98.09  98.25  98.17  97.88 
VGG16 [49]  96.94  97.06  96.97  96.58 
DFFCNet (this work)  99.60  99.79  99.70  99.89  
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(1) It does not make a judgment about the grade for COVID-19. (2) It 
cannot handle the datasets constructed via a mixing of CT and CXR. In 
our future work, we hope to solve the above problems. 

6. Data availability 

The data that support the findings of this study are openly at 
[https://data.mendeley.com/datasets/9xkhgts2s6/1], reference num
ber. [34]. 
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