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Abstract 

Oral cancer is one of the most frequent malignant diseases worldwide, and areca nut is a primary 
carcinogen causing this cancer in Southeast Asia. It has been widely reported that areca nut induced 
several cytotoxic effects in oral cells, including ROS generation, inflammation, tissue hypoxia, DNA 
damage, and cell invasion. Recently, through chronic exposure model, more extensive pathological 
effects due to areca nut have been found. These include the induction of autophagy, promotion of 
epithelial- mesenchymal transition, and facilitation of cancer stemness conversion. Clinical findings 
support these adverse effects. Oral submucosal fibrosis, a premalignant condition, is prevalent in the 
area with habitual chewing of areca nuts. Consistently, oral cancer patients with habitual chewing 
areca nut exhibit more aggressive phenotypes, including resistance to chemo-radiotherapy. In this 
review, we comprehensively discuss and concisely summarize the up-to-date molecular and cellular 
mechanisms by which areca nuts contribute to malignant transformation. This review may provide 
critical information regarding clinical applications in risk assessment, disease prevention, diagnosis, 
and personalized therapeutics for areca nut-induced oral malignancy. 
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1. Introduction 
Oral cancer, including the common squamous 

cell carcinomas of the oral cavity and oropharynx, is 
the sixth most frequent cancer worldwide [1, 2]. The 
disease is more prevalent among males than females 
[1, 2]. Epidemiologic studies have shown wide 
variations in its incidence in different geographical 
areas. Oral cancer is highly prevalent in Southeast 
Asia, comprising 35-40% of all malignancies in India, 
compared to approximately 9% in Taiwan and 2-4% in 
western countries [1-4]. The tumor sites of this disease 

differ in different geographical regions. Cancers of the 
tongue and buccal mucosa constitute the majority of 
oral cancers in India and Southeast Asia [1-4]. In 
contrast, the western regions show that cancers of the 
mouth floor are the most frequent, with cancer of the 
gums or tongue being rare [1-4]. Apparently, oral 
cancer also shows various clinicopathological features 
in different global regions.  

The association of carcinogen exposure with oral 
cancer has been reported [3-5]. Carcinogens include 
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habitual alcohol consumption, areca nut chewing, and 
cigarette smoking. Cigarette smoking and alcohol 
consumption are common habits in oral cancer 
patients in western countries. Cigarette smoking may 
render a significant carcinogenic effect on the upper 
aerodigestive tract, including oral areas [3-5]. Areca 
nut chewing is a common habit among oral cancer 
patients in Southeast Asia, indicating a close link of 
this habit with the specific disease. In Taiwan, for 
example, approximately 85% of all oral cancer 
patients are associated with this habit [3, 4]. It has 
been shown that areca nut chewers have a much 
greater risk of developing oral cancer than 
nonchewers [3-6]. Furthermore, the 5-year survival 
rate of oral cancer patients who chew areca nuts is 
much lower than that of those who do not chew these 
nuts [7, 8]. Therefore, the distinct clinicopathological 
characteristics of oral cancer in global regions may 
result from different environmental carcinogenic 
exposures in addition to genetic factors. In this paper, 
we comprehensively review and concisely summarize 
recent reports of the molecular and cellular effects of 
areca nuts that lead to the development of oral cancer. 

2. Molecular pathology of areca nut 
2.1 Areca nuts are a primary carcinogen in 
Southeast Asia, with several active 
components 

Areca nuts have been one of the most commonly 
used psychoactive substances for a century, especially 
in Southeast Asia. For better chewing flavor in using, 
areca nuts are usually covered with piper betel leaves 
or inflorescence to form betel quids [3, 4]. Areca nut 
extract is composed of saccharides (26-47%), 
polyphenols (11-26%), fats (1.3-17%), various 
alkaloids (0.15-0.67%), and some crude fiber and rare 
tannins [4-6]. Although alkaloids constitute only a few 
percent of all components, they are the most active 
ingredients associated with pathological 
development. Arecoline is the most abundant 
alkaloid, and it can be converted to arecaidine by 
salivary enzymes [4,6]. These alkaloids are converted 
to nitroso-derivatives, the primary inducers of oral 
mucosal lesions [4,6].  

In the past few decades, accumulated studies 
have demonstrated that areca nuts can induce 
premalignant and malignant transformation of oral 
tissues. In animal model studies, areca nut extract (or 
the ingredient cocktail) can be an effective tumor 
initiator or promoter and can induce premalignant 
oral lesions, including submucosal fibrosis [9, 10] and 
squamous hyperplasia [11-13], or result in malignant 
transformation [13-16]. For example, arecaidine 
displays a synergistic effect in the 7,12-dimethyl- 

benz(a)anthracene (DMBA)- induced tumor 
formation in the cheek pouch of hamster [15]. 
Similarly, combinational exposure of arecoline and 
4-nitroquinoline-1-oxide (4-NQO) induces oral 
cancerous lesions in C57BL/6JNarl mice [11, 16]. Since 
the carcinogenic effect of areca nuts has become more 
visible, in 1992, the International Agency for Research 
on Cancer (IARC) announced that areca nut chewing 
combined with cigarette smoking is a human 
carcinogen. In 2004, IARC announced that the areca 
nut itself is a human carcinogen [17]. 

2.2 Oral submucosal fibrosis is a common 
premalignant disorder induced by areca nut 
chewing 

The carcinogenesis of oral cancer is a 
multiple-step progressive process [6]. It is started 
from normal epithelial cells, gradually evolving to 
premalignant lesions. After malignant transformation, 
these cells eventually become aggressive types of 
cancers. Clinically, the premalignant oral disorders 
can be classified by distinct pathological features. 
These include hyperkeratosis, dysplasia, leukoplakia, 
erythroplakia, and fibrosis. Among these, leukoplakia 
is the most common disorder, while erythroplakia 
although rare, is more serious [18]. Both leukoplakia 
and erythroplakia are considered as premalignant 
lesions [18]. Oral submucosal fibrosis is a chronic 
progressive process, presenting an inflammatory 
fibrosis in oral mucosa stroma, being considered as 
premalignant condition [19-21]. This disorder is 
prevalent in India and Southeast Asia, a common 
premalignant condition caused by prolonged areca 
nut chewing [18-22]. Approximately 18% of the 
premalignant oral lesions will develop into squamous 
cell carcinoma [3]. Transformation of oral submucosal 
fibrosis may be variable, begin estimated between 2% 
to 8% and up to 13% [20-22]. 

The pathological effect of areca nut contributing 
to oral submucosal fibrosis is supported by several 
lines of studies. In a mouse model, the subcutaneous 
injection of areca nut extract-induced skin lesions and 
fibrosis [11]. This is accompanied with the expression 
of fibrotic marker proteins including alpha-smooth 
muscle actin (α-SMA) and connective tissue growth 
factor. In a cellular study, treatment of oral 
keratinocytes with arecoline upregulated the 
expression of αvβ6 integrin and α-SMA to promote 
the formation of submucosal fibrosis [23, 24]. 
Treatment of fibroblast cells with areca nut extract 
also induced cell contraction mediated by several 
signaling pathways, including the JNK/ATF2/Jun 
axis, Ca2+/calmodulin axis, and Rho protein 
activation, leading to actin filament polymerization 
[23, 25].  
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The accumulation of collagen is a notable 
pathological alteration in the patients with oral 
submucosal fibrosis [26]. In fibroblast cells, arecoline 
increased collagen expression by 1.5-fold [27], and 
this might result from elevating TIMP-1 and 
inhibiting gelatinase A activity [28]. Other areca nut 
components, such as flavonoids, catechins and 
tannins, facilitate the crosslinking of collagen fibers, 
resulting a decreased susceptibility to collagenase 
[29]. Increases in transforming growth factor β1 
(TGF-β1) during areca nut-induced oral submucosal 
fibrosis has also been observed in many studies [10, 
23, 30]. In the condition of submucous fibrosis, TGF-β 
plays a critical role in regulating the degradation of 
the extracellular matrix, including collagen [31]. 
Consistently, it has been shown that arecoline 
augments collagen levels through the TGF-β pathway 
in keratinocytes [32]. In summary, the areca nut 
promotes oral fibrosis by increasing collagen 
production, which may occur by various mechanisms, 
including reduction of degradation by proteinase and 
activation of the TGF-β regulatory pathway.  

The malignant transformation from oral 
submucosal fibrosis to squamous carcinoma involves 
multifactorial mechanisms. These include 
inflammation, genotoxicity, cytotoxicity, autophagy, 
tissue hypoxia, and epithelial-mesenchymal transition 
(EMT), as discussed respectively in the following 
sections. 

2.3 Chewing areca nuts increases ROS levels 
and induces inflammation 

Reactive oxygen species (ROS) are chemically 
reactive chemical species containing oxygen that can 
be generated during mitochondrial oxidative 
metabolism.  

Under environmental stress, cellular ROS levels 
can become dramatically elevated and directly cause 
significant damage to cell structures at DNA, protein, 
or lipid levels [33]. Many studies have demonstrated 
that areca nuts can stimulate cellular ROS levels [34]. 
The mechanisms include the enhancement of ROS 
generation by mitochondrial metabolizing enzymes, 
such as cytochrome P450s (CYPs) [35], by the NADPH 
oxidase enzymes NOX-1 and NOX-4 [36], and the 
inhibition of antioxidant systems by the suppression 
of superoxide dismutase activities [37, 38].  

The induction of ROS by areca nut extract has 
been further shown to act as a molecular signal to 
elicit redox-related inflammation or signaling 
pathways in many types of cells. For example, in 
endothelial cells, arecoline stimulates ROS production 
to suppress the expression of the cytoprotective 
enzyme hemeoxygenase-1 [39]. In lymphocytic cells, 
areca nut extract elicits oxidative stress and 

inflammatory responses and upregulates several 
cytokines, including NF-kB, Cox-2, PGE2, TGM2, and 
IL-1 [40]. Similarly, in fibroblasts and keratinocytes, 
areca nut extract or arecoline triggers ROS generation 
and induces tumor promoting mediators or oncogenic 
signaling pathways, including IL-6, TGF-b, EGFR, 
ERK and Ras [36, 41-43]. The different cytokines or 
signaling pathways in response to areca nut treatment 
may be cell type-specific. Clinically, the inflammation 
associated cells are increased in the surrounding 
tissues of oral submucosal fibrosis and oral cancers in 
the patients from areca nut chewing prevalent area 
[44]. In summary, areca nut extract may increase ROS 
levels, which facilitate cellular inflammation and 
tumor progression via multiple molecular regulators. 

2.4 Areca nuts may elicit genotoxicity, growth 
arrest, and apoptosis 

Many studies have demonstrated that areca nut 
extract exerts multiple cellular effects. Genotoxicity 
can be caused by areca nut exposure. The alkaloids of 
the areca nut are the major contributing factors to 
genotoxicity [6]. In oral keratinocytes or epithelial 
cells, areca nut extract or arecoline can induce genetic 
damage, including hyperdiploid chromosomal 
changes [45-47]. These DNA damage effects are 
associated with the inhibition of DNA repair 
mechanism, such as impairing p53 function [46, 47]. In 
a mouse model study, arecadine increased the 
frequency of sister chromatid exchanges during 
mitosis [48]. In a transgenic mouse study, arecoline 
increased the frequency of mutations at DNA G:C 
sites in oral tissue cells [49]. These genotoxic results 
are consistent with clinical findings in betel quid 
chewers. In the oral mucosal cells, the levels of 
chromosome damage, such as cytokinesis-block 
micronucleus, chromatid breaks or DNA strand 
exchanges, are positively correlated with habitual 
areca nut chewing in oral cancer patients [50-52]. Note 
that these cytogenetic alterations are less frequently 
observed in oral cancer patients who chew tobacco 
[51, 52].  

Areca nuts may cause cytotoxicity in various 
types of human tissues and result in growth arrest, 
cellular senescence or apoptosis. In oral endothelial 
cells, arecoline induces G2/M cell cycle arrest and 
increases the sub-G0/G1 population, suggesting 
causal links among endothelial damage, vascularity 
reduction, and the pathogenesis of oral submucosal 
fibrosis [53, 54]. Similarly, in oral keratinocytes, 
epithelial cells, or neutrophils, areca nut ingredients 
or arecoline may contribute to G1/S cell cycle arrest, 
cellular senescence or apoptosis [37, 42, 55-59]. These 
effects may be caused by the activation of various 
signaling pathways, including Chk1/Chk2, 
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MEK/ERK or AKT associated pathways [42, 59]. The 
different cytotoxic effects and molecular pathways in 
response to areca nut stimulation may be dependent 
on specific cell types or the differential 
microenvironmental factors. In all, growth inhibition 
or cell suicide may be the optimal cellular defense 
mechanism to avoid further catastrophe of malignant 
transformation.  

2.5 Areca nuts may induce autophagy and 
inhibit tumor suppressors  

Although areca nut ingredients may lead to 
growth arrest and cell apoptosis, prolonged treatment 
with areca nut extract or arecoline may further 
facilitate malignant transformation. This is 
presumably via the induction of cellular autophagy or 
the inhibition of tumor suppressors. Autophagy is a 
process by which cells degrade unnecessary 
organelles and recycle intracellular proteins to ensure 
survival in adverse environments. Although 
autophagy may play dual roles in carcinogenesis, in 
most contexts, it promotes tumorigenesis [60]. The 
premalignant submucous fibrotic tissue or cancer cells 
may upregulate autophagy to survive 
microenvironmental stress and become more 
aggressive [4, 61]. Recent reports have shown that 
areca nut extract may induce autophagy via several 
pathways. For example, areca nut ingredients may be 
engulfed by oral cancer cells via clathrin-mediated 
endocytosis to initiate an autophagy program [62]. 
The other autophagy associated mechanisms, such as 
the LC3-II transition, Beclin-1 or Atg5 accumulation, 
and autophagosome formation, have also been 
demonstrated in oral cancer cells treated with areca 
nut extract [62-64]. The contribution of areca nut 
extract to autophagy may be explained by ROS 
generation or hypoxic condition in cancer cells, 
following the stimulation by various signaling 
pathways of PI3/AKT, MEK/ERK, AMPK/mTOR, or 
HIF-1α [63, 65-66]. Clinically, higher LC3 expression 
and poorer prognoses are found in advanced oral 
cancer patients who habitually chew areca nuts [66]. 

In addition to autophagy induction, areca nuts 
may inhibit tumor suppressor molecules to promote 
malignant transformation. It has been demonstrated 
that areca nut extract or arecoline may inhibit the 
expression of cell cycle checkpoint suppressors, 
including p53, p21, p27, and Ches1, which may enable 
cell cycle progression with error-prone DNA 
replication [46, 67, 68]. Clinical findings also support 
this concept. The reduced expression of the Ches1 
suppressor has been found in oral cancer patients 
with the areca nut chewing habit [67]. In summary, 
the areca nut may contribute to cellular 
transformation by activating cellular stress response 

mechanisms, such as ROS generation, autophagy 
formation, and tumor suppressor inhibition. 

2.6 Area nuts may induce tissue hypoxia to 
promote malignant transformation 

Hypoxia is a low oxygen stress condition in 
tissue microenvironment, giving rise to altered 
cellular metabolism and triggers various 
pathophysiological responses [69]. This condition 
may be associated with the cellular oxidative stress 
[65, 69], and induce anaerobic respiratory pathway via 
up-regulations of hypoxia inducing factor (HIF), 
glucose transporter (GLUT), or lactate dehydrogenase 
[70-72]. Currently, hypoxia has been shown as an 
important underlying factor to promote 
tumorigenesis and cancer progression. It may incite 
several cellular mechanisms including autophagy, 
angiogenesis, epithelial to mesenchymal transition, 
cancer stemness, and lead to therapeutic resistance 
[73-74]. For examples, in oral submucous fibrosis, the 
tissue hypoxia resulted from vascular construction 
may further facilitate malignant transformation 
[20-22, 71]. Tissue hypoxia may further trigger EMT 
process via up-regulation of several transcriptional 
factors, such as Snail and Twist1, to promote tumor 
progression [75-76]. In cancer cells, the induction of 
HIF-1α molecule in the adaptation of hypoxic 
condition may elite angiogenic pathway via 
up-regulation of vascular endothelial growth factor 
(VEGF) [77]. Hypoxic condition in tumor 
microenvironment may also lead to therapeutic 
resistance by activation of stemness associated 
pathways, including Oct3/4, Sox2, and AKT/Notch1 
molecular signals [78, 79]. 

The hypoxia inducing factor-1 (HIF-1) is a 
predominant regulatory molecule induced by 
hypoxia tissue and emerges to malignant function [72, 
73, 77]. Recent reports have shown that areca nut 
causative to oral malignancy may associate with the 
hypoxic condition through the induction of HIF-1. In 
either oral fibroblast or oral cancer cells, arecoline 
may increase HIF-1α gene expression with a 
dose-dependent manner [80, 81]. In oral cancer cells, 
treatment of areca nut extract may induce ROS 
generation and up-regulate HIF-1α, which may 
further lead to autophagy to benefit cell survival [65]. 
The prolong treatment of areca nut extract in oral 
cancer cells results to a stronger tolerance in hypoxic 
condition via acquisition of autophagy and leads to 
chemoresistance [82]. Consistently, under a stress 
condition, areca nut extract induced VEGF expression 
in oral cancer cells, suggesting the mechanism of areca 
nut contributes to angiogenesis and cancer metastasis 
[83]. Clinically, higher levels of HIF-1α and PAI-1 
have been found in the tissues of oral submucosa 



 Journal of Cancer 2019, Vol. 10 

 
http://www.jcancer.org 

4058 

fibrosis or oral cancer cells compared to the normal 
mucosa [81, 84]. In summary, areca nut may incite 
tissue hypoxia to promote malignant transformation 
via multiple mechanisms.   

2.7 Areca nuts may promote cell motility and 
epithelial–mesenchymal transition  

Cell motility is an important characteristic of the 
malignancy response for cancer invasion and 
metastasis. In cells, the matrix metalloproteinases 
(MMPs) constitute a family of proteinases that 
degrade the extracellular matrix to accelerate cellular 
motility and invasion, whereas the tissue inhibitors of 
the metalloproteinases (TIMP) counteract this 
enzymatic activity. The areca nut contributes to oral 
malignancy by promoting cell motility as well. It has 
been widely reported that treatment with areca nut 
extract or arecoline can increase cellular migration, 
invasion or anchorage-independent growth in oral 
cancer cells, normal epithelial cells and fibroblast cells 
[85-91]. This response may result from the elicitation 
of MMP activities, including MMP-1 [80, 91], MMP-2 
[81, 90], MMP-8 [85], and MMP-9 [59, 88, 89], and the 
suppression of TIMP functions [59, 92]. Multiple 
molecular signaling pathways, such as PI3K, p38 
MAPK, Erk1/2, and NF-kB may be involved in the 
modulation of MMP and TIMP expression [87, 88, 93] 
and may through the muscarinic M4 receptor [93]. 
Clinical findings support this cell motility mechanism. 
High levels of MMP-1 or MMP-9 are found in the 
cancer tissues or saliva specimen of oral cancer 
patients who chewed betel nuts [85, 86, 93]. 
Apparently, the areca nut promotes cell motility 
through MMP activation, although different MMP 
proteins may respond differentially in different 
individuals.  

The epithelial–mesenchymal transition (EMT) 
plays an important role in cell motility conversion 
leading to cancer aggressiveness [94-97]. The EMT 
confers tumor plasticity by transforming epithelial 
cells into spindle-like fibroblastic mesenchymal cells 
via functional loss of cell adhesion and the acquisition 
of migratory properties [94, 95]. This process involves 
disassembling cell-cell and cell-matrix junctions by 
downregulating epithelial markers (such as 
E-cadherin) and upregulating mesenchymal markers 
(such as N-cadherin) [94, 95]. It may be induced by 
several EMT/stemness associated transcription 
factors, allowing cells to gain stemness-related 
properties and create a pro-tumorigenic setting [96, 
97]. Recent studies show that areca nut extract may 
induce oral fibrogenesis and carcinogenesis through 
EMT process. In buccal mucosa fibroblasts, areca nut 
extract or arecoline induces fibroblast 
trans-differentiation, which may be mediated by EMT 

associated transcription factors ZEB1, Twist, and Slug 
[98-100]. This fibrotic activity was found 
accompanying with collagen gel contraction, increase 
of marker protein expression (α-SMA), and elevation 
of migration capability [99, 100]. Similarly, in gingival 
fibroblasts or epithelial cells, areca nut stimulates 
fibrotic activation, preassembly through induction of 
EMT process via TGF-β signaling pathways [23, 101, 
102]. Consistently, in either oral keratinocytes or 
cancer cells, areca nut facilitates EMT process, as 
shown by the increases of mesenchymal markers 
(N-cadherin, vimentin) and decreases of epithelial 
markers (E-cadherin, involucrin), via activating the 
PI3/AKT pathway [103, 104]. In oral epithelial or 
cancer cells, chronic or long-term treatment of areca 
nut extract facilitates mesenchymal 
trans-differentiation, along with the induction of 
multiple EMT associated transcription factors, 
including ZEB1, Snail, Slug, Twist, FOXC2, and Grp78 
[86, 105, 106]. Furthermore, a keratin family member, 
Krt-17, was found to be upregulated by areca nut 
extract to facilitate cell motility and malignant 
transformation via EMT conversion in a mouse model 
study [11]. Clinically, the expression of EMT 
associated factor Slug has been found up-regulated in 
oral fibroblastic tissues and associated with various 
myofibroblast markers, such as α-SMA [99, 100]. The 
loss of E-cadherin expression and augmentation of 
Krt-17 or EMT-associated transcription factors have 
also been shown to be significantly associated with 
oral cancer in patients who habitually chewed betel 
quid [11, 86, 107]. 

2.8 Areca nuts may facilitate 
chemo-radioresistance and cancer stemness 
conversion 

Chemotherapy and radiotherapy are integral 
parts of the treatment for oral cancer. However, local 
recurrence after radio-chemotherapy is a major cause 
of therapeutic failure. Although areca nuts may elicit 
genotoxicity leading to cell death, recent studies 
showed that chronic areca nut exposure may 
eventually result in chemo- and radio-resistance. In 
oral cancer cells or normal keratinocytes, long-term 
exposure to arecoline or areca nut extract resulted in 
higher tolerance to cisplatin or fluorouracil [82, 86, 
105]. This areca nut-induced drug resistance may be 
attributed to overexpression of the ABCG2 protein, a 
well-known drug efflux pump in cancer cells [86]. 
Consistent with these reports, oral cancer cells 
chronically exposed to areca nut extract exhibited 
greater resistance to irradiation [86]. This survival 
advantage is accompanied by the reduction of ROS 
production by the elevation of the scavenger enzymes 
GCLC and GCLM [86]. Similarly, in keratinocytes, 
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treatment with sublethal doses of arecoline 
upregulated the expression of multiple antioxidant 
enzymes, including G6PD, GCLC and glutathione 
reductase [108]. Clinically, the habitual use of areca 
nuts is an independent prognostic factor of poor 
survival of oral cancer patients receiving induction 
chemotherapy with docetaxel, cisplatin, or 
fluorouracil [8, 109]. The ERCC1 molecule, a critical 
DNA repair gene associated with chemoresistance, is 
up-regulated in oral cancer patients in the areca nut 
prevalent area [109]. Similarly, oral cancer patients 
who chew areca nuts habitually exhibit higher 
incidences of local recurrence [7]. Thus, chronic 
exposure to areca nuts facilitates 
chemo-radioresistance, which may due to the 
activation of cellular defense mechanisms to minimize 
the toxic damage in malignant transformed cells. 

A cancer stem cell (CSC) model has been recently 
proposed to explain tumor heterogeneity. These cells, 

although comprise a small fraction within a tumor, 
possess a strong malignant potential, with 
self-renewal ability, stress tolerance, and high 
mobility, which results in aggressive cancer 
phenotypes and resistance to chemo-radiotherapy 
[110-112]. These types of stem-like cells are often 
characterized by specific surface proteins, such as 
CD44, CD133 and ALDH1, in oral cancer tissues [86, 
113, 114]. Recent reports provide new insights that 
areca nuts may play a role in cancer stemness 
conversion. In oral cancer cells or normal 
keratinocytes, chronic areca nut exposure or 
long-term arecoline treatment facilitates the cancer 
stemness conversion. These were demonstrated by the 
enhanced spheroid cell formation and enriched 
subpopulations of CD24-/CD44+, CD133+, and 
ALDH1+ cells [86, 105]. Furthermore, these chronic 
areca nut exposures exerted a pluripotent effect to 
upregulate several stemness mediators, including 

 

 
Figure 1. Multifaceted mechanisms of areca nuts in oral carcinogenesis: the molecular pathology from precancerous lesions to malignant transformation. ROS: Reactive oxygen 
species. EMT: Epithelial–mesenchymal transition. 
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Grp78, Slug, Snail, Oct4, Nanog, and Sox2 [86, 105]. 
This phenomenon is confirmed in clinical 
investigations. Oral cancer patients who habitually 
chewed areca nuts exhibited high levels of stemness 
regulators, such as Grp78 and snail, which was 
correlated with worse prognoses [86, 115, 116]. 
Consistently, oral cancer patients who habitually 
chewed areca nuts possessed cancers with more 
aggressive attributes, including higher incidences of 
second primary tumors, microsatellite residual 
tumors, and poor survival; all of which are 
characteristic of cancers with stemness properties [7, 
117]. Thus, the areca nut contributes to malignancy by 
facilitating the conversion of CSCs via multiple 
stemness regulatory mechanisms. 

3. Conclusion 
In this review, we comprehensively discuss the 

underlying molecular and cellar mechanisms by 
which areca nuts contribute to malignant 
transformation. As summarized in Figure 1, the areca 
nut induces multiple cytotoxic effects, including 
inflammation, tissue hypoxia, DNA damage, 
autophagy, invasion, and chemo-radioresistance. 
These cellular effects are accompanied by numerous 
molecular alterations involving the production of 
reactive oxygen species, activation of various 
signaling pathways, promotion of epithelial- 
mesenchymal transition, and facilitation of cancer 
stemness conversion. Clinical findings support these 
adverse effects. Oral submucosal fibrosis is prevalent 
in the area with habitual chewing of areca nuts. The 
oral cancer patients who habitually chewed areca nuts 
exhibited more aggressive cancer phenotypes, with 
higher rates of cancer metastasis, recurrence, and poor 
patient survival. Thus, areca nuts contribute to oral 
carcinogenesis via multifaceted mechanisms. This 
review may provide critical information for the risk 
assessment, disease prevention, diagnosis, and 
personalized or molecular therapeutics for clinical 
applications in areca nut-induced oral malignancy. 
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