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Agent-based modeling: case study in cleavage 
furrow models
Alex Mogilner* and Angelika Manhart
Courant Institute and Department of Biology, New York University, New York, NY 10012

ABSTRACT  The number of studies in cell biology in which quantitative models accompany 
experiments has been growing steadily. Roughly, mathematical and computational tech-
niques of these models can be classified as “differential equation based” (DE) or “agent 
based” (AB). Recently AB models have started to outnumber DE models, but understanding 
of AB philosophy and methodology is much less widespread than familiarity with DE tech-
niques. Here we use the history of modeling a fundamental biological problem—positioning 
of the cleavage furrow in dividing cells—to explain how and why DE and AB models are used. 
We discuss differences, advantages, and shortcomings of these two approaches.

MATHEMATICAL AND COMPUTATIONAL MODELING 
IN CELL BIOLOGY
One of the main goals of cell biology is to understand how a cell 
works as a machine: where and how key proteins interact and 
achieve a desired function. It is no surprise, then, that an experimen-
tal article very often ends with a final figure that distills insights from 
results into a cartoon-like qualitative model—a mechanistic blue-
print depicting protein machinery at work. More often than not, this 
is all that is needed, but there are cases in which there is a clear 
question that requires a mathematical or computational model. 
There could be various incentives for modeling—for example, to 
make sure that the cartoon does not contradict the rules of physics 
and chemistry, or the cartoon could be so complex that mathemat-
ics rather than limited intuition is necessary to demonstrate that the 
protein machine works as hypothesized (Mogilner et al., 2006).

As experimental biology becomes more quantitative and com-
plex, the number of cases in which modeling accompanies experi-
mental studies grows. There are, however, many difficulties with 
using mathematics in biology. One of them is that modeling ap-
proaches have diversified so much recently that it is not easy to 
grasp how models work. If one looks at the greatest early successes 

of mathematical cell biology, it is hard to overlook two iconic exam-
ples: in the middle of the 20th century, Turing (1952) demonstrated 
mathematically that two chemicals, a slowly diffusing activator and 
a rapidly diffusing inhibitor, can generate spatially periodic patterns, 
which created a fundamental paradigm for morphogenesis. At 
around the same time, Hodgkin and Huxley (1952) showed numeri-
cally that a complex combination of ion fluxes through highly non-
linear voltage-gated channels can account for excitable electric 
pulses in nerve cell membrane.

These studies and hundreds of others used the powerful tech-
nique of differential equations (DEs), which goes back to Isaac New-
ton, who discovered that laws of mechanics can be expressed by 
relating rates of change of position and velocity (time derivatives) to 
position-dependent forces. Solutions of resulting ordinary differential 
equations (ODEs) turned out to be spectacularly effective in astron-
omy and physics. Later, Fourier proposed a diffusion equation—one 
of the most important partial differential equations (PDEs)—accord-
ing to which the rate of change of a concentration at a given point is 
proportional to the spatial derivative of the spatial gradient of this 
concentration. DEs proved to be highly successful in the natural sci-
ences and engineering. Indeed, Newton said that the laws of nature 
are written in the form of DEs, but he mostly meant physics.

DIFFERENTIAL EQUATIONS AND AGENT-BASED 
MODELS
Until recently, a majority of models in biology used DEs. The rea-
son is very simple: a great number of biological problems deal 
with many molecules that move randomly and/or directionally and 
engage in chemical reactions (Figure 1). Very often, one can rea-
sonably well describe the molecular ensemble by a continuous 
concentration/density function; the local rate of change of density 
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molecules would be simulated in parallel, giving us very complex 
spatial-temporal patterns (Figure 1 and Comparison of DE and AB 
Modeling).

The growing popularity of AB models is explained by many fac-
tors, one of which is that biological systems are, in fact, often char-
acterized by complex emergent behavior, almost impossible to in-
tuit, and based on simple interactions of a great number of molecular 
agents. Another reason is computers: relatively few DEs have ana-
lytical solutions. Turing, Hodgkin, and Huxley foresaw the para-
mount importance of computers for simulating complex sets of DEs 
that arise in biology. Advances in computing technology since then 
have made numerical solutions of DEs relatively easy and more re-
cently have made possible challenging simulations of AB systems, 
finally bringing modeling to the experimental lab. Here we review 
the history of modeling of cleavage furrow positioning in cytokinesis 
to illustrate and compare DE and AB models as clearly, simply, and 
concisely as possible at the expense of not discussing subtleties and 
not being comprehensive. Other reviews fill this gap (Bryson et al., 
2007; An et al., 2009; Holcombe et al., 2012).

MODELING CLEAVAGE FURROW POSITIONING
Cell division at the end of mitosis starts with a cleavage furrow de-
veloping at the cell equator. Physically, the furrow is due to the con-
traction of the actomyosin ring at the cell cortex. Many serendipi-
tous observations and ingenious micromanipulation experiments 
made over >100 years (Rappaport, 1961, 1971) have converged on 
four qualitative hypotheses-cartoons of the furrow positioning 
(Mishima, 2016; Figure 2A). Three of these models posit that the 

can be described by a sum of a diffusion term (second spatial de-
rivative of density, accounting for the random movements), a drift 
term (first spatial derivative of density, accounting for the direc-
tional movements), and an algebraic reaction term accounting for 
chemical reactions (Murray, 2002). A powerful analytical and nu-
merical apparatus was developed over centuries to solve and un-
derstand DEs, and the comparison of the model’s predictions with 
experiments is in principle straightforward: DE solutions for the 
density as functions of time and the spatial coordinates could be 
compared with microscopy data.

Recently DE models started to lose out to so-called agent-based 
(AB) models. These are computational models simulating actions 
and interactions of autonomous agents (either individual molecules 
or collective molecular ensembles). The key notion on which AB 
models are based is that multiple agents interact according to sim-
ple rules; these rules are easy to encode in a computer program, 
and interactions are easy to simulate. However, despite their sim-
plicity, these rules and interactions can generate complex emergent 
behavior.

To give an example of an AB model, one can consider the reac-
tion-drift-diffusion system (see Figure 1 and the section Comparison 
of DE and AB Modeling). Whereas a DE model would deal with 
solving PDEs describing molecular density, an AB model would start 
with describing rules of behavior of individual molecules: at each 
small time interval, a molecule jumps randomly in space due to dif-
fusion, shifts directionally due to drift, and, with a certain probability 
depending on the proximity of other molecules, disappears or 
appears or turns into another molecule. Then a great number of 

FIGURE 1:  Comparison of DE and AB modeling. See the text for explanations.
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plus ends at the cortex from two spindle as-
ters in a spherical cell. In their simulations, 
the spindle was symmetrically positioned in 
the cell, and the MTs were stable and 
straight, stretching from the centrosome to 
the cortex. The strength of the signal from 
an individual MT was taken as proportional 
to an inverse power of the MT length (signal 
weakens with either centrosome–cortex dis-
tance, with MT splaying apart, or both). This 
study found that the maximal signal is at the 
poles, and therefore the polar relaxation 
mechanism is more likely.

However, the polar relaxation model has 
been shown to predict incorrectly the ef-
fects on cytokinesis of at least 15 experi-
mental modifications of cellular shape 
(Devore et al., 1989). For example, if the cell 
is an elongated cylinder with a small spindle 
in the middle, then clearly very little signal 
would be delivered to the cell poles. Ac-
cording to the polar relaxation model, this 
would imply furrows forming at the poles, 
in contradiction with experimental results. 
Devore et al. (1989) therefore proposed the 
following modification based on visual ex-
aminations of spindle micrographs: there is 
a conical region for each aster in the middle 
of the spindle where the MTs do not grow, 
perhaps because they bump into the large 
structures of the opposite aster and destabi-
lize (Figure 2B). In addition to this geometric 
assumption, Devore et  al. (1989) assumed 
that signaling molecules drift with a con-
stant flux to the MT plus ends, detach from 
the plus ends near the cortex, diffuse, and 
are spontaneously degraded in the cyto-

plasm (Figure 2B). Then they translated these assumptions into a 
reaction-diffusion-drift PDE and solved this PDE numerically. The 
solutions of the PDE in such geometry predicted that the signal 
maximum at the poles of the spherical cell is only local; the global 
signal maxima are achieved at the equator (Figure 2B), leading the 
authors to conclude that the astral stimulation model accounts for 
the experimental data, whereas the data falsify the polar relaxation 
model. This and another modeling study (Harris and Harris, 1989) 
scanned a number of cell geometries and key model parameters 
(i.e., the angle θ defining the MT-void sector in the spindle and the 
inverse power of the length dependence for the signal), lending ad-
ditional support to the astral stimulation model. Another, later 
model (Yoshigaki, 2003) added the central spindle hypothesis and 
tested all three mitotic apparatus–dependent models in the unified 
DE-based framework.

Subsequent experimental studies, inspired in no small part by 
these modeling efforts, led to the discovery of molecular pathways 
causing the activation of cortex contractility. These pathways in-
clude, but are not limited to, centralspindlin, a complex consisting 
of a kinesin-type molecular motor delivering the signal to the MT 
plus ends, and a Rho-family GTPase-activating protein triggering 
reactions resulting in actomyosin assembly and contraction (for a 
comprehensive review, see D’Avino et al., 2005; Mishima, 2016). It 
would seem that the discovery of centralspindlin supports only the 
cortex activation models, that is, the astral stimulation and central 

mitotic spindle activates, in a spatially precise way, the onset of the 
actomyosin ring assembly and contraction. The “astral stimulation 
model” (Rappaport, 1961) posits that astral microtubules (MTs) de-
liver a molecular activator to the cell actomyosin cortex; due to the 
overlap of the MT asters from the two sister centrosomes, the num-
ber of astral MTs at the cortex might peak at the equator, causing 
the furrow to form there. The “polar relaxation model” (Wolpert, 
1960; White and Borisy, 1983), in contrast, proposes that the spindle 
restricts furrowing to the cell equator by means of the MT asters in-
hibiting cortical contractility at the cell poles. The “central spindle 
model” suggests that a molecular activator is delivered to the equa-
tor from a special bundle of MTs developing in the spindle midzone 
in anaphase. Finally, the “mitotic apparatus–independent model” 
hypothesizes that a mechanochemical pattern self-organizes in the 
cortex without the spindle as a central governor and positions the 
furrow to certain molecular cues in this pattern.

A very clear quantitative question asking for mathematical mod-
eling is immediately apparent when one looks at the cartoons of the 
astral stimulation and polar relaxation models: given certain geom-
etries of the spindle MT asters and cell shape, would more signal be 
delivered to the equatorial or polar regions of the cortex? The for-
mer or latter could then be used as an argument in favor of the astral 
stimulation or polar relaxation model, respectively. This question 
prodded a few insightful DE modeling articles in the 1980s. White 
and Borisy (1983) computed the surface density of the astral MT 

FIGURE 2:  (A) Four qualitative models of the furrow positioning. (B) Top, detailed astral 
stimulation model (Devore et al., 1989); bottom, predicted distribution of the signaling molecule 
in the cell (modified from Devore et al., 1989). (C) Snapshot from AB simulations in Odell and 
Foe (2008). MTs are green, centrosomes are red, and white dots show centralspindlin. Density 
plots surrounding the spherical cell show various averaged densities of centralspindlin (taken 
from Figure 1B in Odell and Foe, 2008).
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two daughter cells? A DE model gave a negative answer because 
the saddle-like curvature of the deepening furrow at the cell equator 
attenuates the effective force of scission. Note that such a DE model 
requires simulating mechanics equations, the physics of which is 
based on force balances (Danuser et al., 2013). Mathematical forms 
of both force balance equations and reaction-diffusion-drift equa-
tions that we discussed earlier are very similar. Note also that other 
examples of AB modeling are the very useful (and very computa-
tionally expensive) molecular dynamics simulations based on solv-
ing mechanics equations describing molecules interacting with each 
other through realistic physical forces in aqueous media.

White and Borisy (1983) then realized that full cell division can be 
explained if contractile elements are pulled into the cell equator by 
the actin flow and align along the equator. Later, much more sophis-
ticated DE models were able to mimic the mechanics of cell division 
with even greater precision (He and Dembo, 1997; Poirier et  al., 
2012). Recently a detailed DE model of the actin cortex that in-
cludes signaling dynamics of Rho GTPases governing the cortical 
mechanics predicted highly nontrivial oscillatory excitable behavior 
at the onset of cytokinesis, which was confirmed experimentally 
(Bement et al., 2015). Not only DE models proved to be useful to 
describe the mechanics of cytokinesis: an AB model (Vavylonis 
et al., 2008) answered another fundamental question—how does a 
contractile structure self-assemble from a disordered array of actin 
and myosin filaments? This question asks for an AB modeling ap-
proach because the nature of this self-assembly is microscopic and 
random, involving a relatively small number of discrete agents char-
acterized not only by positions but also by orientations and lengths. 
The emergent pattern formation, based on the coalescence of ran-
dom search-and-capture–driven actin–myosin contractile units, is 
too complex to intuit and too multidimensional, heterogeneous, 
and noisy to be described by PDEs.

HOW TO CHOOSE BETWEEN DE AND AB MODELS
Consideration of two modeling studies described earlier (Devore 
et al., 1989; Odell and Foe, 2008), both of them unquestionable but 
not absolute modeling successes, illustrates how to choose be-
tween two model types. Devore et al. (1989) wanted to explore a 
conceptual rather than detailed model because molecular pathways 
of stimulating the furrow were not known at the time. Therefore the 
number of molecular species was minimal, explored geometries 
and dynamics were simple, and the resulting PDE were easily solv-
able numerically even at the time when computer simulations were 
much less routine. Perhaps the greatest advantage of the resulting 
model was the ease of scanning the parameter space. This said, 
their DE model was based on the unexamined approximation—that 
discreteness and randomness of the finite number of MTs, which are 
significantly splayed apart near the cell cortex, do not affect the 
continuous deterministic result. In addition, another assumption, 
that the signal delivered by MTs decreases as MT inverse length in 
some power, was relatively drastic and not supported by explicit 
modeling. If this study was done now, it would be a good idea to 
complement the DE model with the AB model to see how good the 
approximations that stem from these two assumptions are. The 
most desirable practice is to combine a more conceptual DE model 
with more detailed AB model, although this is not always possible, 
not to mention very laborious.

Odell and Foe (2008) made the decision to use AB modeling 
mainly because MT dynamic instability was hypothesized to be of 
primary importance for the astral stimulation mechanism and they 
wanted to develop a detailed model with a great number of pro-
cesses with known or hypothesized rates included and they wanted 

spindle models. However, some studies, most prominently that of 
Canman et  al. (2003), indicated that MTs have simultaneously 
opposite effects: stable MTs boost, but dynamically unstable MTs 
suppress, cortical activation. How could that be? Again, one of the 
ways to answer this question is by the use of modeling.

This question was addressed by Odell and Foe (2008) by means 
of AB modeling. They hypothesized that there are two effects. 
1) There is an indirect cortical relaxation effect, because centralspin-
dlin binds to and walks along all MTs but rarely reaches the cortex 
on dynamically unstable MTs because they continually depolymer-
ize before centralspindlin arrives. Dynamically unstable MTs thus 
sequester centralspindlin away from the cortex, suppressing acto-
myosin activation globally. 2) Some astral MTs, aimed primarily 
toward the cell equator, stabilize during anaphase and thereby be-
come effective rails along which centralspindlin reaches the 
equatorial cortex. To simulate this scenario, a few hundred thousand 
agents were used: hundreds of MTs, each consisting of hundreds of 
polymer segments, thousands of centralspindlin complexes drifting 
on MTs and diffusing in the cytoplasm, and so on—even yolk parti-
cles to account for the excluded volume of the cytoplasm. Tens of 
microscopic processes were simulated, including transport and dif-
fusion of centralspindlin, repeated growth and shrinking of MTs, 
nucleotide exchange on tubulin subunits governing MT dynamic 
instability, elastic bending of MTs, and much more. Massive simula-
tions taking tens of hours on a powerful computer cluster resulted in 
stunning snapshots (Figure 2C).

Of interest, the authors failed to find a reasonable combination 
of parameter values for which these two effects caused a significant 
buildup of centralspindlin at the equator. This is because diffusion 
scattered centralspindlin as soon as the motors walked off the MT 
tips. Therefore the authors posited a third hypothesis: upon reach-
ing the MT plus end, centralspindlin does not walk off but stalls at 
the tip. Simulation of the altered model achieved the desired result. 
The complex behavior captured by this model brings to mind a col-
orful analogy made by the grandfather of cytokinesis research, Ray 
Rappaport, who said that cytokinesis is not a beautifully made, finely 
adjusted Swiss watch, but rather an old Maine fishing boat engine: 
overbuilt, inefficient, yet never failing.

Before we start to compare DE and AB modeling in general, let 
us mention briefly that after we understand better how the spindle 
positions the furrow, the next question is how the spindle itself is 
positioned. Many studies, including modeling ones, have been de-
voted to this question, culminating recently in a combination of mi-
croscopy, micromanipulation, and AB modeling approaches that 
resulted in a model according to which dynein motors distributed 
both on the cell cortex and cytoplasmic scaffold pull on the astral 
MTs, creating a force balance that positions the spindle (Minc et al., 
2011). In addition, the fourth model, cortex self-polarization, has 
recently attracted quantitative modelers. Using reaction-drift-diffu-
sion PDE systems to describe the dynamic densities of cytoskeletal 
and PAR proteins, they have found combinations of nonlinearities in 
the reaction terms and key feedbacks that could support self-polar-
ization (Dawes and Munro, 2011; Goehring et al., 2011), conceptu-
ally similar to the Turing mechanism.

Finally, there are fundamental questions about the assembly and 
mechanics of the contractile actomyosin cortex; in this case, too, 
modeling offers insight and possible answers. One of the earliest of 
these questions was asked by White and Borisy (1983): if there is an 
initial uniform distribution of elastic contractile elements around the 
cortex of the cell with high hydrostatic pressure inside and then the 
contractility is relaxed at the poles, would the model predict the 
observed sequence of cytokinetic cell shapes from one spherical to 
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questions are pondered can we start deciding on the method and 
type of the model.

COMPARISON OF DE AND AB MODELING (FIGURE 1)
I. Biology: Both AB and DE modeling start with formulating a hy-
potheses about the key players involved in the process in question. 
Each agent (e.g., protein, molecule, organelle, cell) interacts with 
other agents and/or the environment. Typical examples are bio-
chemical (signaling, binding/unbinding) and physical (e.g., elastic 
collisions or excluded-volume effects) interactions. These interac-
tions can change the position (transport effects of diffusion and di-
rectional drift) or the nature of the agent (chemical reactions). The 
model more often than not includes stochastic effects, reflecting 
variabilities in size, speed, or other properties of the agents, and 
random movements.

II. Model: A typical AB model consists of a large system of equa-
tions simultaneously updating positions and chemical states of each 
agent. Here (Figure 1, AB-Model), we show one such equation 
(Langevin equation in this case, but many other types of equations, 
or even equation-less particle rules, are often used), which updates 
the position of the ith agent in small time increments due to its sto-
chastic Brownian motion (first line) and due to deterministic direc-
tional shifts as the result of interactions with all other agents (second 
line). For simplicity, we do not show reaction terms here. To translate 
the biological problem into a DE model, a continuous function de-
scribing the density of the agents has to be introduced, and reac-
tion, drift, and diffusion terms containing partial derivatives of the 
density have to be derived. Many explicit and hidden approxima-
tions go into such derivations. In the model shown here (Figure 1, 
DE-Model), we exhibit the diffusion term and the term responsible 
for the drift and the reactions.

III. Results: AB models can be explored by performing many 
simulations using either available software or custom-made coding. 
Typical approaches include Monte Carlo or Gillespie algorithm sim-
ulation, in which many (often costly) simulation rounds are necessary 
to determine the mean behavior of the system. An advantage, how-
ever, is that one also gains knowledge about the variability of certain 
quantities (e.g., as depicted in Figure 1, AB-Model Results, the 
mean density of an agent).

Each problem at hand comes with a set of parameters (such as 
particle speed, reaction rates), and the system’s overall behavior 
might depend crucially on them. In Figure 1, we show aggregation 
and uniform distribution as examples of possible behaviors. For AB 
models, it is usually impossible to explore the whole parameter 
space (not only because of the computational cost), and therefore 
there is always a risk that a set in parameter space and the corre-
sponding behavior are missed (compare AB and DE results in 
Figure 1). In other words, AB models rarely allow a full understand-
ing of the system.

For DE models, on the other hand, the existing toolboxes in-
clude both analytical and numerical methods. In rare cases, analyti-
cal solutions for mean values can be obtained. Sometime a com-
plete phase diagram—dependence of all possible patterns and 
behaviors of the system on the whole set of parameters—can be 
deduced (Figure 1, DE-Model Results). All this, however, can be 
done only for relatively simple DE models relying on assumptions 
that are sometimes hard to verify and on gross approximations.

IV. Note: Even though many of the mathematical models used in 
biology are AB or DE based, there of course exist combinations of 
those two approaches, as well as models employing other tech-
niques. Examples include models using recurrence relations, graph 
theory, or integral and integrodifferential equations. In connection 

to exclude approximations of truly random processes with deter-
ministic ones. However, assuming a great number of MTs, one could 
easily investigate a DE model with MT dynamic instability accounted 
for by analytical expression for average MT density. Comparing pre-
dictions of such a simplified DE model with the full AB model would 
be very informative. Ultimately, the most important aspect one has 
to think about is what not to include into the model. For example, in 
the study of Odell and Foe (2008), one cannot help but wonder 
whether simulating MT elasticity and steric interactions, which con-
sumed most of the computational time, was really necessary. With-
out those features, the model’s parameter space probably could 
have been explored better. These two studies illustrate that the 
choice between the modeling types is nontrivial and not 
unambiguous.

SUMMARY: ADVANTAGES AND SHORTCOMINGS OF DE 
AND AB MODELS
AB models are gaining popularity and for a number of reasons will 
likely become the dominant modeling tool in the future: one reason 
is that AB models are often considered to be in silico reconstitutions 
of biological systems because, if sophisticated enough, such mod-
els produce a life-like simulation of the cellular subsystem. The AB 
model allows computer experiments with in silico systems with an 
exquisite control of all parameters and ease of simulating biochemi-
cally or genetically perturbed systems. Because biological systems 
do actually consist of a large number of agents whose simple inter-
action rules produce mind-bogglingly complex behavior, the AB 
philosophy is very close to biology, and thus, often fewer approxi-
mations have to be made to build an AB model. An AB model is 
often much simpler than a DE model, especially in cases in which 
complex geometries, a high number of dimensions (including, be-
sides spatial dimensions, distributions in angle and size), heteroge-
neity and anisotropy, and a great number of types of agents are in-
volved. In addition, AB models capture stochastic effects more 
naturally than stochastic DE models. When a biological system con-
sists of few discrete objects, the continuous approximation required 
for a DE model is not faithful. Last but not least, computer-savvy and 
quantitative-minded biologists can do AB modeling without the 
need to study mathematics.

However, of course, a number of catches ensure that DE models 
will never cease to be useful. The main problem with AB models is 
that it is often much harder than with DE models to get a qualitative 
insight: in silico systems tend to become too complex; in a way, we 
get interesting results but can only guess how the assumptions led 
to them. Fewer methods and software exist for AB models. Some 
artifacts are inherent to some types of AB models; for example, 
there are artificial oscillatory solutions in Boolean models and differ-
ence equations that do not correspond to reality. There are no ana-
lytical solutions to AB models, no benchmark cases. Usually, multi-
ple simulations and vast and nontrivial statistics are necessary to 
extract meaningful insight from an AB model. It is usually hard to 
explore parameter space with AB models. Last but not least, AB 
modeling is hard to teach; unlike DEs, to which many textbooks are 
devoted, descriptions of AB modeling tools are scattered and not 
systematized.

All these minuses do not negate the pluses of thoughtful AB 
modeling. Many questions have to be considered before embarking 
on the hard modeling journey: Is modeling needed for this study at 
all (what is the question to be answered by it)? Do we honestly list 
and examine all assumptions and simplifications? Do we really look 
for a prediction, even if it contradicts the data, or are we subcon-
sciously trying to confirm our preconceptions? Only when these 
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with models for swarming and collective motion, the Vicsek model 
(Vicsek et al., 1995), a minimalistic AB model, has been used as a 
starting point for derivations of macroscopic, DE models (e.g., 
Degond and Motsch, 2008). Systematically deriving such continu-
ous models from their microscopic counterparts is very meaningful 
because it allows harvesting the advantages of both approaches.
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