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Social feedback can selectively enhance learning in diverse domains. Relevant neurocognitive mechanisms have
been studied mainly in healthy persons, yielding correlational findings. Neurodegenerative lesion models, coupled
with multimodal brain measures, can complement standard approaches by revealing direct multidimensional cor-
relates of the phenomenon.
To this end, we assessed socially reinforced and non-socially reinforced learning in 40 healthy participants as well
as persons with behavioural variant frontotemporal dementia (n = 21), Parkinson’s disease (n = 31) and Alzheimer’s
disease (n = 20). These conditions are typified by predominant deficits in social cognition, feedback-based learning
and associative learning, respectively, although all three domains may be partly compromised in the other condi-
tions. We combined a validated behavioural task with ongoing EEG signatures of implicit learning (medial frontal
negativity) and offline MRI measures (voxel-based morphometry).
In healthy participants, learning was facilitated by social feedback relative to non-social feedback. In comparison
with controls, this effect was specifically impaired in behavioural variant frontotemporal dementia and
Parkinson’s disease, while unspecific learning deficits (across social and non-social conditions) were observed in
Alzheimer’s disease. EEG results showed increased medial frontal negativity in healthy controls during social feed-
back and learning. Such a modulation was selectively disrupted in behavioural variant frontotemporal dementia.
Neuroanatomical results revealed extended temporo-parietal and fronto-limbic correlates of socially reinforced
learning, with specific temporo-parietal associations in behavioural variant frontotemporal dementia and predom-
inantly fronto-limbic regions in Alzheimer’s disease. In contrast, non-socially reinforced learning was consistently
linked to medial temporal/hippocampal regions. No associations with cortical volume were found in Parkinson’s
disease. Results are consistent with core social deficits in behavioural variant frontotemporal dementia, subtle dis-
ruptions in ongoing feedback-mechanisms and social processes in Parkinson’s disease and generalized learning
alterations in Alzheimer’s disease. This multimodal approach highlights the impact of different neurodegenerative
profiles on learning and social feedback.
Our findings inform a promising theoretical and clinical agenda in the fields of social learning, socially reinforced
learning and neurodegeneration.
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Introduction
Social reinforcement is a powerful facilitator of learning,1–4 especially
relative to non-social feedback.5–10 Contextual interpersonal cues like
facial emotional expressions11,12 promote associative learning10,13 by
engaging emotional arousal and reward/punishment mechanisms.14–

16 According to the social-context network model, these integrative
processes implicate a broad fronto-insulo-temporal network,17–22 with
socially reinforced learning (SRL) depending critically on temporo-par-
ietal hubs and secondarily on fronto-limbic hubs, both related to con-
text-target associative learning and social cognition.20,21,23–27 However,
most evidence comes from healthy individuals, offering limited (cor-
relational) information to identify critical neural signatures. The neu-
rodegenerative lesion model approach partially overcomes these
limitations by revealing direct links between affected brain mecha-
nisms and behavioural performance.28–32 Yet, while some works have
examined social versus non-social learning in neurodegenerative dis-
eases (Table 1),33,34 and others have addressed SRL through neuro-
physiological methods,25,26,35 no study has integrated both
approaches—let alone with a multimodal framework. Here, we exam-
ined behavioural, EEG and structural neuroimaging correlates of an
SRL paradigm in healthy controls as well as patients with behavioural
variant frontotemporal dementia (bvFTD), Parkinson’s disease and
Alzheimer’s disease, typified by predominant deficits in social cogni-
tion, feedback-based learning and associative learning, respectively.

Preliminary psychophysiological evidence (behavioural and EEG
studies) points to different patterns of disturbance across

neurodegenerative subtypes. In bvFTD, impaired processing of so-
cially relevant information36,37 is particularly evident in associative
learning tasks.33,36 Such deficits have been linked to disruptions of
social reward processing36,38 and contextual integration skills.18,39,40

In Parkinson’s disease, although impaired feedback-based learning
has been reported,41–43 no study has compared performance in
social and non-social feedback conditions, despite reported socioe-
motional disturbances in this disease.44–46 In Alzheimer’s disease,
although socioemotional functions usually remain partially intact
in mild–moderate stages,47,48 facial cues do not enhance associative
learning33,36 (but see Duff et al.34). Altogether, beyond reported over-
lapping disruptions in memory and social cognition domains across
neurodegenerative conditions,47,49–51 behavioural evidence points
to predominately sociocontextual learning impairments in bvFTD,
implicit learning and socioemotional disturbances in Parkinson’s
disease and general learning deficits in Alzheimer’s disease. Finally,
EEG evidence of SRL is limited in neurodegenerative conditions.
While social processing impairments have been related to dimin-
ished frontal EEG activity in bvFTD,40 no previous work has associ-
ated SRL with ongoing EEG activity in other neurodegenerative
diseases.

Neuroimaging evidence of SRL is also scant. In bvFTD, social
learning impairments have been related to orbitofrontal and
temporal grey matter atrophy.36 With regards to Parkinson’s dis-
ease, although a link between feedback-based learning impair-
ments and cortico-striatal dysfunctions has been assumed,41,43

no previous work has directly examined structural associations
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with SRL in this group. Finally, in Alzheimer’s disease, disrupted
social enhancement in associative learning has been related to
medial temporal and parietal atrophy.6,36,52

Although social and feedback-based learning have been separ-
ately assessed in bvFTD, Parkinson’s disease and Alzheimer’s dis-
ease (Table 1), no previous work has jointly addressed SRL in
neurodegenerative models that differentially impact social cogni-
tion, feedback-based learning and general associative learning. To
our knowledge, this is the first feedback-based associative learning
study combining social and non-social cues in neurodegeneration.
Moreover, no previous work has targeted SRL/non-socially rein-
forced learning (NSRL) while tracking ongoing EEG correlates in dif-
ferent neurodegenerative groups—let alone in a multidimensional
approach combining behavioural, EEG and neuroimaging.

Our approach enables the joint assessment of feedback-related
mechanisms across behavioural, neurophysiological and neuro-
anatomical dimensions. We adapted an associative learning para-
digm, previously reported with healthy participants,10 that
evaluates how social and non-social feedback impacts implicit
learning of an arbitrary association between two stimulus types.
Specifically, the task requires participants to judge the category
membership (‘A’ or ‘B’) of repeatedly presented three-digit num-
bers, and learn (across different cycles) the correct association
upon receiving feedback via socioemotional facial expressions
(SRL) or coloured circles (NSRL) after each number–category judge-
ment. Learning is indexed by increased accuracy and/or response
time across cycles. High-density EEG allowed tracking ongoing
markers of feedback-based learning via medial frontal negativity
(MFN) modulations,53–55 a group of event-related potentials (error-
related negativity, feedback-related negativity and N2) sensitive to
cognitive demands and strategic on-the-fly adjustments.54,55

Specifically, larger MFN is predictive of enhanced learning by feed-
back.53,56,57 Moreover, MRI recordings were obtained offline to in-
vestigate neuroanatomical correlates of SRL.

In healthy controls, we predicted enhanced performance
across the task (final 4 initial trials), with better performance
after social relative to non-social feedback (SRL 4 NSRL).10,13

Similarly, we expected that both effects would be associated
with larger MFN.53,56–58 Also, in line with the social-context net-
work model, we predicted that SRL performance would be
related with extended temporo-posterior (and, to a lesser de-
gree, frontal) regions involved in sociocontextual processing and
learning.20,21,24,25 Conversely, we anticipated that NSRL would
be associated with regions underpinning associative learning
(i.e. hippocampal and medial temporal lobe structures).6,59

Furthermore, in comparison with controls, distinct SRL disrup-
tions were predicted for each neurodegenerative group. In bvFTD,
due to its well-known social processing impairments, we expected
reduced social-feedback facilitation on behavioural performance,
alongside diminished MFN modulations for SRL relative to NSRL,
as well as brain–behaviour associations across temporo-posterior
regions in (impaired) SRL and hippocampal regions in (preserved)
NSRL. In Parkinson’s disease, considering prominent feedback-
related learning and socioemotional disturbances, we predicted
behavioural SRL deficits and impaired MFN modulations during
final trials. Regarding Alzheimer’s disease, we hypothesized be-
havioural impairments in both feedback conditions (SRL and
NSRL), along with diminished MFN modulations during final trials
(in contrast to healthy controls), resembling generalized learning
deficits, associated with temporo-posterior atrophy. By jointly
testing these hypotheses, we aim to provide convergent multi-
modal evidence of SRL disruptions across neurodegenerative
diseases.

Materials and methods
Participants

The study comprised 112 participants: 40 healthy controls with
preserved cognition and no history of neuropsychiatric diseases
and/or substance abuse; 21 individuals fulfilling revised criteria for
bvFTD60; 31 patients with Parkinson’s disease diagnosed in accord-
ance with the United Kingdom Parkinson’s Disease Society Brain
Bank criteria61; and 20 patients with Alzheimer’s disease, each ful-
filling the international National Institute of Neurological and
Communicative Disorders and Stroke–Alzheimer’s Disease and
Related Disorders Association (NINCDS-ARDA) criteria.62,63 Power
analyses confirmed the adequacy of our sample size
(Supplementary material). Participants were recruited from three
international clinics taking part in the Multi-Partner Consortium
to Expand Dementia Research in Latin America (ReDLat)64,65 and
assessed following harmonized procedures64,65 as in previous
works.32,40,66–70 Clinical diagnoses were established by neurodege-
nerative disease experts through an extensive neurological, neuro-
psychiatric and neuropsychological examination comprising
semistructured interviews and standardized cognitive and func-
tional assessments (Table 2 and Supplementary material). All par-
ticipants with neurodegenerative conditions were in early/mild
stages of the disease and did not fulfil criteria for other neurologic-
al disorders or specific psychiatric conditions; neither did they pre-
sent primary language deficits or a history of substance abuse.
Participants with bvFTD were functionally impaired and exhibited
prominent changes in personality and social behaviour, as verified
by caregivers. Participants with Parkinson’s disease were medi-
cated with antiparkinsonian therapy and evaluated during ‘on’
phase. Participants with Alzheimer’s disease were also functional-
ly impaired, as verified by caregivers. Each neurodegenerative
sample was comparable in sex, age and years of formal education
with healthy controls. The only significant difference in sex be-
tween bvFTD and healthy controls (Table 2) was controlled in all
subsequent analyses. Finally, whole-brain grey matter was com-
pared between each neurodegenerative group and healthy con-
trols, showing a predominantly orbitofronto-cingulate-temporal
atrophy in bvFTD,18,71,72 no atrophy in Parkinson’s disease73–75 and
extended bilateral temporal with less extended fronto-parietal at-
rophy in Alzheimer’s disease76–78 (Supplementary Fig. 1 and
Supplementary material). The institutional ethics committee of
each recruitment centre approved the study protocol. All partici-
pants provided signed informed consent in accordance with the
Declaration of Helsinki.

Experimental protocol

All participants completed a multimodal assessment protocol
including a behavioural SRL assessment, ongoing high-density
EEG recordings and an MRI session.

Behavioural data: socially reinforced learning task

We adapted an SRL task validated in a behavioural study with
healthy persons.10 By pressing predefined keys, participants were
asked to judge the category membership ‘A’ or ‘B’ of three-digit
numbers presented repeatedly across six cycles on a computer
screen. Visual feedback immediately followed each number–cat-
egory judgement (Fig. 1A). Participants were informed that there
was no underlying rule defining the category membership of each
number. Knowledge of the correct or incorrect outcome of previous
category judgements for a particular number served to enhance
performance over subsequent cycles. The task comprised two
feedback conditions. In the SRL condition, socioemotional
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feedback was given a single face with one smiling and one angry
expression for correct and incorrect responses, respectively.10 The
faces’ gender matched the participant’s gender. In the NSRL condi-
tion, feedback was given via green and red circles displayed for
correct and incorrect responses, respectively. At the end of the ex-
periment, participants were explicitly asked about the valence of
each feedback type (Table 3). All groups presented adequate com-
prehension of these two factors (with no significant differences;
for details see Supplementary material). Each trial consisted of an
initial stimulus (a three-digit number) presented in white colour
over a black background for 1500 ms, followed by a black screen
(1000 ms) and then by categories’ options (‘A’ and ‘B’) positioned to
the left and right of the screen over left/right arrows, respectively.
Participants had to respond by choosing a letter through the corre-
sponding computer keyboard arrows with their dominant hand.
Afterwards, another black screen was shown for a random period
(between 2000 and 2500 ms). Finally, social or non-social feedback
was provided for 1000 ms. Instructions and a set of two practice tri-
als were presented before each block. The order of SRL/NSRL
blocks alternated, with the first being social for half of the partici-
pants. Categories A or B were counterbalanced in a pseudorandom
design across blocks. In total, participants completed six blocks
(three SRL, three NSRL). Four different three-digit numbers (four
trials) were repeated across six cycles per block. In total, 24 differ-
ent numerical stimuli and 144 trials were run per subject. The
number of trials did not change according to performance. For fur-
ther details on the task design see Supplementary
material. Accuracy and response time data were collected for each
trial. During the whole task, high-density EEG recordings were
obtained to assess potential electrophysiological differences be-
tween SRL and NSRL modulations across groups (see below).

EEG acquisition and signal preprocessing

Signals were acquired, for all participants, with a Biosemi Active-
two 128-channel system at 1024 Hz. Data were re-referenced

offline separately to linked mastoid electrodes, resampled at
512 Hz and filtered at 0.5–50 lV. Eye movements or blink artefacts
were corrected with independent component analysis79 and with
a visual inspection protocol.30,32,80–87 Noisy epochs were rejected
using an automatic EEGLAB procedure. Criteria for exclusion
included elimination of trials that exceeded a threshold of 2.5 SDs
from the mean probability distribution calculated from all trials
and by measuring the kurtosis of probability distribution.88 The
percentage of rejected trials was similar across groups and condi-
tions (Supplementary Tables 5.1 and 5.2). EEG data were seg-

Neuroimaging acquisition and preprocessing

MRI acquisition and pre-processing steps are reported as recom-
mended by the Organization for Human Brain Mapping.89,90

Acquisition parameters in each centre followed standard proto-
cols30,32,91 (Supplementary material). For neuroanatomical ana-
lysis, whole-brain T1-rapid anatomical three-dimensional gradient
echo volumes were acquired. Sixteen three-dimensional volumet-
ric images (from six healthy controls, three bvFTD, five Parkinson’s
disease and two Alzheimer’s disease participants) were excluded
due to missing or artefactual data. The resulting subsamples were
demographically matched in age and years of formal education.
However, as regards sex, a significant difference was observed be-
tween bvFTD and healthy controls (Supplementary Table 6.2).
These differences were controlled in the statistical analyses (see
‘Statistical analysis’ section).

For voxel-based morphometry (VBM) analysis, data were proc-
essed on the DARTEL Toolbox following validated proce-
dures30,66,92 via Statistical Parametric Mapping software (SPM12,
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/; accessed 9
February 2022). T1-weighted images in native space were first seg-
mented using the default parameters of the SPM12 (bias regular-
ization was set to 0.001 and bias full-width at half-maximum

Table 2 Samples’ demographic and neuropsychological data

HCs bvFTD Parkinson’s disease Alzheimer’s disease Stats Post hoc comparisons
(n = 40) (n = 21) (n = 31) (n = 20)

Demographics
Sex** (M: F) 18:22 16:05 18:13 9:11 v2= 6.32 HC–bvFTD: P = 0.02*

P = 0.09 HC–Parkinson’s disease: P = 0.27
HC–Alzheimer’s disease: P = 1

Age** 68.92 (8.66) 66.67 (11.52) 70.48 (9.10) 73.00 (6.01) F = 1.86 HC–bvFTD: P = 0.35
P = 0.13 HC–Parkinson’s disease: P = 0.47

gp
2 = 0.04 HC–Alzheimer’s disease: P = 0.10

Education 13.90 (3.67) 14.43 (5.03) 12.29 (4.31) 12.30 (4.00) F = 1.76 HC–bvFTD: P = 0.64
P = 0.15 HC–Parkinson’s disease: P = 0.11

gp
2 = 0.04 HC–Alzheimer’s disease: P = 0.16

Handedness (R:L) 38:2 20:1 29:2 19:1 – –
Cognitive assessment
MoCA** 25.59 (2.57) 21.00 (5.51) 21.93 (4.31) 16.11 (4.46) F = 24.14 HC–bvFTD: P5 0.001*

P5 0.001* HC–Parkinson’s disease: P5 0.001*

gp
2 = 0.40 HC–Alzheimer’s disease: P5 0.001*

IFS** 22.09 (3.79) 18.62 (6.30) 19.88 (4.12) 14.97 (4.38) F = 11.30 HC–bvFTD: P = 0.006*

P5 0.001* HC–Parkinson’s disease: P = 0.05
gp

2 = 0.24 HC–Alzheimer’s disease: P5 0.001*

Results are presented as mean (SD). Lower executive function scores (IFS) in Alzheimer’s disease are triggered by advanced age and lower general cognitive state.162

Demographic and cognitive data were assessed through ANOVAs and post hoc pairwise comparisons—except for sex, which was analysed via Pearson’s chi-squared (v2) test.

Effects sizes were calculated through partial eta (gp
2). HCs: healthy controls; IFS = INECO Frontal Screening163; MoCA = Montreal Cognitive Assessment.164

*Significant differences with an alpha level of P5 0.05.

**Variables with significant differences (P50.05) between neurodegenerative groups, precluding comparisons between them in our target measures.
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Figure 1 SRL task and behavioural results. (A) SRL task design. Participants judged whether three-digit numbers presented repeatedly on a computer
screen belonged to either category ‘A’ or ‘B’. Visual feedback immediately followed each number–category judgement (smiling face for correct
responses or angry face for incorrect responses in the SRL condition; green circle for correct responses or red circle for incorrect responses in the
NSRL condition). High-density EEG recordings were obtained during the task. (B) Behavioural results in healthy controls. Left: Repeated-measures
ANOVA of accuracy across cycles and feedback conditions. Right: One-way ANOVA between feedback conditions for the learning index (Spearman’s
rank correlation coefficient values for the accuracy score by cycle). The mean difference (effect size) of the between-conditions comparison in healthy
controls (NSRL minus SRL) is reported. (C) Behavioural results: between-group comparisons. Learning index for comparisons of behavioural perform-
ance between groups, for SRL and NSRL conditions. The between-groups mean difference (effect size) between healthy controls and each neurodege-
nerative group is reported below each result. Behavioural results were replicated when controlling for sex and valence recognition (Supplementary
material). The asterisk (*) indicates significant differences with an alpha of P5 0.05. AD = Alzheimer’s disease; HCs = healthy controls; PD =
Parkinson’s disease.

Table 3 Feedback valence ratings

Feedback accuracy HCs bvFTD Parkinson’s disease Alzheimer’s
disease

(n = 40) (n = 21) (n = 31) (n = 20)

Total 0.94 (0.24) 0.88 (0.33) 0.80 (0.4) 0.81 (0.39)
Social 0.90 (0.30) 0.92 (0.27) 0.81 (0.40) 0.85 (0.36)
Non-social 0.98 (0.16) 0.82 (0.38) 0.79 (0.41) 0.78 (0.42)
Social positive 0.90 (0.30) 1 (0) 0.81 (0.40) 0.85 (0.37)
Social negative 0.90 (0.30) 0.85 (0.37) 0.81 (0.40) 0.85 (0.37)
Non-social positive 0.98 (0.16) 0.90 (0.31) 0.84 (0.37) 0.85 (0.37)
Non-social negative 0.98 (0.16) 0.75 (0.44) 0.74 (0.44) 0.70 (0.47)

Results are presented as mean (SD). To assess feedback valence recognition among groups, participants were explicitly asked about the valence (positive, negative) of each

feedback type [Social (smiling face, angry face); non-social (green circle, red circle)] at the end of the experiment. All groups presented adequate valence recognition (with no

significant differences; for details see Supplementary material). HCs = healthy controls.
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(FWHM) was set to 60-mm cut-off) into grey matter, white matter
and CSF (these three tissues were used to estimate the total intra-
cranial volume). DARTEL (create template) module was run later
using the grey matter and white matter segmented images—fol-
lowing SPM12 default parameters—to create a template that is

intersubject alignment).93 Next, we used the ‘Normalize to MNI
Space’ module from DARTEL Tools to affine register the last tem-
plate from the previous step into the MNI Space. This transform-
ation was applied to all the individual grey matter segmented
scans to also be brought into standard space. Subsequently, all
images were modulated to correct volume changes by Jacobian
determinants and to avoid bias in the intensity of an area due to
its expansion during warping. Finally, data were smoothed using a
10-mm FWHM isotropic Gaussian kernel to accommodate for
intersubject differences in anatomy. The size of the kernel was
selected based on previous recommendations.92,94

To analyse the images of each centre together and avoid a
scanner effect in our results, the normalized and smoothed
DARTEL outputs were transformed to w-score images.95–99 w-
Scores, similar to z-scores (mean = 0, SD = 1), represent the degree
to which the observed grey matter volume in each voxel is higher
or lower (positive or negative w-score) than expected, based on an
individuals’ global composite score adjusted for specific covariates
(age, disease, total intracranial volume and scanner type). w-
Scores were calculated dividing each participant’s observed and
predicted grey matter volume (residuals) by their SD. The resulting
w-score maps of each subject were used for further statistical
analyses.

Statistical analysis
Behavioural analysis: socially reinforced learning task

First, we discarded trials with response latencies above 10 s (for
details see Supplementary material). Second, we excluded trials
whose response time fell more than 3 SDs away from each sub-
ject’s mean.100 The percentage of rejected trials was similar across
groups and conditions (Supplementary Table 3.2). To validate the
results in healthy controls, accuracy scores (the number of correct
responses per cycle and per feedback condition) were calculated
for each subject. To confirm the expected effect of learning (higher
accuracy over successive cycles) and feedback type (higher accur-
acy in SRL than in NSRL condition) in healthy controls, we ana-
lysed their performance through repeated-measures ANOVA of
accuracy scores across cycles and feedback condition. A Shapiro–
Wilk test for normality on healthy controls’ accuracy evidenced
normal distribution (Supplementary material).

For each subject, we computed a learning index calculated as
the rho value of the Spearman correlation between accuracy and
cycle number.101–103 We obtained one learning index for each SRL
and NSRL condition. This measure integrates the accuracy-by-
cycle interaction in a slope index, allowing us to compare the
learning process between conditions.101 Performance was com-
pared between feedback conditions via a one-way ANOVA for the
learning index in healthy controls.

Next, the following procedure was designed to compare
healthy controls and patients. To compare behavioural perform-
ance between groups, as normality and homoscedasticity
assumptions were not fully met (Supplementary material), non-
parametric Kruskal–Wallis tests were conducted for the learning
index (with two-tail Mann–Whitney U-tests for post hoc compari-
sons). As in previous reports with neurodegenerative dis-
eases,30,32,104–106 because our hypotheses hinged on differences
between each neurodegenerative group and healthy controls, and
given that demographic and behavioural features were not

matched across neurodegenerative samples (bvFTD versus
Parkinson’s disease versus Alzheimer’s disease), we focused on
pairwise comparisons between demographically matched tan-
dems: healthy controls versus bvFTD, healthy controls versus
Parkinson’s disease, healthy controls versus Alzheimer’s disease
(Table 2). In addition, given that a significant difference was
found in sex between bvFTD and healthy controls, we conducted
additional group comparison analyses of covariance using per-
mutation testing controlling for sex107 (Supplementary material).
Moreover, to rule out potential confounds of facial emotion
recognition disturbances in bvFTD (particularly, for negative
emotions),108,109 we also conducted additional group comparison
analyses of covariance using permutation testing and controlling
for feedback valence recognition (Supplementary material).
Finally, we carried out modified t-tests110 to estimate the
percentage of impaired learning indexes in participants with
neurodegenerative disease in contrast to healthy controls. This
analysis allows assessment of the percentage of cases that met
criteria for dissociation between SRL and NSRL conditions (see
Supplementary material for details).

EEG: spatiotemporal clustering associated to feedback

To track ongoing markers of learning by feedback we targeted the
MFN, characterized by a negative deflection over the midline front-
al region of the scalp.53–55 Here, we aimed to analyse the potential
differences in MFN modulations of SRL versus NSRL by comparing
the spatiotemporal cluster for both feedback conditions for each
group. Also, in order to asses early versus late learning modulation
effects of ongoing MFN markers, we included an additional meas-
ure (initial versus final set of trials), as previously done.111 We
compared the initial (first half) versus final (second half) set of tri-
als per cycle of the social condition within each group. We used a
split analysis applying the same MFN approach as it represents a
direct measure of learning by feedback. The learning index is a di-
mensional measure of the slope of the behavioural correlation and
does not directly represent an association with the MFN modula-
tion by feedback. This way, we avoided problems related to (i) the
rho not being univariate; (ii) inflating the number of comparisons
between time points and electrodes due to single-trial analysis in
a regression; and (iii) controversial single-trial association between
performance and event-related potential given the high level of
noise,112 as signal averaging approaches are less affected by arte-
facts and noise-related variability.113 Given these considerations,
and following similar approaches performed with the MFN111,114

and other event-related potentials,115,116 we evaluated the learning
effects using a MFN split analysis.

To avoid a priori spatiotemporal bias, non-parametric data-
driven spatiotemporal clustering117 was implemented on Matlab
software with the Fieldtrip Toolbox (version 20180313), with one-
tailed paired t-tests as univariate tests. This non-parametric clus-
tering method was introduced to address the resulting multiple
comparisons problem.118 The t-values of adjacent spatiotemporal
points with P50.05 were clustered together by summating their t-
values, and the largest cluster was retained. A minimum of 10
neighbouring electrodes were required to pass this threshold and
form a robust cluster.119 The cluster-level t-value was calculated as
the sum of the individual t-values at the points within the cluster.
To assess the significance of a spatiotemporal cluster identified
above, this procedure was repeated 5000 times, with recombin-
ation and randomized resampling of the subject-wise averages be-
fore each repetition using a Monte Carlo method.120 After each
repetition, the t-value of the largest cluster identified was retained.
The proportion of these 5000 randomized t-values greater than the
originally identified cluster-level t-value was used to calculate a
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non-parametric P value for the originally identified cluster. This
approach avoids the problem of multiple comparisons across the
dimensions of electrode, time and space.117,119

Neuroimaging: voxel-based morphometry analysis

Regression analyses were performed to assess the association be-
tween grey matter volume and behavioural performance (SRL and
NSRL learning indexes) via non-parametric permutation tests on
Statistical non-parametric Mapping [SnPM13, http://www.nisox.
org/Software/SnPM13/ (accessed 9 February 2022), 5000 random
permutations, cluster-forming threshold set at 0.001] toolbox for
SPM12. Permutation tests outperform parametric tests in correc-
tion for multiple comparisons.121 Sex was included as a covariate
of no interest. In order to increase behavioural variance and statis-
tical power by increasing sample size,39,122–124 we used two
approaches collapsing different groups. First, we performed analy-
ses including all four groups (healthy controls, bvFTD, Parkinson’s
disease and Alzheimer’s disease), to assess a general association
between brain correlates of performance. Second, each pathological
group was analysed in tandem with healthy controls (bvFTD–
healthy controls, Parkinson’s disease–healthy controls and
Alzheimer’s disease–healthy controls) to evaluate specific perform-
ance-related neuroanatomical correlates, following recent neurode-
generative studies.30,32,125–128 To adjust for multiple comparisons, we
used cluster-wise inference with family-wise error (FWE) rate correc-
tion of P-FWE50.05.129,130 Finally, a conjunction analysis was per-
formed in order to assess the extent of shared/distinct neural
correlates of SRL and NSRL conditions. We used Imcalc in SPM12, to
assess the conjoint analysis of grey matter volume and the two
learning indexes in all groups together with corrected thresholded
maps (P-FWE 5 0.05). The binarized images were used to obtain a
conjunction map using the equation: i1 + (2 � i2).131,132

Data availability

Anonymized data that support the study findings are available in
open-source software133 or from the corresponding author upon
reasonable request.

Results
Behavioural results

In healthy controls, accuracy improved across cycles, even when
assessing SRL and NSRL conditions separately. Moreover, accuracy
was higher in the SRL than in the NSRL condition (Fig. 1B and
Supplementary material). In this line, performance was also com-
pared between feedback conditions for the learning index, reveal-
ing a significant difference between SRL (mean = 0.47, SD = 0.36)
and NSRL (mean = 0.21, SD = 0.46) feedback conditions [F(1,39) =
8.49, P = 0.005, gp

2 = 0.17; Fig. 1B] in healthy controls.
Moreover, the learning index was used to assess between-

group comparisons. A significant main effect of group was
observed for the learning index in SRL and in NSRL conditions
(Table 4).

When comparing the learning index between each neurodege-
nerative sample and healthy controls separately, we found that
participants with bvFTD performed significantly worse in the SRL
condition, but not in the NSRL condition. The same pattern was
observed in participants with Parkinson’s disease. Finally,
Alzheimer’s disease showed impaired learning in both conditions
relative to healthy controls (Table 4 and Fig. 1C). Behavioural
results were replicated when controlling for sex (see
Supplementary Material 3.5) and valence recognition (see
Supplementary Material 3.6).

EEG results: spatiotemporal clusters of medial
frontal negativity

Significant spatiotemporal clusters were observed for the SRL ver-
sus NSRL comparison in all groups. As expected, healthy controls
showed MFN modulation in a significant frontal cluster (t-sum = –
37 180.09, P = 0.001), with more negative modulation during the
SRL than the NSRL condition. Participants with bvFTD presented
no frontal modulation by condition, but they exhibited a small sig-
nificant posterior (occipital) cluster (t-sum = –4700.34, P = 0.003)
with more negative voltage during social condition and maximum
t-value soon after stimulus onset (170 ms). Conversely, the

Table 4 Statistical comparison between groups (healthy controls, bvFTD, Parkinson’s disease and Alzheimer’s disease) and condi-
tions (SRL and NSRL) in the learning index

Kruskal–Wallis test

Condition HCs bvFTD Parksinon’s
disease

Alzheimer’s
disease

Statistical results

H P g2[H]

SRL 0.46 (0.35) 0.22 (0.35) 0.17 (0.49) 0.007 (0.48) 13.54 0.003* 0.097
NSRL 0.21 (0.45) 0.20 (0.45) 0.19 (0.40) –0.14 (0.33) 10.89 0.01* 0.073

Mann–Whitney U

HCs Neurodegenerative samples Statistical results

U P Cohen’s d

SRL 0.46 (0.35) bvFTD: 0.22 (0.35) 577 0.017* 0.641
Parkinson’s disease: 0.17 (0.49) 830.5 0.014* 0.605
Alzheimer’s disease: 0.007 (0.48) 186 0.001* 0.961

NSRL 0.21 (0.45) bvFTD: 0.20 (0.45) 419.5 0.997 0.002
Parkinson’s disease: 0.19 (0.40) 655.5 0.684 0.098
Alzheimer’s disease: –0.14 (0.33) 210.5 0.003* 0.831
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Results are presented as mean (SD). The asterisk (*) indicates significant differences with an alpha level of P50.05. Learning Index (Spearman correlation’s rho slope of cycles

and accuracy score) was assessed through non-parametric Kruskal–Wallis tests (with two-tail Mann–Whitney U tests for post hoc comparisons). Effect size for the Kruskal–

Wallis test was calculated as the eta-squared based on the H-statistic: (H – k + 1)/(n – k), k being the number of groups, and for the Mann–Whitney U the Cohen’s d value was

obtained. bvFTD = behavioural variant of fronto-temporal dementia; HCs = healthy controls.
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Parkinson’s disease group exhibited a significant frontal cluster (t-
sum = –87 355.85, P = 0.001) in the same direction as healthy con-
trols, with maximum t-value at 334 ms. The Alzheimer’s disease
group also showed a significant frontal cluster (t-sum = –30 859.08,
P = 0.004), with more negative voltage for the SRL condition and its
maximum t-value at 412 ms (Fig. 2A).

Concerning the effect of learning at neural levels across task
cycles, the comparison between initial and final set during the SRL
condition was significant for healthy controls (t-sum = –6990.78,
P = 0.036), with its maximum t-value at 246 ms, and with an
expected more negative voltage (associated with enhanced learn-
ing) for the final trials in frontal regions. This effect was not
observed in any neurodegenerative group (Fig. 2B).

Neuroimaging results: brain–behaviour associations

When considering all groups, higher performance in SRL was asso-
ciated with greater volume of temporo-parietal cortices (right su-
perior temporal, supramarginal and postcentral), fronto-limbic
regions (right inferior frontal operculum, fusiform and parahippo-
campal areas; left insula and precentral; bilateral thalamus and
middle cingulate areas) and bilateral middle occipital areas (Fig. 3,
first row left and Supplementary Table 6.3). Contrarily, higher
NSRL performance was associated with greater grey matter vol-
ume of the bilateral hippocampus (Fig. 3, first row right and
Supplementary Table 6.4).

In the bvFTD group, significant associations emerged between
higher performance in SRL and greater volume of predominantly
temporo-parietal regions were found (including left superior and
middle temporal, bilateral precuneus, fusiform and inferior poster-
ior areas; Fig. 3, second row left and Supplementary Table 6.3).
NSRL was associated with greater volume of the right

hippocampus and the middle temporal pole (Fig. 3 second row
right and Supplementary Table 6.4).

In the Parkinson’s disease group, no significant associations be-
tween grey matter volume and performance were found.

The Alzheimer’s disease group showed associations between
higher SRL performance and greater grey matter volume of pre-
dominantly limbic regions (right inferior and superior orbitofron-
tal, anterior cingulate and hippocampus; left precentral, inferior
frontal operculum, insula, middle temporal; and bilateral fusi-
form—Fig. 3, third row left and Supplementary Table 6.3). NSRL
was associated with greater right hippocampus and middle tem-
poral pole grey matter volume (Fig. 3, third row right and
Supplementary Table 6.4).

Finally, conjunction analysis of SRL and NSRL conditions
(Fig. 4) in all groups revealed small overlapping clusters in the right
parahippocampus (peak MNI coordinate: x = 22.5; y = –22.5; z = –
15; k = 292) and right hypothalamus (peak MNI coordinate: x = 15; y
= –4.5; z = –10.5; k = 224).

Discussion
We investigated multimodal markers of SRL and NSRL across
healthy participants and neurodegenerative diseases. As expected,
social feedback enhanced learning in healthy controls. This effect
was specifically impaired in bvFTD and Parkinson’s disease, while
Alzheimer’s disease presented generalized learning disruptions.
healthy controls showed the expected pattern of increased MFN
modulation during SRL compared to NSRL. This effect was not
observed in bvFTD. For SRL learning effects (comparing initial and
final cycles of the task), healthy controls exhibited greater MFN
modulation for final trials. This MFN differentiation was not seen
in any neurodegenerative group. Neuroanatomical correlates of

Figure 2 Spatiotemporal cluster results for SRL. (A) SRL versus NSRL conditions for each group. Pink and grey solid curves show the average values of
the maximum cluster, while pink and grey dashed curves show the average values of a reference electrode yielding maximum difference by univari-
ate t-test. (B) Initial set versus final set comparison in the SRL condition. Dark pink and light pink solid curves show the average values of the max-
imum cluster, while dark pink and light pink dashed curves show the average values of a reference electrode yielding maximum difference by
univariate t-test. Shadowed bars around solid curves indicate SEM. Scalp plots show, for significant clusters, the t-values obtained at time marked by
the black vertical dashed line for the electrodes belonging to the cluster (small white dots) and, for the non-significant clusters, the t-values obtained
at time marked by the black vertical dashed line for all the electrodes. Black vertical dashed line shows the time when the maximum difference was
obtained for the reference electrode (large white black-contoured dot). Black horizontal rectangle indicates time interval where the cluster results are
statistically significant. AD = Alzheimer’s disease; HCs = healthy controls; PD = Parkinson’s disease.
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SRL showed extended temporo-parietal and fronto-limbic hubs in
all groups, as well as associations with specific temporo-parietal
regions in bvFTD and predominantly fronto-limbic regions in
Alzheimer’s disease. In contrast, NSRL was consistently linked to
medial temporal regions and in particular with hippocampus. No
association between task performance and brain atrophy was
observed in Parkinson’s disease. Together, these multimodal find-

ings reveal mechanisms of learning and social feedback in SRL
across different pathophysiological lesion models sensitive to SRL
(bvFTD and Parkinson’s disease) and generalized learning deficits
(Alzheimer’s disease).

Behavioural social-feedback facilitation and
neurodegenerative profiles

The learning gains of healthy controls following social feed-
back10,13 were disrupted in bvFTD and Parkinson’s disease (in their
corresponding comparison with controls). While learning from
non-social feedback appeared generally unimpaired in these

Figure 3 Associations between grey matter volume and SRL/NSRL indexes. These analyses were conducted to identify regions, in all groups together
and in separate tandems (bvFTD–healthy controls, PD–healthy controls and AD–healthy controls) associated with SRL and NSRL performance (SnPM,
5000 permutations, cluster-wise inference P-FWE 5 0.05). Results are presented on MNI space using the AAL atlas,162 in the neurological convention.

Figure 4 Anatomical conjunction of SRL and NSRL conditions. Whole-
brain conjunction analyses were conducted in order to assess the
shared and distinct neural correlates of SRL and NSRL conditions.
Results are presented on MNI space using the AAL atlas,162 in neuro-
logical convention. Blue represents significant clusters of SRL. Green
represents significant clusters of NSRL. Red represents overlapping
clusters between SRL and NSRL conditions [right parahippocampus
(peak MNI coordinate: x = 22.5; y = –22.5; z = –15; k = 292); and right
hypothalamus (peak MNI coordinate: x = 15; y = –4.5; z = –10.5; k = 224)].
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groups in comparison with controls, the addition of social feed-
back did not enhance learning. This suggests social cognition defi-
cits impair learning in both diseases,40,44 but based on the existing
literature, coupled with our novel multimodal imaging findings,
there is reason to suspect these deficits may arise from different
cognitive processes. In bvFTD, primary social cognitive defi-
cits18,36–38,40 may prevent the integration of social information dur-
ing decision-making processes, disrupting associative
learning.33,36 This might mirror the way that memory impairments
in bvFTD47,51,124,134,135 are thought to be explained (in this task) by
social cognition deficits. Interestingly, in Parkinson’s disease, the
interaction of feedback-based learning41 and socioemotional defi-
cits44 (particularly facial processing)46 may explain this group’s se-
lective SRL disruptions. These potential explanations of
behavioural deficits pointing to different physiopathological proc-
esses seems to be supported by their brain temporal and spatial
signatures (see below). In contrast to these diseases, the general-
ized impairments across both feedback conditions observed in
Alzheimer’s disease are likely explained by domain-general asso-
ciative learning decline136 and object memory alterations.137,138

Both processes may prevent the integration and maintenance of
relevant feedback information. Altogether, behavioural findings
parallel clinical patterns of social (bvFTD and Parkinson’s disease)
and associative learning (Alzheimer’s disease) disruptions.

Ongoing cortical correlates of SRL as bvFTD specific
markers

Online MFN modulations evidenced both correlates of learn-
ing53,56,57 and social-feedback facilitation in HCs58,139,140 (but see
Beston et al.35). The selective abolishment on social MFN modula-
tions in bvFTD in comparison with controls, beyond preserved
low-level distinction of facial stimulus processing (posterior clus-
ter resembling learning-unrelated N170),141 may be indicative of
specific alterations in social prediction-error signal coding.
Abnormal social processing may impact action–reward and con-
textual updating.142 Indeed, social predictive-error coding is par-
tially indexed by fronto-cingulate mechanisms,142 compromised in
patients with bvFTD. In contrast, altered learning MFN modula-
tions in Parkinson’s disease, compatible with fronto-striatal dis-
ruptions,143 may evidence subtle pathophysiological mechanisms
of feedback-related learning deficits. In Alzheimer’s disease, dis-
rupted learning MFN modulations144 may resemble generalized as-
sociative learning alterations136,137 in accordance with our
hypothesis. Thus, the MFN may be considered a novel ongoing
marker of SRL in neurodegeneration, selectively compromised in
bvFTD.

Neuroanatomical markers of SRL and atrophy
mechanisms

Neuroanatomical correlates of SRL suggest that the integration of
social and learning processes critically relies on temporo-parietal
hubs (i.e. temporo-parietal junction)24 and secondarily on fronto-
insular-limbic regions, consistent with predictions from the social-
context network model.17–22 These hubs index critical processes
for socio-contextual learning,145 including perspective taking, fa-
cial emotional recognition, contextual integration, reward process-
ing and object memory. In bvFTD, neuroanatomical signatures of
SRL support the role of the temporo-parietal junction in processing
behaviourally relevant social information.146 Perspective taking in
socially motivated contexts may also contribute to associative
learning and object memory processes.36 Conversely, in
Alzheimer’s disease, specific limbic involvement in SRL suggests
its role in the use of social cues during associative learning. In

particular, associations with hippocampal regions may reflect the
involvement of general associative learning and object memory
processes.147 Moreover, additional associations with orbitofrontal,
insular, and anterior cingulate regions may indicate socioemo-
tional and reward-related processing.22,145,148–150 Lack of neuro-
anatomical associations in Parkinson’s disease suggests specific
SRL deficits may be explained by pathophysiological mechanisms
unrelated with brain atrophy.143

Compared with SRL, NSRL was consistently associated with
medial temporal (hippocampal) regions6,59 in healthy controls,
bvFTD and Alzheimer’s disease. In this sense, conjunction analysis
suggests large differential anatomical correlates for social and
non-social conditions, with minimum overlap. Expected regions
involved in general associative and implicit learning such as
hippocampus151,152 and hypothalamus153 evidenced common
neural correlates for both social and non-social learning. In sum,
cortical temporo-parietal hubs (and, to a lesser extent, fronto-lim-
bic regions) may play a key role in SRL and in selective bvFTD
deficits.

Multimodal evidence of distinct mechanisms across
neurodegenerative disorders

Our study provides novel multimodal evidence of distinct social
and learning processes in neurodegenerative diseases. Ongoing
frontal EEG markers and brain structural correlates, captured by
the social context network model, shed light on how similar SRL
deficits in different diseases may be rooted in distinct anatomo-
functional disruptions. Neurophysiological evidence of broad tem-
poro-parietal and frontal involvement in the SRL condition com-
pared to NSRL points to the complexity of social sources of
feedback. Results from bvFTD patients, in comparison with con-
trols, reveal selective social deficits consistent across dimensions.
Their failure to use socially relevant information as a prior to cor-
rect inferential prediction errors and improve learning18,39,40 might
be related to both neurodegeneration and a lack of appropriate
MFN modulations. This lack of social reward mediation in updat-
ing expectations and actions could hardly be explained by a per-
ceptual impairment, because visuoperceptual integration of
stimuli seems to be preserved (supported by N170 component
modulation154 and SRL deficits when covarying by valence recog-
nition). Consistent with our findings, prior research has shown
that social signals are encoded by the temporo-parietal junction,
anterior cingulate and dorsomedial prefrontal cortices.24,142

Although future research is needed to test this conjecture, our
findings in bvFTD could be explained by alterations in social pre-
diction-error coding. Moreover, these deficits likely exacerbate
memory impairments also present in this condition.47,51,134,135

Deficits in Parkinson’s disease were accompanied by preserved so-
cial MFN and impaired learning MFN modulations, as well as a
lack of neuroanatomical specificity, suggesting a different patho-
physiological mechanism. Specifically, possible MFN-related
fronto-striatal dysregulations143 may impact social reward predic-
tion-error signals during feedback-related learning.3,26,155 Finally,
social MFN modulations and fronto-limbic associations in
Alzheimer’s disease could be impacted by disrupted associative
learning and object memory processes in SRL. These mechanisms
are strongly affected by medial temporal and temporo-parietal de-
generation.156 Consequently, social-feedback learning facilitation
may be vulnerable to decay with increasing disease severity.36

Between-condition comparisons in each neurodegenerative group
fall outside the scope of our study. However, multidimensional
results coupled with supplementary discussion analysis between
conditions among neurodegenerative cases (see Supplementary
material for details) partially support the interpretation of
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different social and learning mechanisms, pointing to more specif-
ic SRL disruptions in bvFTD.

This convergent evidence of SRL patterns across neurodegener-
ative diseases carries clinical implications. Social cognitive disrup-
tions and memory alterations have been largely described as
canonical deficits in bvFTD and Alzheimer’s disease, respectively.
However, evidence of memory impairments in bvFTD49 and social
cognitive deficits in Alzheimer’s disease50 has hindered differen-
tial diagnosis between both conditions.47,51 Here we shed light on
this issue by combining social cognition and learning processes in
a single task, and using multiple levels of analysis including EEG
and MRI. Our multimodal findings present two disrupted SRL pat-
terns in bvFTD and Alzheimer’s disease. Moreover, they revealed
how similar behavioural SRL outcomes (i.e. in bvFTD and
Parkinson’s disease) may be explained by different neurophysio-
logical pathways. Our study acknowledges the synergic assess-
ment of these cognitive processes19–22,157 as well as the
specificities of each model in their comparison to healthy controls,
offering new transnosological insights across neurodegenerative
conditions.

Limitations and further research

We acknowledge certain limitations to our study. First, our design
is based on a modest sample size. Nevertheless, it is similar to or
larger than those of other multimodal reports assessing neurode-
generative subtypes.30,32,36,40,158,159 Also, this caveat was counter-
acted by the strict control of demographic and clinical variables, as
well as detailed diagnostic procedures and systematic assess-
ments. Moreover, our multimodal results across behavioural, elec-
trophysiological and neuroanatomical dimensions, with moderate
to large effect sizes, further attests to their robustness. In any case,
future studies should replicate and extend these results with
larger and adequately matched patient groups and alternative
designs allowing for exploration of systematic effects across differ-
ent neurodegenerative groups. Such an approach may allow for
direct patients’ group comparisons which are beyond the scope of
our study. Second, our findings rely on social-feedback facilitation
processes triggered by static emotional faces. Performance was
assessed through implicit associations including simple stimuli
(three-digit numbers) to prevent semantic confounds and task-
load effects on learning outcomes.160,161 The use of simple stimuli
allows assessing cognitively impaired populations. Notwith
standing, future tasks should strive for greater ecological validity
by addressing SRL using more naturalistic settings33,34 and stimuli
(such as sentences or object localization associations). Third, the
processing of socioemotional stimuli in the SRL may be affected by
facial emotion recognition disturbances that are characteristic of
bvFTD.108,109 However, we used a single face displaying only two
emotions and our results persisted when controlling for valence
recognition (Supplementary material). These results suggest that
feedback processing is influenced by social content (rather than
emotional detection impairments). Future studies should compare
how learning is affected by different social stimuli (facial versus
non-facial and emotional versus non-emotional). In this sense,
learning effects between conditions may be influenced by visuo-
perceptual complexity of feedback cues. However, several reasons
suggest that the observed effects are better explained by the social
nature of the SRL stimulus including the robustness of an already
validated task10 similar to previous experimental designs,6,33,38

cognitive load control with the use of one face per valence,35 MFN
modulations suggesting processing of learning effects instead to
stimulus complexity (except for bvFTD), and replication of results
after controlling for valence recognition (Supplementary material).
Nonetheless, visuoperceptual complexity among stimuli should be

better controlled in future works, with a 2 � 2 (social/non-social,
complex/simple) stimuli design. Finally, although our multimodal
assessment approach includes task-related EEG measures, future
studies should also include active functional neuroimaging para-
digms to better elucidate the regions and networks mediating SRL.

Conclusions
Our multimodal lesion model approach reveals convergent evi-
dence of dissociable effects of learning and social feedback across
neurodegenerative diseases. These novel results may support the-
oretical accounts of multimodal SRL mechanisms involving on-
going MFN activity and anatomical deficits underpinned by the
social-context network model. A novel clinical agenda is thus
opened, related to the characterization and treatment of these so-
cial cognition and learning processes in neurodegeneration.
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