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Abstract: Musculoskeletal conditions are known to involve biological, psychological, social and, often,
lifestyle elements. However, these domains are generally considered in isolation from each other.
This siloed approach is unlikely to be adequate to understand the complexity of these conditions and
likely explains a major component of the disappointing effects of treatment. This paper presents a
hypothesis that aims to provide a foundation to understand the interaction and integration between
these domains. We propose a hypothesis that provides a plausible link between psychology and
lifestyle factors with tissue level effects (such as connective tissue dysregulation/accumulation) in
musculoskeletal conditions that is founded on understanding the molecular basis for interaction
between systemic and local inflammation. The hypothesis provides plausible and testable links
between mind and body, for which empirical evidence can be found for many aspects. We present
this hypothesis from the perspective of connective tissue biology and pathology (fibrosis), the role of
inflammation locally (tissue level), and how this inflammation is shaped by systemic inflammation
through bidirectional pathways, and various psychological and lifestyle factors via their influence
on systemic inflammation. This hypothesis provides a foundation for new consideration of the
development and refinement of personalized multidimensional treatments for individuals with
musculoskeletal conditions.

Keywords: fibrosis; local inflammation; systemic inflammation; psychological factors; lifestyle factors

1. Introduction

Changes in connective tissue influence the physiological and mechanical functioning
of musculoskeletal tissues and are increasingly recognized in musculoskeletal conditions [1].
Understanding of the physiology and pathophysiology of musculoskeletal connective
tissue in health and disease has traditionally focused on local “within-muscle” processes,
including the inflammatory responses that actively regulate connective tissues. Looking
beyond the local tissues, parallel research is beginning to reveal a potential role for systemic
inflammatory changes in shaping these local inflammatory processes and, thus, connective
tissues. As systemic inflammation is sensitive to a range of psychosocial and lifestyle factors,
this new work provides a foundation to begin to consider how these factors might impact
connective tissue health via their interaction with the systemic then local inflammatory
systems (Figure 1). This review presents, from a molecular point of view, a hypothesis
that is derived from a series of recent findings that has the potential to explain a novel link
between “body and mind” in musculoskeletal conditions. Although proof of this link is
not yet available, we present a series of testable questions with the objective to open new
research directions to further understand the complexity of musculoskeletal health.
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objective to open new research directions to further understand the complexity of muscu-
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repair after tissue injury [2–4], exercise [5] and the disruption of related structures, such 
as can occur to muscles that cross an injured joint [6]. Under normal conditions, this in-
flammation initiates mechanisms to drive adaptation and repair, including amplification 
of the inflammatory response as needed by activating soluble mediators and immune cell 
infiltration. This response is eventually terminated by specific inhibitors and followed by 
regenerative processes to restore normal tissue architecture and function. Under certain 
conditions, the ability to clear injured tissues is impaired (e.g., as with diabetes or aging), 
regulatory mechanisms may be altered, local inflammation becomes persistent and sys-
temic or injury-repair cycles are too persistent for the complete resolution of inflamma-
tion. To understand the impact of this process on musculoskeletal connective tissue, it is 
first critical to understand its relevant anatomy and how local tissue inflammation is reg-
ulated. 

2.1. Overview of Musculoskeletal Connective Tissue 
Skeletal muscles, tendons and nerves are each hierarchically organized tissues that 

employ structural bundling. The individual elements—myofibers in muscles, collagen fi-
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Figure 1. Conceptual model of the factors that impact tissue health in musculoskeletal conditions.

2. The Role of Local Inflammation in Musculoskeletal Connective Tissue Health

Tissues, including connective tissues, generate an inflammatory response in multiple
contexts. This includes the response that is essential for the clearance of necrotic cells
and repair after tissue injury [2–4], exercise [5] and the disruption of related structures,
such as can occur to muscles that cross an injured joint [6]. Under normal conditions, this
inflammation initiates mechanisms to drive adaptation and repair, including amplification
of the inflammatory response as needed by activating soluble mediators and immune cell
infiltration. This response is eventually terminated by specific inhibitors and followed by
regenerative processes to restore normal tissue architecture and function. Under certain
conditions, the ability to clear injured tissues is impaired (e.g., as with diabetes or aging),
regulatory mechanisms may be altered, local inflammation becomes persistent and systemic
or injury-repair cycles are too persistent for the complete resolution of inflammation. To
understand the impact of this process on musculoskeletal connective tissue, it is first critical
to understand its relevant anatomy and how local tissue inflammation is regulated.

2.1. Overview of Musculoskeletal Connective Tissue

Skeletal muscles, tendons and nerves are each hierarchically organized tissues that
employ structural bundling. The individual elements—myofibers in muscles, collagen
fibrils in tendons and axons and Schwann cell sheaths in nerves—are surrounded by a
small amount of delicate connective tissue (endomysium, endotenon or endoneurium,
respectively), which are bundled into fascicles by a slightly denser collagenous connec-
tive tissue (perimysium, peritenon or perineurium). The entire muscle, tendon or nerve
is surrounded by a dense external sheath of connective tissue (epimysium, epitenon or
epineurium). These fascial components act as cushions, allow movement and transfer
of force between the tissues and carry blood vessels and nerves into and out of subcom-
ponents [7,8]. Numerous cell types are found within these connective tissues, including
fibroblasts, adipocytes, lymph vasculature cells and various migrating immune cells. Fi-
broblasts, a type of mesenchymal cell, are the primary support cells. They are heavily
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involved in the turnover of extracellular matrix (ECM) and are key producers of collagen,
especially after differentiating into myofibroblasts in response to injury or growth factor
exposure, e.g., transforming growth factor beta (TGF-β1). During stress, fibroblasts adapt
to their environment and can respond to and send local signals, including inflammatory
mediators [9]. This review is primarily focused on connective tissue in and around muscles.

2.2. Injury-Induced Acute Inflammation and Normal Tissue Repair

Acute inflammation is characterized by a rapid accumulation of fluid, neutrophils and
plasma cells in the affected tissue. The first signals released from damaged and necrotic
cells are damage-associated molecular pattern molecules (DAMPS) that include interleukin-
1 alpha (IL-1α; proinflammatory cytokine). DAMPs are chemotactic for neutrophils, as are
several chemokines (chemotactic cytokines) produced by neighboring uninjured cells after
DAMP exposure [3]. The neutrophil influx is rapid and typically short-lived (2 h) [3,10].
Functionally, neutrophils adopt three possible strategies: (1) the removal of cellular debris
by phagocytosis, an activity shared with macrophages that are also attracted by chemo-
tactic factors, (2) the release of growth and angiogenic factors and/or (3) the resolution of
inflammation [3]. The latter occurs when neutrophils become apoptotic and are phago-
cytosed by macrophages, a process that initiates a feed-forward pro-resolution program
characterized by the release of tissue repair-related cytokines, e.g., TGF-β1, and the potent
anti-inflammatory cytokine, interleukin-10 (IL-10). Thereafter, neutrophils rapidly decline
and are replaced by macrophages [11–14].

Macrophages are activated and polarized into M1 (proinflammatory) or M2 (anti-
inflammatory, repair or both) phenotypes [12,15]. Many M1 macrophages are bone marrow-
derived phagocytes recruited to the injured site by chemotactic and adhesion molecules
and proinflammatory cytokines [16]. M1 macrophages are both activated by and produce
proinflammatory cytokines, including IL-1α and β and tumor necrosis factor (TNF) [17].
Their influx is required for the clearance of injury-induced debris [18–20].

The next essential step for tissue repair and regeneration is a transition from a proin-
flammatory milieu to an anti-inflammatory one [19]. Increases in anti-inflammatory cy-
tokines, such as IL-10 and interleukin-13 (IL-13), inhibit most proinflammatory responses
and stimulate increases in repair-related M2 macrophages [21]. The functional subtypes
of M2 macrophages include: M2a (anti-inflammatory macrophages that promote muscle
wound healing or fibrosis in response to interleukin-4 (IL-4) and IL-13), M2b (macrophages
that activate in response to immune complexes and lipopolysaccharide (LPS)) and M2c
(deactivated macrophages that respond to IL-10, TGF-β1 and glucocorticoids to then secrete
IL-10 and TGF-β1, furthering tissue repair) [18].

This predominantly cytokine-driven acute phase response occurs not only at the
localized site of injury for immune cell recruitment but, also, in distant tissues, including
the liver and brain, in order to amplify or depress humoral defense components [22,23].
The acute phase response involves a complex array of neuroendocrine, physiological and
metabolic changes initiated both locally and systemically after tissue infection or injury,
directly or secondary to the initial insult or other assaults to the body, such as muscle
damage in response to exercise [5]. These latter two scenarios are discussed below.

2.3. Inflammation Induced by Injury to Adjacent Structures

Local muscle inflammatory responses and connective tissue adaptation is initiated
not only by direct injury to muscle but, also, in response to injuries to related (nearby) joint
structures. This has emerged as an explanation for structural changes in the paraspinal
muscles (particularly the multifidus muscle) that are commonly observed in low back
pain [24,25], and in animal models of intervertebral disc lesion [26]. In addition to muscle
atrophy and fat accumulation, these muscles undergo extensive connective tissue adap-
tation, including thickening of the epimysium and changes in the collagen subtype [27].
Consistent with the processes highlighted above to explain the accumulation of connective
tissue after muscle injury, animal models show that the development of a degenerative
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cascade in the intervertebral tissues (either following injury [26] or with spontaneous
disc disease [27,28]) is associated with an inflammatory response in adjacent paraspinal
muscles, as evidenced by the increased expression of proinflammatory cytokines (e.g.,
TNF and IL-1β [6]), fibrogenic molecules (e.g., CCN2 [25,27]) and the accumulation of
macrophages [29] and their polarization to the proinflammatory M1 type [30]. Notably,
TNF levels first increase in the muscle but are then amplified in the connective tissues [30].
This inflammatory response does not begin immediately after injury, and, in the absence
of injury to the muscle, the primary role is unlikely to be one of removal of the cellular
debris. Instead, this response appears to serve a role in adaptation of muscle structure,
such as connective tissue remodeling. These changes are partially, but not completely,
resolved/reversed by exercise [27].

2.4. Exercise-Induced Inflammation in Muscles

Inflammatory cytokines are released from contracting skeletal muscle cells during
exercise [5]. IL-6 is the most predominant cytokine produced by exercising muscles, and is
the first to increase in circulation, with levels peaking immediately post-exercise before
rapidly declining to baseline concentrations [31]. For instance, prolonged strenuous run-
ning results in elevated systemic levels of IL-6, as well as counteracting anti-inflammatory
mediators such as IL-10 and interleukin-1 receptor antagonist (IL-1Ra), which peak within
0–90 min and typically resolve within ~6 h, post-exercise [32,33]. Similar cytokine tempo-
ral patterns occur for other exercise types, but the magnitude by which IL-6 increases is
highly dependent on the exercise intensity and duration, and muscle mass involved [34].
Muscle-derived IL-6 is produced in response to declining glycogen levels, independent
of muscle damage [5]. Once in circulation, IL-6 signals the liver to produce glucose and
adipocytes to produce free fatty acids (i.e., lipolysis) needed for muscle energy. IL-6 also
acts as a paracrine growth factor, promoting signaling for satellite cells during regenera-
tive myogenesis [35]. Thus, metabolic and tissue remodeling functions require elements
of inflammation.

Although skeletal muscle damage is not required for the release of IL-6 from muscle
during and after exercise, prolonged elevated concentrations of muscle-derived IL-6 are
thought to indicate greater damage resulting from microtrauma to the contractile elements
and connective tissue within muscle [31,36]. Under these conditions, immune cells infiltrate
the muscle and secrete cytokines, including IL-6, for an extended period of time to repair
the damaged tissue [5,31,36,37]. Over time, as the skeletal muscle adapts with training, the
IL-6 response to exercise is blunted. However, repeated exercise bouts with limited recovery
between repetitions can have the opposite effect with untoward physiological effects [36],
similar to those observed in repetitive overuse injuries (see Sections 2.5 and 3.2).

2.5. Chronic Inflammation and Fibrotic Muscle Repair

Under some conditions, the ability to clear injured tissues of pathogens and debris
is impaired, mechanisms regulating inflammatory responses are altered and/or injury–
repair cycles are too persistent for the complete resolution of inflammation. In either case,
inflammation can become enhanced, persist and spread to include previously uninjured
tissues. Inflammatory cytokines in tissues can also elevate to detectable levels in circulation,
a change that is often paralleled by inflammatory responses at sites distant from the initial
injury site [38]. Unresolved or adherent systemic inflammatory responses may influence
the inflammatory environment in otherwise healthy, uninjured tissues, including muscles.

Chronic inflammation is characterized by the prolonged presence of inflammatory
M1 macrophages and neutrophils that have amplified the primary acute inflammatory
response by their enhanced production of proinflammatory cytokines. Their continued
phagocytosis and release of cytotoxic effectors (e.g., cytokines, reactive oxygen/nitrogen
species and proteolytic enzymes) promotes secondary tissue damage in cells and tissues
surrounding the original injury site [18]. The experimental depletion of neutrophils or
blocking their function reduces this collateral damage but also reduces tissue repair and
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regeneration [2,39]. Similarly, the experimental depletion of macrophages early post-injury
diminishes the inflammatory response but also decreases wound debridement, tissue repair
and regeneration [40,41]. These findings highlight the complex nature of these biological
processes and the limitations of pharmacotherapies targeting immune cells.

Repeated injury and damage cycles in muscles are associated with marked increases in
noncontractile tissues (primarily collagen) [42,43]. This may be due to the prolonged pres-
ence and activity of M2a type macrophages that drive fibroblast proliferation and collagen
production [11–13]. Increased TGF-β1 also promotes fibroblast proliferation and collagen
production, plus the differentiation of fibroblasts into myofibroblasts [44]. Myofibroblasts
have high levels of actin and are contractile; however, they are also heavy producers of
collagen and contribute to excessive collagen deposition (i.e., fibrosis) with prolonged
activation [45]. TGF-β1 also potently induces other fibrogenic proteins, including CCN2
(cellular communication network factor 2; also known as connective tissue growth factor
(CTGF)) [46,47]. CCN2 is a secreted matricellular protein with four modular domains
that independently interact with and signal numerous molecules, such as collagen and
proteoglycans in the ECM [48], and plays a key role in ECM overproduction and tissue
fibrosis [49]. The pharmacological blocking of CCN2 signaling reduces macrophage num-
bers, macrophage-related gene signatures and chemokine mRNA production in animal
models of tissue damage [50–52]–suggesting that CCN2 also modulates inflammation.
Similarly, the attenuation of CCN2 expression by aerobic exercise in a model of low back
pain was mirrored by attenuated local inflammatory and fibrotic responses in muscle [27].
Not surprisingly, CCN2 is markedly elevated in serum and fibrotic organs/tissues collected
from animals and humans with fibrotic conditions, including muscular dystrophy and
repetitive overuse injury [50,53–55]. Its systemic presence may indicate a contribution to
the pathogenesis of widespread tissue fibrosis.

3. The Role of Systemic Inflammation in Musculoskeletal Connective Tissue Health

The notion that inflammatory events can impact remote tissue health has been iden-
tified in some chronic conditions (e.g., diabetes) but has been relatively unexplored in
musculoskeletal conditions. The overall concept is underpinned by the dynamic feedback
loops between local tissue and systemic inflammation. Elevated systemic inflammation
induces a proinflammatory response in tissues, such as muscles distant from an injury
site [56]. Conversely, inflamed tissues secrete cytokines (such as myokines from muscles)
that contribute to systemic inflammation [57]. This self-perpetuating cycle could underpin
a chronically elevated inflammatory state [58,59] with profound effects on the physiology
and structure of musculoskeletal tissues, including connective tissues. Supporting this
supposition is the association between chronically high levels of circulating cytokines and
low muscle mass and strength [60]. Systemic inflammation is a key component of various
conditions that involve tissue fibrosis, such as obesity, diabetes and cachexia [61–65], and
has begun to be identified in some chronic musculoskeletal conditions, such as low back
pain [66–69]. The following highlights the potential physiology underlying the impact of
systemic inflammation on local inflammation related to muscles and connective tissues.

3.1. The Interplay between Systemic and Local Inflammation in Musculoskeletal Tissues

Changes in systemic inflammation alter the inflammatory environment in muscu-
loskeletal tissues. The induction of acute systemic inflammation via intraperitoneal injec-
tion of LPS in animals increases the expression of TNF, IL-6 and IL-1β in skeletal muscle
within 2–12 h [70,71]. Moreover, it drives increased expression of genes associated with
M1 macrophages and reduced expression of genes associated with M2 macrophages, sug-
gesting a role in initiating the proinflammatory polarization of macrophages [70,71]. Other
examples include the increased secretion of IL-6 from muscles in humans after acute sys-
temic infusion of TNF [72] and enhanced systemic inflammation and TNF expression in
muscles following experimentally induced TNF overexpression in lung tissue [73]. These
“systemic-to-local” effects are thought to be regulated by Toll-like receptor 4 (TLR4), which
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activates the innate immune system [72]. Pharmaceutical blockage of TLR4 activation
or its genetic ablation attenuates systemically driven local inflammatory responses (e.g.,
proinflammatory cytokine expression) and induces a shift toward “anti-inflammatory” M2
macrophages [74–76]. These findings are mirrored by reduced muscle fibrosis [74]. These
and other examples [56] highlight the potential for systemic inflammation to mediate local
inflammation and enhanced connective tissue deposition.

The impact of “chronically” elevated systemic inflammation on local tissue inflamma-
tion is complex and difficult to directly assess. Insights can be drawn from studies that have
examined muscles from patients with conditions characterized by chronic low-grade sys-
temic inflammation, such as obesity, diabetes and some chronic musculoskeletal conditions
(Table 1). Muscle biopsies from humans with these conditions and animal models show
infiltration of macrophages and neutrophils, M1 macrophage polarization and increased ex-
pression of proinflammatory cytokines and other mediators (including TLR4) [28,30,77,78].
Systemic anti-inflammatory treatments attenuate macrophage infiltration, M1 polarization
and proinflammatory cytokine/mediator expression in these conditions and promote the
expression of anti-inflammatory cytokines [79,80].

3.2. The Role of Systemic Inflammation in Regulating Fibrogenesis

The impact of systemic inflammation on the local inflammatory environment, and
their bidirectional relationship, provides a potential explanation for enhanced fibrosis
in musculoskeletal tissues. Elevated levels of circulating proinflammatory cytokines are
simultaneously present with fibrosis in a wide range of conditions [59]. Chronic muscle
and tendon overuse induces increases in systemic levels of TNF and IL-6 and the fibrogenic
proteins TGF-β1 and CCN2 in musculoskeletal tissues [81–83]. At the tissue level, numer-
ous inflammatory and fibrotic alterations have been observed not only within the directly
affected and neighboring muscle(s) but, also, distant, unrelated muscles [38,55,82–86], high-
lighting the potential influence of systemic mediators. Individuals with chronic low back
pain present with both elevated circulating TNF [66–69] and fibrotic activity in paraspinal
muscles, including increased CCN2 expression and connective tissue accumulation [25].
CCN2 (which is regulated by TNF [87]) is even known to synergize with IL-1β to amplify
inflammatory responses, e.g., enhanced IL-6 production and release [88,89]. Similar in-
flammatory and fibrotic profiles are observed in other musculoskeletal conditions (Table 1).
Non-musculoskeletal conditions that present with systemic and remote local inflammatory
changes (as suggested above) are also characterized by fibrotic changes (Table 1). Despite
differences in the etiologies between these musculoskeletal and non-musculoskeletal con-
ditions, the inflammatory pathways appear similar, with elevated expression of circulating
cytokines, primarily TNF, IL-1β and IL-6 (Table 1). In conditions such as diabetes, this is
likely to underpin fibrosis in remote tissues such as the retinas and kidneys in a similar
manner to that currently proposed in musculoskeletal tissues. The mechanisms mediating
this interaction are beginning to be understood.

The Autotaxin/Lysophosphatidic acid (ATX/LPA) pathway mediates inflammation
and fibrosis and is upregulated in numerous fibrotic conditions (e.g., idiopathic pulmonary
fibrosis, scleroderma and renal interstitial fibrosis) [90]. LPA is an active glycerophospho-
lipid that upregulates local proinflammatory and fibrotic responses in muscles, providing
a plausible link between circulating inflammatory cytokines and fibrotic activity in mus-
cles [91–93]. Systemic TNF is a potent promotor of ATX expression, which synthesizes
LPA. In a model of muscle injury, the intraperitoneal administration of LPA increased
the infiltration of neutrophils and macrophages into the muscle and upregulated muscle
TNF and TGF-β1 expression and, ultimately, muscular fibrosis [91]. Current evidence
suggests that LPA promotes muscle fibrosis via the induction of CCN2 expression [93].
Other pathways are also possible. Further examination of these pathways in models of
chronic inflammation is required.
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Table 1. Examples of musculoskeletal and chronic metabolic/lifestyle-related conditions characterized by inflammation and fibrosis at both the systemic and muscle levels.

Condition Systemic Inflammation/Fibrotic Proteins Muscle Inflammation Muscle Fibrosis

Musculoskeletal/neuromuscular conditions

Complex regional pain
syndrome

<6 months after symptoms onset:

- ↑ IL-8, sTNFR1/2 [94]

>6 months after symptoms onset:

- ↑ CCL2, IL-2, IL-4, IL-7, IL-1Ra, IFNγ,
sIL-1R1, sIL-2Ra, sRAGE, TNF

- ↓ SP [94]

≤4 weeks after initiation in animal model; local and/or
nearby muscles (lower limb):

- ↑ IL-1β, IL-6, MDA, NF-κB, TNF [95–97]

Chronic phase; local and nearby muscles (upper
and lower limbs):

- ↑ connective tissue [98]

2 weeks after initiation in animal model; local and
nearby muscle (lower limb):

- ↑ TGF-β1
- Thickened epimysium, perimysium,

endomysium [96]

Low back pain

Acute phase (<2 weeks):

- ↑ CRP, IL-6, TNF [66,67]

Late/chronic-phase (>3 months):

- ↑ TNF [67,69]

Late/chronic phase (>6 months); nearby muscle
(multifidus):

- ↑ IL-1β, TNF
- M1 macrophage polarization [6,28]

Late/chronic phase (>6 months); nearby muscle
(multifidus):

- ↑ CCN2, TGF-β1, connective tissue
(including Collagen-I/III, fibronectin)

- Thickened epimysium, proliferation of FAPs
[25,27]

Rheumatoid arthritis

Early/late disease stage:

- ↑ CRP, IL-1β, IL-6, TNF
- Cytokines correlate with disease severity

and activity [99–102]

Late/chronic disease stage; nearby muscles (lower limb):

- ↑ IL-1β, IL-6, IL-8, TNF
- M1 macrophage polarization [77,99,103]

Late/chronic disease stage; nearby muscles
(lower limb):

- ↑ collagen, amino acid precursors to fibrosis
[77,99,103]

Work-related overuse
injury/repetitive strain injury

Early/acute phase (≤3 weeks):

- ↑ CXCL10, IL-1β [82]

Sub-chronic phase (6–12 weeks):

- ↑ CCL20, CXCL2, CRP, IL-1α/β, IL-6,
TNF [38,58,104,105]

Late/chronic phase (>12 weeks):

- ↑ CCN2, collagen, markers of collagen
metabolism, CRP, IFNγ, IL-1α, IL-6,
IL-10, IL-12, sIL-1R, TGF-β1, TNF,
TNFR1, visfatin [55,82–84,106–110]

Early/acute phase; local and nearby muscles:

- ↑ CCL2, IL-1α/β, IL-18, glutamate, pyruvate, TNF
- M1 macrophage polarization [38,50,81–83,111–113]

Subchronic phase; local, nearby and/or distant muscles:

- ↑ IL-1α, IL-1β (muscles generally), IL10, TNF
- M1 (distant muscles only) and M2 macrophage

polarization [38,58,81,85]

Late/chronic phase; nearby and distant muscles:

- ↑ IL-6, IL-10, TNF [83]

Early/acute phase; local and nearby muscles:

- ↑myofibroblasts, Collagen-I, TGF-β1 [50]

Subchronic phase; local and nearby muscles:

- ↑ CCN2, Collagen-I, TGF-β1 [79,82]

Late/chronic phase; local, nearby and/or distant
muscles:

- ↑ CCN2, Collagen-I/III, FGF2, IFNγ, PDGF,
TGF-β1

- Persistent M2 fibrogenic CD20+
macrophages [55,82–84,86]
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Table 1. Cont.

Condition Systemic Inflammation/Fibrotic Proteins Muscle Inflammation Muscle Fibrosis

Duchenne muscular dystrophy
Early/late disease stage:

- ↑ IL-6, sRANKL, TNF [114–116]

Early/late disease stage; various muscles:

- ↑ CCL2/7/8, IFNγ, IL-1β, IL-4, IL-5, IL-8, IL-17, M1
macrophages, MIP-1, NF-κB, TNF

- ↓M2 macrophages [115–118]

Early/late disease stage; various muscles:

- Plethora of profibrotic alterations, e.g., ↑
CCN2, TGF-β1/β3, collagen (types I, III, IV,
V, VI, XIV, XV, XVIII), connective tissue,
ECM gene dysregulation, etc. [115,116,119]

Chronic metabolic/lifestyle-related conditions

Alcoholism/alcoholic
myopathy

- ↑ CCL2, CRP, IL-1α/β, IL-6, IL-8, IL-12,
IL-15, TNF, MDA [120–122] - ↑ IL-6, ROS, TNF [123–125] - ↑ TGF-β1, collagen

- Altered expression of genes involved in
ECM [123,126,127]

Cancer related Cachexia - ↑ IL-1β, IL-6, TGF-β1, TNF [62,128] - M1 macrophage polarization [129]
- ↑ CCN2, collagen
- Transformation of fibroblasts into

myofibroblasts [62]

Chronic Obstructive
Pulmonary Disease

- ↑ CRP, IL-1β, IL-6, IL-8, TNF
[73,130,131] - ↑ IL-6, TNF [73,131] - ↑ collagen [132]

Diabetes - ↑ IL-1, IL-6, IL-10, leptin, TNF [65,130] - ↑ IL-6, IL-10, TNF
- Macrophage accumulation [133]

- ↑ in ECM components: Collagen -I/III/IV,
fibronectin, integrin [61]

Obesity

- ↑ CRP, IL-1, IL-6, IL-8, leptin, resistin,
TNF, visfatin [134]

- ↓ adiponectin [63,64,135]

- ↑ IL-8 and TNF
- M1 Macrophage polarization

- ↑ collagen in ECM
- Proliferation of FAPs [63]

Abbreviations: CCL2—chemokine (C-C motif) ligand 2; CCL7—chemokine (C-C motif) ligand 7; CCL8—chemokine (C-C motif) ligand 8; CCL20—chemokine (C-C motif) ligand 20; CCN2—cellular communication
network factor 2; CRP—C-reactive protein; CXCL2—chemokine (C-X-C motif) ligand 2; CXCL10—C-X-C motif chemokine ligand 10; ECM—extracellular matrix; FAPs—fibro/adipogenic progenitors; FGF2—
fibroblast growth factor 2; IFNγ—interferon gamma; IL-1α—interleukin-1 alpha; IL-1β—interleukin-1 beta; IL-2—interleukin-2; IL-4—interleukin-4; IL-5—interleukin-5; IL-6—interleukin-6; IL-7—interleukin-7;
IL-8—interleukin-8; IL-10—interleukin-10; IL-12—interleukin-12; IL-15—interleukin-15; IL-17—interleukin-17; IL-18—interleukin-18; IL-1Ra—interleukin-1 receptor antagonist; MDA—malondialdehyde;
MIP-1—macrophage inflammatory protein-1; NF-κB—nuclear factor kappa-light-chain-enhancer of activated B cells; PDGF—platelet-derived growth factor; ROS—reactive oxygen species; sIL-1R1—soluble
interleukin-1 receptor type 1; sIL-2Rα—soluble interleukin-2 receptor alpha; SP—substance P; sRAGE—soluble receptor for advanced glycation end-products; sRANKL—soluble receptor activator of nuclear
factor (NF)-κB ligand; sTNFR1—soluble tumor necrosis factor receptor 1; sTNFR2—soluble tumor necrosis factor receptor 2; TGF-β1—transforming growth factor beta 1; TGF-β3—transforming growth factor
beta 3; TNF—tumor necrosis factor; TNFR1—tumor necrosis factor receptor 1.
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4. Does the Impact of Systemic Inflammation on Local Inflammation Provide a Link
between Psychological and Lifestyle Factors in Health of Musculoskeletal Connective
Tissues?

The systemic inflammatory environment is modulated by factors other than those
directly associated with “immune” function. These include psychological or lifestyle
features, and the health consequences are broad. Growing evidence of the capacity for
systemic inflammation to influence local inflammation provides a plausible link between
these factors and the health of musculoskeletal tissues.

4.1. Links between Psychological Factors and Systemic Inflammation

Many psychosocial factors are associated with increased systemic levels of proinflam-
matory mediators (e.g., TNF, IL-1β and IL-6) and decreased anti-inflammatory mediators
(e.g., IL-10) [67,136–139]. Meta-analyses suggest these factors can trigger a systemic inflam-
matory response by disrupting the balance of the immune system [140–142]. Acute psy-
chosocial stressors (e.g., work, family and financial stress) activate the sympathetic nervous
system (SNS) and hypothalamic pituitary adrenal axis (HPA axis), which are together re-
sponsible for the maintenance or reinstatement of homeostasis during stress [143]. The SNS
promotes the secretion of catecholamines (i.e., dopamine, epinephrine and norepinephrine)
from the adrenal medulla and sympathetic nerve endings via several mechanisms (for
review, see references [143,144]). Once released, they stimulate the upregulation of proin-
flammatory cytokines, which increases systemic inflammation [139,145]. This is followed
by slower activation of the HPA axis—hypothalamic secretion of corticotropin-releasing
hormone (CRH), which triggers the pituitary secretion of adrenocorticotropic hormone
(ACTH), which then stimulates the release of glucocorticoids (cortisol) by the adrenal
glands [143]. Both catecholamines (proinflammatory) and cortisol (anti-inflammatory)
regulate inflammation and, under normal circumstances, work synchronously to restore
internal homeostasis and turn off the stress response by negative feedback inhibition [143].
A different set of dynamics can emerge under conditions of recurring or sustained stress,
leading to HPA axis-related increases (rather than decreases) in inflammation [139]. This
phenomenon is related, at least in part, to reduced feedback inhibition by glucocorticoids
(i.e., cortisol). Through binding to their receptors (glucocorticoid receptor) in the HPA axis,
glucocorticoids are potent negative regulators of the HPA axis [143]. When glucocorticoid
levels persist, their receptors can become less sensitive, altering negative feedback regula-
tion and leading to excessive glucocorticoid secretion [144,146]. Similarly, immune cells
become less sensitive to the anti-inflammatory effects of glucocorticoids in order to compen-
sate for their persistence [146,147]. With cortisol unable to suppress inflammation, stress
continues to promote proinflammatory cytokine production (via the SNS) indefinitely.

Consistent with the capacity for stress to modulate immune function, and the role
of psychosocial stress as a risk factor for the development of various psychological con-
ditions [148,149], inflammatory processes are considered central to the pathogenesis of
conditions such as depression and anxiety [150–152]. For instance, peripherally released
cytokines can access the brain by crossing the blood–brain barrier at specific sites (e.g.,
circumventricular organs) or send signals via TLRs that stimulate cytokine expression in
the brain [153–156]. Once in the brain, there is a cytokine network consisting of neural
and glial elements that not only produce cytokines and express cytokine receptors but also
amplify cytokine signals, all of which can profoundly affect neurotransmitters (serotonin,
norepinephrine and dopamine) that impact psychological conditions (and mood regula-
tion), pain and other behaviors [150,157]. In turn, stress is likely to perpetuate and continue
to trigger systemic inflammation.

Although very few, if any, studies have focused on the potential implications of in-
flammation induced by stress/psychology on the health of tissues, the notion is supported
by empirical evidence. For example, stress is associated with inflammatory-related symp-
toms (e.g., swelling) in rheumatoid arthritis [158–160]. Stress is also a risk factor for the
development of persistent pain [161,162] and inflammatory-driven musculoskeletal dis-
eases [163,164], and is associated with disease exacerbation [165,166]. A key consideration
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in these contexts is that stress/psychological factors and inflammation are bidirectionally
linked—one can mediate the other via the HPA axis. Animal studies have shown that
peripheral inflammatory events in the absence of stress, such as those that occur after
tissue injury, induce psychological and behavioral symptoms [167–170]. Regardless of the
direction of causality, persistent psychogenic stress and unmoderated inflammation could
have a synergizing effect on the HPA axis, amplifying the cycle of psychological distress,
systemic and local inflammation, and tissue pathology.

4.2. Links between Lifestyle Factors and Systemic Inflammation

Research is continuing to reveal prominent candidate factors that induce systemic
inflammation. Sleep is a well-known modulator of systemic inflammation [171,172]. Sleep
aids in the recovery from infections and other disease states by regulating major effector
systems of the CNS such as the HPA axis and the SNS (like stress), as well as the im-
mune system [173]. The different stages of sleep (i.e., rapid eye movement sleep and the
three stages of non-rapid eye-movement sleep) differently regulate nocturnal levels of
inflammatory cytokines, and this lays the foundation for inflammatory levels through-
out the day [174–177]. Sleep loss or disturbance can alter this inflammatory balance (via
activating the stress response [178] and/or inflammatory signaling pathways, e.g., those
involving nuclear factor-κB (NF-κB), activation protein-1 (AP-1) and signal transducer and
activator of transcription (STAT) family proteins [172,179–181]), initially inducing a shift
in the temporal pattern of inflammatory responses, with increased levels of inflammatory
cytokines during the day rather than during the night [173,177]. These effects are observed
after as little as one night of partial sleep loss [182–185]. Repeated or persistent periods of
sleep loss/disturbance can lead to excessive and sustained activation of this inflammatory
response, leading to chronically elevated systemic inflammation [186–188], as well as a
host of other health-related problems underpinned by an inflammatory imbalance [189].
Like stress, these relationships are bidirectional and potentially cyclical—changes in the
peripheral inflammatory status (e.g., after injury) can alter sleep via various mechanisms
(for review, see references [173,190]).

Other lifestyle factors also impact systemic inflammation. For instance, physical
activity/exercise strongly promotes anti-inflammatory processes and suppresses proin-
flammatory processes [191,192], whereas inactivity has the opposite effects [193–195]. Per-
sistent physical inactivity leads to visceral adipose accumulation [196], which is a potent
source of inflammatory factors [197], and is commonly accompanied by fatigue and muscle
wasting—closing the negative cycle of inactivity, inflammation and poor health. Alcohol
is another well-known immune modulator [198]. It can induce inflammation via agents
derived from alcohol damaged cells and those derived from gut microflora, specifically
LPS [121,199,200]. With respect to the latter, heavy alcohol consumption increases gut
permeability and can cause leakage of gut microflora-derived agents (e.g., LPS) into the
circulation and initiate an immune response [200]. Further, many foods, nutrients and non-
nutrient food components modulate inflammation both acutely and chronically [201,202]
via various mechanisms (for a review, see reference [203]), including those linked with in-
creased adiposity and gut permeability. Cigarette smoke is another powerful modulator of
inflammation, with far-reaching and complex effects on immunity that lead to constitutive
inflammation, the skewing of adaptive T-cell-mediated immunity and impaired responses
to pathogens, among others [204]. Encouragingly, most of these inflammatory-related
changes are reversible.

4.3. Reconsidering Health of Musculoskeletal Connective Tissues from a Bio-Psycho-Social and
Lifestyle Perspective

The hypothesis that the systemic inflammatory environment can substantially in-
fluence musculoskeletal inflammation and fibrogenesis, and that various psychosocial
and lifestyle factors can impact systemic inflammation, provides a new understanding
of the bio-psycho-social nature of musculoskeletal conditions and the need to consider
musculoskeletal health from a “whole system” perspective that integrates both body and
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mind. Many of the psychological, lifestyle and biological mediators/moderators of sys-
temic inflammation are reciprocally related, meaning a disturbance to any could have
pathological consequences on the other, setting up a vicious cycle that results in excessive
inflammation with potential implications for local tissues. On the flipside, this opens
the enticing possibility that interventions aimed at one aspect (e.g., stress, sleep, physical
activity or inflammation) could positively affect the others.

5. New Opportunities to Understand and Enhance the Effects of Treatments

An issue when viewing musculoskeletal health from a “whole system” perspective
is that the list of potential contributors is vast. Although research has highlighted factors
that potently impact inflammation (e.g., sleep, physical activity and stress/psychological
factors), further work is necessary to understand the potential clinical relevance of these
interactions for the development of connective tissue changes in musculoskeletal conditions.
For instance, does the combination of specific factors have a cumulative—or greater—effect
on inflammation and musculoskeletal health? Do “good” lifestyle choices (e.g., exercise)
offset the impact of “bad” choices (e.g., poor sleep)? Do some factors have a greater short-
and/or long-term impact on inflammation and tissue health when present earlier versus
later in the injury cycle, and vice versa? The latter may have relevance for considering
which factors to treat at different stages (e.g., acute, subacute or chronic) of the injury
or condition. This information would be foundational for guiding treatments aimed at
preventing and reversing these changes.

The hypothesis presented in this paper provides a foundation to consider potential
roles for a diverse array of treatments for the prevention and resolution of connective tissue
changes in musculoskeletal conditions. The new hypothesis suggests even the potential for
tissue-level effects from interventions targeting psychosocial and lifestyle factors. Overall,
the interaction between local and systemic inflammation highlighted in this hypothesis
provides a foundation to consider the potential diverse effects of many interventions. For
example, psychosocial interventions such as cognitive behavioral therapy (CBT) applied to
address depression or insomnia can reduce systemic inflammatory activity [205]. Moreover,
improvements in depressive symptoms and sleep are associated with reduced concen-
trations of circulating cytokines [206–209]. If the management of depression or sleep can
reduce systemic inflammation, particularly TNF, then it is plausible that these inflammatory
changes can also positively moderate local inflammatory processes via systemic-to-local
pathways as described in Section 3. Exercise as an intervention can directly impact both
systemic and local inflammation and, thus, has potential to impact both body and mind.
Although the anti-inflammatory effects of exercise are largely systemic and attributed to
changes in “non-muscle” factors/cells (e.g., reduced adipose tissue, macrophages, T- and
NK cells and activation of the HPA axis) [210,211], the contracting muscle cells themselves
produce IL-6, which inhibits TNF and stimulates the production of anti-inflammatory cy-
tokines [212]—highlighting the dual systemic and local impact of exercise on inflammation,
with potentially broad therapeutic implications. For instance, the potent anti-inflammatory
effects of aerobic whole-body exercise [191,213] are accompanied by reduced musculoskele-
tal fibrosis [27] (unless injured tissues are loaded [214]) and improvements in psychological
wellbeing and lifestyle health [215,216]. Other factors might have similar multidirectional
effects. Many of the immune (e.g., inflammatory) and tissue changes associated with
cigarette smoking and excessive alcohol consumption are substantially diminished, or even
completely reversed, when reduced or ceased [217–222]. Again, these changes can posi-
tively impact both tissue- and higher- (psychosocial and lifestyle) level aspects [223,224].
Further, anti-inflammatory (e.g., systemic ibuprofen, anti-TNF and NSAIDs) treatments
reduce not only systemic and tissue inflammation and fibrosis, but also markedly improve
psychosocial features, including reversing/reducing clinical symptoms of depression and
schizophrenia, and improving social interaction [80,84,104,225–229]. The underlying mech-
anisms are probably similar to those underpinning the psychological benefits of exercise,
and likely include the anti-inflammatory “curbing” of proinflammatory alterations in the
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metabolism of neurotransmitters [150,151,230] (see Section 4.1). There is enormous poten-
tial to develop and refine targeted interventions that match the presenting confluence of
factors that might drive the interaction between psychology/lifestyle—systemic and local
inflammation—and fibrosis to preserve and restore the health of musculoskeletal tissues.

6. Conclusions

This paper presents a hypothesis that provides a new foundation to understand the
connection between body and mind in musculoskeletal conditions. With the interaction
between local and systemic inflammation at its core, the hypothesis provides a plausible
and testable link from psychology and lifestyle to connective tissue health that might guide
the development of more effective targeted treatments in musculoskeletal conditions.
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