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COVID-19 management guidelines have largely attributed critically ill
patients who develop acute respiratory distress syndrome, to a systemic
overproduction of pro-inflammatory cytokines. Cardiovascular dysfunction
may also represent a primary phenomenon, with increasing data suggesting
that severe COVID-19 reflects a confluence of vascular dysfunction,
thrombosis and dysregulated inflammation. Here, we first consolidate the
information on localized microvascular inflammation and disordered cyto-
kine release, triggering vessel permeability and prothrombotic conditions
that play a central role in perpetuating the pathogenic COVID-19 cascade.
Secondly, we seek to clarify the gateways which SARS-CoV-2, the causative
COVID-19 virus, uses to enter host vascular cells. Post-mortem examinations
of patients’ tissues have confirmed direct viral endothelial infection
within several organs. While there have been advances in single-cell
RNA sequencing, endothelial cells across various vascular beds
express low or undetectable levels of those touted SARS-CoV-2 entry factors.
Emerging studies postulate alternative pathways and the apicobasal
distribution of host cell surface factors could influence endothelial
SARS-CoV-2 entry and replication. Finally, we provide experimental con-
siderations such as endothelial polarity, cellular heterogeneity in organoids
and shear stress dynamics in designing cellular models to facilitate research
on viral-induced endothelial dysfunctions. Understanding the vascular
underpinning of COVID-19 pathogenesis is crucial to managing outcomes
and mortality.
Highlights
(1) Pre-existing conditions which compromise vascular health are one of the

driving factors for severe COVID-19 outcomes and mortality.
(2) SARS-CoV2 uses multiple entry factors in vascular endothelial cells.
(3) Apicobasal distribution of host cell surface factors and expression changes over

the course of the disease could influence SARS-CoV-2 entry and replication.
(4) SARS-CoV-2 infection studies should consider experimental aspects such as

polarity of endothelial cells, cellular heterogeneity in organoid models and
shear stress dynamics.

1. Introduction
Coronavirus disease 2019 (COVID-19) case study reports have called attention
to the overrepresentation of cardiovascular diseases, in addition to respiratory
diseases, among patients at risk of critical illness and mortality following severe
acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection [1–8]. This
susceptibility of infected patients with underlying cardiovascular comorbidities
to adverse health outcomes was also common among severe acute respiratory
syndrome and Middle East respiratory syndrome—the predecessors of
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COVID-19 [9,10]. Of note, these comorbidities are often
paired with advancing age, thus these individuals already
present with compromised innate immunity, impairing their
ability to mount an effective immune response following
viral infection [11]. SARS-CoV-2 further exacerbates the con-
dition by suppressing the hosts’ innate antiviral defences,
associated with low levels of interferon-I and -III and
elevated chemokine expression [12].

Initial concernswere also raised regarding themedical treat-
ment of hypertension with adverse COVID-19 outcomes, as
studies in animals have shown that the use of renin–angiotensin
system blockers–angiotensin-converting enzyme inhibitors and
angiotensin receptor blockers result in the upregulation of
angiotensin-converting enzyme 2 (ACE2) expression, which is
an entry factor for SARS-CoV-2 [13]. Hence, it was speculated
that their use may increase susceptibility to and severity of
SARS-CoV-2 infection. However, a multinational cohort study
analysing electronicmedical records of over 1.1 million patients
on antihypertensive drugs found no clinically significant
increased risk of COVID-19 diagnosis, hospitalization or
complications [14]. The direct mechanisms between underlying
cardiovascular diseases and COVID-19 morbidity and
mortality warrant further investigation.
2. The link between compromised vascular
health and COVID-19 severe outcomes

The largest case series report to date, of 72 314 COVID-19 cases
in mainland China, found that of the 44 672 confirmed cases,
12.8% had hypertension, 5.3% diabetes and 4.2% cardio-
vascular disease [3]. Moreover, among the 1023 deaths from
confirmed cases, 39.7% had hypertension, 22.7% had cardio-
vascular disease and 19.7% had diabetes [3]. Meta-analysis
based on data from seven studies in China, including a total
of 1576 cases, found that the most prevalent comorbidities
were hypertension (21.1%), diabetes (9.7%) and cardiovascular
disease (8.4%) [7]. In addition, severe and non-severe patients
were compared to assess the risk of underlying disease with
adverse outcome, using a random-effects model to pool odds
ratios and 95% confidence intervals. The pooled odds ratio of
cardiovascular disease was 3.42 (95% confidence intervals:
1.88–6.22) and hypertension was 2.36 (95% confidence
intervals: 1.46–3.83) [7].

In France, clinical characterization of 34 patients admitted
to intensive care unitswith COVID-19-related acute respiratory
distress syndrome found that 44.1% had diabetes, 38.2% had
hypertension and 8.8% had ischaemic cardiopathy [8]. Further-
more, among these patients, 79.4% had deep vein thrombosis.
Collectively, these case reports of confirmed COVID-19 hospi-
talized patients strongly indicate a strong association between
underlying cardiovascular diseases and diabetes with severe
health outcomes and fatality following SARS-CoV-2 infection.

Endothelial dysfunction, typically responsible for
cardiovascular complications, plays a significant role in the
pathogenesis of thrombosis in severe COVID-19 outcomes
[15]. Indeed, a significant proportion of intensive care unit-
admitted patients with severe COVID-19 develop thrombotic
complications [16]. When damaged or dysfunctional, the
endothelium releases prothrombotic factors such as von
Willebrand factor, predisposing patients to deep vein thrombo-
sis [17]. A pulmonary embolism can subsequently occur when
the blood clot travels through the heart to the pulmonary
arteries. Here, the vascular occlusion results in heterogeneous
pulmonary perfusion and impaired gas exchange, generating
hypoxaemia [18]. Both deep vein thrombosis and pulmonary
embolism substantially increase a patient’s risk of myocardial
infarction and stroke [19].

Furthermore, injuries of the pulmonary capillary endo-
thelium increase its permeability, causing fluid leakage into
the pulmonary parenchyma [20]. This fluid accumulation over-
whelms hydrostatic forces and results in excess flow of fluid
into the alveoli. The resulting oedema impairs gas exchange
by increasing the alveolar diffusion barrier for oxygen and
carbon dioxide [20]. Acute respiratory failure due to the
leaky pulmonary capillary has been reported in COVID-19
patients [21].

Interestingly, the Randomised Evaluation of COVID-19
Therapy clinical trial from the University of Oxford (Clinical-
Trials.gov, NCT04381936) [22] has shown that treatment with
dexamethasone reduced COVID-19 mortality by one-third in
patients requiring ventilation, and by one-fifth in patients
receiving oxygen therapy [23]. The use of dexamethasone
is effective at moderating systemic inflammation [24,25].
Of note, cultured human endothelial cells treated with
dexamethasone significantly decreased their endothelial
permeability [26]. And, mechanistically, it has been shown in
cultured rat brain endothelial cells that this dexamethasone-
induced decrease in endothelial permeability is due to the
cytoskeletal redistribution and improved continuity of tight
junctional proteins [27]. Furthermore, dexamethasone reduces
the levels of circulating pro-inflammatory cytokines, such
as IL6, TNF-α and IFN-γ [28], which are known to induce
expression of endothelial adhesionmolecules, such as vascular
cell adhesionmolecule-1 and intercellular adhesionmolecule-1
[29]. Collectively, these may imply that the improved survival
of COVID-19 patients treated with dexamethasone may be
due to the alleviation of leaky pulmonary capillary syndrome
and prothrombotic state.
3. Entry of SARS-CoV-2 into vascular
endothelial cells: how many gateways?

To date, the pathogenesis and the extent of the damage
directly or indirectly affected by SARS-CoV-2 is surfacing
with new symptoms reported on a regular basis. SARS-
CoV-2 was initially presented as targeting mainly the lung
[30]. However, clinical observations and post-mortem find-
ings reported an increasing list of disease presentations that
differ from patient to patient [31], indicating that SARS-
CoV-2 can infect and damage a wide range of tissue and
organs. While both SARS-CoV-2 and its predecessor, SARS-
CoV, lead to pulmonary failure, SARS-CoV is mainly a
lower respiratory tract disease [32]. In situ hybridization
study of fatal cases indicate that the primary target cells of
SARS-CoV are the pneumocytes and surface enterocytes of
the small intestine [33]. Other organs were also reported as
positive for SARS-CoV [34], although the relevance of such
presence remains debatable. In COVID-19, direct SARS-
CoV-2 infection and inflammation of the endothelium was
evident across vascular beds [35]. It was postulated that
COVID-19 and severe acute respiratory syndrome could
also share vascular pathology as there were a few reports of
systemic vasculitis in severe acute respiratory syndrome
patients [36,37]. Higher fatality rates seen in severe acute
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respiratory syndrome might have limited its far-reaching
impact on extra-pulmonary organs.

Underlying a vascular dysfunction in COVID-19, rare
Kawasaki-like multisystem inflammatory characterized by
vasculitis—inflammation of blood vessel walls and coronary
artery aneurysms—were recently reported in children
[38–40]. Furthermore, deadly pulmonary thromboembolism
even after virus clearance highlighted that vascular
complications inherited from the infection can cause long-
term damage (https://www.moh.gov.sg/news-highlights/
details/350-more-cases-discharged-344-new-cases-of-covid-
19-infection-confirmed). Most of those complications reflect a
confluence of vascular dysfunction, thrombosis and dysregu-
lated inflammation [41], supporting the role of endothelial
cells as one of the key contributors to the propagation of
severe COVID-19 [42].

Successful infection of a host cell by SARS-CoV-2 is a
two-step process involving attachment via the receptor and
membrane fusion for the release of viral RNA into host cell
cytoplasm. Proteolytic activation of the viral spike protein
by host proteases has been shown to be essential for the
second step [43]. It is widely accepted that SARS-CoV-2
infects host cells using ACE2 for entry and the trans-
membrane serine protease 2 (TMPRSS2) for spike protein
priming [43]. Comprehensive mapping of viral entry gene
mRNA using single-cell/nuclei transcriptomic analyses has
provided insights into the organs of target during COVID-
19 pathogenesis. Transcriptomic analyses of heart samples
reported that among the multiple vascular cell types, ACE2
expression is strongest in pericytes, followed by vascular
smooth muscle cells (VSMCs), while TMPRSS2 has no detect-
able or low levels of transcript [44–47]. Although He et al. [48]
found a number of endothelial cells displaying Ace2/ACE2
RNA-sequencing counts for the brain and heart of mouse
and human tissue, these samples also expressed pericyte
markers, implying that the Ace2/ACE2-positive endothelial
cells were contaminated with pericytes. Challenges associ-
ated with the dissociation of pericytes and endothelial cells
for single-cell analysis could be responsible for the discre-
pancy in published data [49]. Those studies along with
others that analysed the distribution of the viral entry genes
mRNA across multiple healthy human organs highlighted
that ACE2 and TMPRSS2 are either poorly or not expressed
in the endothelial cells [50,51]. Furthermore, when ACE2
and TMPRSS2 mRNA are detected in these endothelial
cells, only a scarce number of cells co-express both [52].
On the other hand, endothelial internalization of exosomes
originated from the closely associating pericytes has been
described [53]. It remains to be explored on the possibility
of endothelial infection by exosome-mediated uptake of
viral materials from ACE2-expressing pericytes.

In contrast with the transcriptomic data, protein-level
analyses of ACE2 seem to suggest endothelial cell expression,
in line with previous findings indicating that ACE2 can be
post-transcriptionally regulated [54,55]. Immunohistochem-
ical staining of tissue samples from a wide range of human
organs revealed ACE2 expression within the arterial and
venous endothelial cells [56]. In fact, a strong immunodetec-
tion of ACE2 was reported in the endothelium of human
tissue samples obtained from the lungs, heart, kidneys, oral
mucosa, brain, stomach, small intestine and colon [56–58].
Moreover, histological analysis of lungs obtained on autopsy
from COVID-19 patients found an increased number of
ACE2-positive capillary endothelial cells, along with severe
endothelial injury and disrupted endothelial cell membranes
[59], highlighting that the expression of ACE2 may increase
during COVID-19 pathogenesis. While ACE2 is readily
expressed, immunostaining of human blood vessels indicated
that TMPRSS2 is only weakly detected in some endothelial
cells [60]; hence, the virus may use alternative host proteases
to infect endothelial cells.

It was previously shown that SARS-CoV-2 can use
cysteine proteases cathepsin B/L [43,61] to prime spike
protein in TMPRSS2-negative cell lines. These proteases
are ubiquitously expressed in the endothelial cells and are
involved in vascular remodelling and cardiovascular diseases
[62–64]. Here, we propose that the availability of viral
entry-associated proteins can plausibly explain the tropism
of SARS-CoV-2 for endothelial cells (figure 1). SARS-CoV-2
may invade and spread from the endothelial cell using the
ACE2/cathepsin B/L pathway. As the expressions of ACE2
and TMPRSS2 in endothelial cells are upregulated during
inflammation, it is also possible that SARS-CoV-2 infects
the endothelium via ACE2/TMPRSS2 mechanisms during
the course of the disease [65].

Importantly, we cannot rule out the existence of ACE2-
independent pathway(s). Recently, CD147, also known as basi-
gin, has been proposed to act as a receptor for SARS-CoV-2.
CD147 is a plasma-membrane signalling receptor belonging
to the immunoglobulin superfamily, expressed at varying
levels on many cell types, including endothelial cells [66] and
involved in a wide range of function and diseases along with
its interacting partners [67–69]. In addition to its physiological
role, CD147 was also shown to be involved in the entry of
several viruses. CD147 had been shown to indirectly promote
the infection of various viruses including HIV-1 and SARS-
CoV through interaction with the host cyclophilin A [70,71].
This chaperone protein [72] is incorporated in the nascent
virus particles during infection and redistributed on the surface
of the virus [71,73]. In vitro results obtained with human
cytomegalovirus also reported that CD147 promotes virus
entry in endothelial cells, indirectly through other proteins
[66]. Treatment with CD147-antagonist peptide 9 has an
inhibitory effect on SARS-CoV [71], while the anti-CD147
antibody, meplazumab, was able to block SARS-CoV-2 infec-
tion of Vero-E6 cells (monkey kidney epithelial) with an EC50

of 24.86 µg ml−1 and IC50 of 15.16 µg ml−1. Importantly,
immunoprecipitation, ELISA and surface plasmon resonance
supported an interaction between CD147 and the receptor
binding domain of viral spike protein. Immuno-electron
microscopy also revealed colocalization of viral spike protein
with CD147 in viral inclusion bodies of infected cells [74].
To date, more studies are needed to establish whether CD147
can functionally be used as a SARS-CoV-2 receptor. However,
a direct interaction of CD147 and SARS-CoV-2may be of prime
interest for therapeutic strategy as it would support that CD147
may act as receptor and promote direct viral entry, unlike for
the other viruses. Based on these results, a phase II clinical
trial, ‘Clinical study of anti-CD147 humanized meplazumab
for injection to treat with 2019-nCoV pneumonia’ (Clinical-
Trials.gov Identifier: NCT04275245) [75], to test the inhibitory
effect of anti-CD147 antibodies is currently underway.
ACE2-independent pathway(s) may also be used to infect
ACE2-negative cells. This may be the case in liver vasculatures,
where endotheliitis was reported [35] despite the fact that liver
sinusoidal endothelial cell do not express ACE2 [50–52,56,58],
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Figure 1. Proposed viral entry mechanisms of SARS-CoV-2 in the endothelial cell. Coronavirus attachment and entry require the presence of known host-factors such
as ACE2 and TMPRSS2 and/or cathepsins B/L. Existing data seem to suggest that most of the vascular endothelial cells have an expression profile of ACE2+/cathepsins
B/L+/TMPRSS2low/−. In the absence or in the presence of a suboptimal amount of TMPRSS2, cleavage activation of the viral spike protein by cathepsins B/L is crucial
for successful membrane fusion and subsequent release of viral RNA into the host cell. The viral RNA is then translated by the host ribosomal machinery to give rise
to structural and non-structural viral proteins that are essential for the completion of the virus’ replication cycle. SARS-CoV-2 may also use other potential cell surface
host factors (e.g. CD147), independent of ACE2, to infect endothelial cells. The subcellular localization of identified receptors and cofactors in the endothelium
remains to be determined and will be crucial to the success of establishing endothelial cell models for SARS-CoV-2 infection.
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while the presence of CD147 has been readily reported [76,77].
As expression of CD147 is increased following inflamma-
tion and vascular injury [78], this may further increase the
infectivity of viruses.

For SARS-CoV-2 to gain a foothold in endothelial infection,
it requires further interaction with the host cell machinery. An
increasing body of evidence supports a differential interplay
between autophagy components and coronavirus. Autophagy
is a highly conserved process of cytoplasmic degradation used
to maintain cellular homeostasis and eliminate pathogens
including viruses. Unwanted elements are enclosed into autop-
hagosomes which eventually fuse with lysosomes to form
autolysosomewhere the degradation occurs [79–81]. However,
MERS-CoV has been shown to escape degradation by inhibit-
ing autophagy at the autolysosome formation stage possibly
via the viral non-structural protein 6 and accessory proteins
4b and 5, leading to an increase in the number of autophago-
somes and a decrease in the autolysosome ratio [82].
Whether this increased number of autophagosomes in turn
enhances the viral replication rate as shown for other viruses
remains controversial [83]. A converging hypothesis suggested
that a subset of autophagosomes generated by the non-canoni-
cal ATG5/ATG7-independent autophagy pathway could be
used by coronaviruses to carry out their replication [84]. The
role of the autophagy pathway during SARS-CoV-2 infection
of endothelial cells remains to be determined. A preprint
reported that during in vitro infection of human bronchial epi-
thelial cells and monkey kidney cell lines, SARS-CoV-2
manipulates the autophagy pathway in a manner similar to
MERS-CoV and that pro-autophagic compounds could inhibit
viral propagation in vitro [85]. Autophagy inducers/modu-
lators are currently under active scrutiny. Many of them are
FDA-approved drugs used for other diseases and some have
been shown to have inhibitory activity in vitro against SARS-
CoV-2 [84]. In keeping with this, the combination of auto-
phagy-modulating agents may provide synergistic effects
that need to be further confirmed in preclinical studies.
4. Role of ACE2 in vasculatures
Of interest, levels of vascular ACE2 expression may be altered
in the course of disease. Since ACE2 expression is thought
to be indicative of SARS-CoV-2 infection susceptibility, this
may have implications for the severity of COVID-19 outcomes.
Following partial ligation of the common carotid artery in
a murine model of disturbed flow-induced atherosclerosis,
endothelial Ace2 expression significantly increased, but
subsequently decreased during disease progression [86].
Thus, given that the endothelial cells display significantly
different levels of Ace2 expression during early and advanced
phases of atherosclerosis, this may result in altered levels of
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endothelial susceptibility to SARS-CoV-2 infection for these
individuals. During infection, SARS-CoV infection and its
spike protein alone has been found to downregulate ACE2,
thus modulating the renin–angiotensin system and contribut-
ing to the development of severe lung disease in infected
mice [87,88]. In COVID-19 patients, serum levels of angiotensin
(Ang) II, the substrate of ACE2, were found to be significantly
elevated and positively correlated with pulmonary damage
and viral load [89]. However, a post-mortem study of the
lungs from COVID-19 victims found a greater number of
ACE2-positive cells than control sections [59]. It remains to
be determined how SARS-CoV-2may have disrupted the func-
tion of ACE2 in the course of infection, leading to endothelial
dysfunction.

ACE2 is an important homeostatic regulator of vascular
function, and its altered expression and activity is associated
with cardiovascular disorders [90]. In acute lung injury,
which can deteriorate into acute respiratory distress syndrome,
ACE2 is able alleviate the pathogenesis through protecting pul-
monary endothelial cells from apoptosis [91]. Mechanistically,
this anti-apoptotic effect of ACE2 is mediated through inhi-
bition of nitric oxide-induced phosphorylation of SMAD2,
which prevents phosphorylated SMAD2 from increasing
pro-apoptotic proteins and decreasing anti-apoptotic proteins.
Human endothelial cell models of atherosclerosis have
demonstrated that ACE2 overexpression alleviates impaired
endothelial function, through inhibiting proliferation, and
enhancing migration and tube-like formation, indicative of
improved endothelial cell function and neovascularization
[92]. Further modelling of atherosclerosis has shown that the
overexpression of ACE2 in human endothelial cells can inhibit
the inflammatory response by inhibiting endothelial-monocyte
adhesion molecules and decreasing Ang II-induced cytokine
production [93]. ACE2 has further been proposed to exert a
protective role on the endothelial cells in response to shear
stress [94]. Exposing cultured human umbilical cord endo-
thelial cells to shear stress upregulated ACE2 expression,
which, through inhibiting proliferation and inflammation,
maintained endothelial homeostasis.

Although the role of ACE2 within pericytes remains largely
unexplored, lentiviral vector-mediated overexpression of Ace2
in the rat heart has been shown to protect against hyperten-
sion-induced cardiac remodelling by inhibiting perivascular
fibrosis [95]. This may imply that ACE2 has a protective role
in the perivascular cells, such as pericytes. Within VSMCs,
ACE2 functions to protect against Ang II-induced prolifera-
tion and migration [92]. Studies found that mice with
Ace2 deficiency had larger vascular lesions in aortic athero-
sclerotic plaques and arterial neointima formation, due to
increased VSMC proliferation [96]. Isolated VSMCs of these
mice displayed an augmented pro-inflammatory phenotype.
Additionally, aortic VSMCs from Ace2 knockout mice showed
increased NADPH oxidase-dependent reactive oxygen pro-
duction and apoptosis in response to Ang II [97]. Thus, ACE2
also protects VSMCs from Ang II-mediated vascular inflam-
mation, oxidative stress and cell death. Mechanistically, using
human umbilical artery smooth muscle cells, it has been
shown that ACE2 protects against Ang II-induced superoxide
generation and proliferation by modulation of the JAK2/
STAT3/SOCS3 and profilin-1/MAPK signalling pathways
[98]. Thus, ACE2, similar to its functions in endothelial cells,
plays a protective role in VSMCs. Furthermore, pericytes
cells elicit pro-survival effects on endothelial cells [99–101].
If pericytes become damaged by SARS-CoV-2 infection, the
loss of pericyte protection would in turn compromise endo-
thelial cell function and vascular integrity.

Taken together, patients with cardiovascular disease may
be at increased risk of vascular SARS-CoV-2 infection, and,
therefore, severe COVID-19 outcome, depending on the type
of vascular complications, and the stage of disease. However,
more studies quantifying vascular ACE2 expression during
the progression of vascular diseases are needed.
5. Endothelial models for studying impact
of viral infection

Suitable endothelial cell infection models have great potential
for accelerating scientific discovery of COVID-19 pathogenesis.
Here, we discuss the experimental considerations in designing
endothelial models for infection studies (table 1). At the time of
writing, there is a published study on in vitro SARS-CoV-2
infection of endothelial cells. Engineered human capillary
organoids, generated from patient-induced pluripotent
stem cells, were successfully infected with SARS-CoV-2, as
confirmed by recovery of viral RNA from organoids
post-infection [102]. This model was used to show that
SARS-CoV-2 infection can be inhibited by the addition of
human recombinant soluble ACE2. Though these organoids
lack the natural milieu of the host immune system and sur-
rounding cell types, they do closely resemble human
capillaries, containing a lumen, basal membrane, CD31+ endo-
thelial lining and PDGFR+ pericyte coverage. Another study
sought to understand why children make up only a small pro-
portion of those experiencing severe COVID-19 complications
has been proposed. The research proposition is to expose
SARS-CoV-2-infected endothelial cells with plasma from chil-
dren, healthy adults or adults with underlying vascular
disease [112]. To investigate susceptibility to blood clot for-
mation, plasma samples from adults and children with
COVID-19 will be used to analyse for protein released by
damaged endothelial cells. These findings aim to shed light
onto why aged patients, and those with underlying cardiovas-
cular disease, have increased risk of severe COVID-19
outcomes.

Numerous models have been designed and developed to
study viral infections of the blood vessels, many of which
have focused on endothelial polarity. In particular, the apicoba-
sal polarity of brain endothelial cells has been of much interest,
given the viral disruption of the blood–brain barrier [113].
Endothelial permeability is usually determined by trans-endo-
thelial electrical resistance, awell-established non-invasive tool
for assessing barrier integrity [114], as well as a solute flux
assay based on fluorescently labelled dextran to assess macro-
molecule passage through the polarized endothelial cell
monolayer. A study isolated microvessels frommouse cerebral
cortex and seeded the cerebrovascular endothelial cells onto
Transwell inserts in order to induce polarization [107].
Dengue virus infection of these cells was shown to decrease
trans-endothelial resistance and increase macromolecule per-
meability. Furthermore, dengue infection caused the loss of
endothelial cobblestone appearance, and induced changes in
subcellular localization of tight junction proteins from mem-
brane to cytoplasm. In another study using polarized human
brain microvascular endothelial cells grown on Transwell
inserts, chikungunya virus entry and egress were both shown
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to occur at the apical domain [105]. In vivo models such as the
chick embryos have also been used to study viral infection
[106]. In situ hybridization of influenza infected chick embryos
revealed that viral RNAwas confined to endothelial cells of all
organs, and further histochemical analysis showed endo-
thelial-restricted expression of the viral receptor.
Additionally, electron microscopy of infected cardiac endo-
thelial cells was used to show that the budding polarity of
influenza was only from the luminal side of the polarized
vessel, thus preventing the spread of infection into tissue
surrounding the endothelium.

In vitro modelling of human endothelial cells derived
from distinct tissues has shown that the flavivirus non-
structural protein 1, from dengue, Zika, West Nile, Japanese
encephalitis and yellow fever viruses, binds to endothelial
cells and disrupts the endothelial glycocalyx components, trig-
gering hyperpermeability and vascular dysfunction, in a
tissue-specific manner [103]. In this model, tissue-specific
endothelial cells were seeded on Transwell inserts to achieve
apical–basal polarity, and once confluent, treated with the
individual recombinant flavivirus non-structural protein 1
proteins. The differential levels of endothelial hyperperme-
ability correlate with the capacity of non-structural protein 1
to bind to the surface receptors on endothelial cells. Though
not directly addressed by the study, these results may suggest
that the varied susceptibilities of tissue damage rely on
organotypic endothelial expression of viral entry factors.

Bloodstream dissemination within a SARS-CoV-2-infected
host is thought to be critical for multiorgan spread and patho-
genesis observed in severe cases of COVID-19 [115]. Similarly,
mammalian orthoreovirus (reovirus) uses the circulatory
system to invade the central nervous system from a distant
site of initial infection, by penetrating the endothelial barrier
[104]; thus, making reovirus endothelial infection a useful
model for systemic viral dissemination. Human brain micro-
vascular endothelial cells, polarized using collagen-coated
Transwell membrane inserts, have been shown to be infected
by reovirus both apically and basolaterally, though more effi-
ciently on the apical surface due to higher apical distribution
of the reovirus receptor JAM-A. Here, no alteration in endo-
thelial permeability indicates that reovirus infection does not
alter endothelial barrier integrity. Furthermore, plaque assays
on the supernatant showed that the release of reovirus progeny
occurred exclusively from the apical surface, regardless of the
entry route. In COVID-19 research, nasal and alveolar epithelial
cells are generally believed to be the primary sites of viral infec-
tion due to the high expressions of SARS-CoV-2 entry factors
[51]. Alveolar epithelium shares the basement membrane
with capillary endothelium to form the gas-exchange interface.
It was then proposed that the basal expression of CD147 in
alveolar endothelial cells may mediate invasion of viruses to
the bloodstream and extra-pulmonary sites [116]. While
CD147 was reported to preferentially localize to the basal
surface of epithelial cells [117], its apicobasal distribution in
blood vessels has not been established.

Though endothelium polarity is not as well understood as
in the epithelium, a lot can be drawn from investigations in api-
cobasal epithelial polarity, such as the junctional proteins that
regulate apicobasal polarity [113]. The infection of SARS-CoV
has been modelled in polarized epithelial cells [111]. In this
study, polarization was achieved by seeding epithelial cells on
an air–liquid interface in collagen-coated porous filters, keeping
them separate from the underlying media. Once cells had
attached and formed a confluent monolayer, apical medium
was removed so that the cells interface in contact with the
surrounding air became the apical surface, while the basal
surface was in contact with the porous membrane [118]. Immu-
nofluorescence staining and membrane biotinylation showed
that ACE2 was more abundantly expressed on the apical sur-
face, thus SARS-CoV also infects epithelial cells using the
apical surface [111]. On the other hand, a 3D organotypic intes-
tinal epithelial cell culture model has been established to study
enterovirus infection of the gastrointestinal epithelium [108]. In
this system, Caco-2 epithelial cells are polarized by using a
rotating wall vessel bioreactor that recapitulates physiological
levels of shear stress and turbulence.Here, the cells attach to col-
lagen-coated porous dextran beads, and establish apical–
basolateral polarity. When compared with 2D cell cultures,
which exhibit less complex apical surfaces than the 3D model,
the level of intracellular virus production is similar, though
viral egress is enhanced in the 3D culture.

Model systems that are representative of in vivo infection
are important to advance our mechanistic understanding.
Though animal models have traditionally been used, they
lack the ability to provide controllable experimental con-
ditions. Humanized mouse models, such as the transgenic
mice expressing human ACE2, can better recapitulate viral
pathogenesis and tropism of SARS-CoV-2 than wild-type
mouse strains [119,120]. Human-relevant endothelial in vitro
infection models have focused on polarity, as this affects
both the route of cell infection and release. While the
in vitromodels described here predominantly achieved apico-
basal cell polarity using Transwell inserts, polarity can also
be achieved by culturing endothelial cells in 3D collagen
gels to generate polarized vascular lumens [121]. Of note,
in addition to the apicobasal polarity, the endothelium has
an added dimension of planar polarity due to blood flow.
Shear stress to the cells can be created by the use of parallel
plate flow chambers [122]. For the experimental modelling
of SAR-CoV-2 infection in endothelial cells, we would like
to highlight the relevance of cellular polarity, 3D culture
system, recapitulation of complex tissue heterogeneity in
organoids and dynamics of shear stresses.
6. Conclusion
Even as clinical reports of COVID-19-related vasculopathy
grow, there has been little evidence supporting direct infec-
tion of the endothelium by SARS-CoV-2 in vitro. The failure
to recapture these clinical observations in the laboratory
could be due to the nature of endothelial monolayer culture
used commonly in the laboratory. We propose the use of
polarized endothelial cell models for SARS-CoV-2 infection
to better reflect the endothelium in vitro. These set-ups can
help clarify the apicobasal distribution of cell surface factors
facilitating SARS-CoV-2 entry and replication.

Basally restricted host factors could explain why apical
infection challenge by SAR-CoV-2 is unsuccessful in endo-
thelial cell monolayers in vitro while a 3D vascular organoid
modelwas permissive to SARS-CoV-2 infection and replication.

While endothelial dysfunction could have occurred from
the ensuing cytokine storm alone, direct infection of endo-
thelial cells by SARS-CoV-2 will suggest a larger role for the
vasculature in viraemia and pathogenesis observed in other
organs such as heart, liver and kidney. A successful endothelial
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infection model will allow us to understand the routes of entry
and spread for SARS-CoV-2, the extent and types of damage to
the blood vessels and the long-term effects of such insults even
after virus clearance.

Currently, the long-term impacts of COVID-19 are still
unclear. Understanding the extent of damage to the endo-
thelium in COVID-19 will determine if vascular health
should be monitored as part of recovery to prevent cata-
strophic events, especially in patients with underlying
vascular conditions. Insights into the nature of endothelial
dysfunction in COVID-19 can also better inform the care of
patients during active infection and beyond.
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