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The in-depth study of viral genomes is of great help in many aspects, especially in the

treatment of human diseases caused by viral infections. With the rapid accumulation

of viral sequencing data, improved, or alternative gene-finding systems have become

necessary to process and mine these data. In this article, we present Vgas, a

system combining an ab initio method and a similarity-based method to automatically

find viral genes and perform gene function annotation. Vgas was compared with

existing programs, such as Prodigal, GeneMarkS, and Glimmer. Through testing

5,705 virus genomes downloaded from RefSeq, Vgas demonstrated its superiority

with the highest average precision and recall (both indexes were 1% higher or more

than the other programs); particularly for small virus genomes (≤10 kb), it showed

significantly improved performance (precision was 6% higher, and recall was 2% higher).

Moreover, Vgas presents an annotation module to provide functional information for

predicted genes based on BLASTp alignment. This characteristic may be specifically

useful in some cases. When combining Vgas with GeneMarkS and Prodigal, better

prediction results could be obtained than with each of the three individual programs,

suggesting that collaborative prediction using several different software programs is an

alternative for gene prediction. Vgas is freely available at http://cefg.uestc.cn/vgas/ or

http://121.48.162.133/vgas/. We hope that Vgas could be an alternative virus gene

finder to annotate new genomes or reannotate existing genome.

Keywords: Vgas, virus gene prediction, function annotation, novel genes, joint application of multiple programs

INTRODUCTION

Because of the tremendous value of in-depth studies of viral genomes for the treatment of human
infectious diseases caused by viral infections, many viroinformatics resources, including web
servers and databases, have been developed (Sharma et al., 2015). The number of sequenced viral
genomes stored in the RefSeq database has increased more than five times from the year 2000
to 2016 with the rapid development of sequencing technologies (Brister et al., 2015). For the
investigation of viral genomes, the first and most important step is to annotate genes accurately.
Although wet experiments likely represent the most accurate way to annotate viral genes, the
experiments are often time-consuming, and involve huge costs to deal with such enormous data.
Furthermore, wet experiments may miss some genes that are expressed only in some specific
conditions with the limitation of laboratory techniques. Therefore, computational methods for
viral gene prediction are needed to serve as assistance and reference instruments for experimental
results. Currently, there are two major groups of computational methods to achieve relatively
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accurate viral gene prediction: the similarity-based methods and
the ab initio methods. Z-curve is a type of widely applied theory
in gene identification (Dong et al., 2016; Guo et al., 2017). Based
on the Z-curve method, we developed ZCURVE_V in 2006, an
ab initio gene finding software program for viruses, which has
helpedmany researchers study virus genes over the past few years
(Li et al., 2013; Huang et al., 2014; Mahony et al., 2015; Harrison
et al., 2016).

In the present work, we updated and furthered the system
based on ZCURVE_V (Guo and Zhang, 2006) by increasing the
identifying variables for the classification model and adding a
BLASTp searching module for gene predicting. Through these
two modifications, the newly proposed Vgas system not only
achieved higher prediction accuracy than ZCURVE_V but also
provided functional gene annotations for predicted genes that
are homologs to genes with known functions in public databases.
As an application example of Vgas, 86 novel genes were found
and assigned with explicit functions, while they were missed in
RefSeq annotations. We believe that Vgas may help researchers
to efficiently analyze unknown viral genomes.

MATERIALS AND METHODS

The Implementation Process of Vgas
The course of implementation of one inputted viral genomic
sequence for Vgas processing can be divided into five successive
steps (Figure 1). (1) Extracting all the ORFs from the genome
sequence. (2) Finding the longest ORF as the seed ORF
(representative of positive samples) and creating five derived
ORFs (representatives of negative samples). Changing the phase
position of the seed ORF will generate two derived ORFs, and
changing the phase position of the complementary strand of the
seed ORF can generate three additional ORFs. All of the five
ORFs would be taken as representatives of negative samples.
(3) Calculating the identifying variables and then distinguishing
the ORFs by Euclidean distance discrimination to obtain the
preliminarily predicted genes. If a candidate ORF has a closer
distance with the seed ORF than all of the five artificial ORFs
based on Euclidean distance, it will be predicted preliminarily
as a gene; otherwise, it will not be predicted. (4) Performing a
homologous search against the RefSeq database and determining
the ultimately predicted genes. Because RefSeq contains all viral
proteins stored in other databases, such as SwissProt, here, we
only use it as a reference protein database. For some predictions
that are homologous to genes with known functions (bit score
> 150, e-value < 10−40), Vgas will transfer the functions of
the latter to the predictions. In detail, Vgas will divide the
preliminarily predicted genes into three groups according to the
results of the BLASTp search against RefSeq viral genomes. One
group of genes has the highest similarity to reference genes (bit
score > 125, e-value < 0.01) and will be directly considered as
the ultimately predicted genes. In contrast, some genes have the
lowest similarity to reference genes (bit score < 31) and will
be immediately eliminated. The remaining genes with medium
similarity constitute the third group and will enter the next step.
(5) Dealing with overlapping genes: these retained genes will be
refined according to their overlapping ratios with longer genes.

Consistent with ZCURVE_V, in comparing two overlapping
ORFs, if the coding potential score of the longer ORF cut down
by the given value is still higher than the shorter ORF, it will be
recognized as a gene, and the shorter ORF will be considered
non-coding. Otherwise, both ORFs are retained as coding ORFs.
After this final step, all of the predicted genes can be determined.

It should be noted that we used only the 30 viruses listed in
our previous work (Guo and Zhang, 2006) to set the parameters
in our software; no other viruses were involved in the algorithm
creation process.

Compared with eukaryotes and bacteria, there are a few
characteristic properties for viral genes, and these differences
will make it necessary to modify gene-finding algorithms devised
for bacteria to fit viruses. On the one hand, viruses have folds-
fewer gene numbers than cellular organisms. This feature makes
it very difficult to choose large enough numbers of highly reliable
seed ORFs. Without a number of training samples, it would be
impossible to use machine-learning and other commonly used
methods to construct classifying models. In Vgas, we chose the
longest ORFs as the seed ORFs and used single center Euclidean
discrimination to classify genes and negative samples. On the
other hand, viral genes often tend to overlap each other, which
makes it somewhat difficult differentiate true genes from those
ORFs located in the shadow regions of true genes. High false-
positive rates will appear if we choose to consider overlapping
genes or ORFs. To deal with this problem, we generated five
additional negative samples in the Vgas training set.

Three Main Improved Features Compared
With ZCURVE_V
To obtain higher sensitivity, we added 12 extra variables
to ZCURVE_V; the original 33 variables are described as
Equation (1):
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where each of the three symbols, x, y, z, with subscripts and
superscripts, denotes one variable, which can be the frequencies
of the four nucleotides A, C, G, T, as in Equations (2, 3).
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(3)

In the above Equation (2), i denotes the codon position of one of
the four mononucleotides located at a gene or negative sample,
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FIGURE 1 | Implementation process of Vgas for one inputted viral genomic sequence. As shown, there are five successive steps.

with a total of three codon positions. The lowercase a, c, g, and
t with subscripts denote the frequency of each mononucleotide
occurring at a given codon position. At each codon position, the
sum of a, c, g, and t will be 1. Obviously, Equation (2) describes
9 total variables, which were transformed from the 12 frequency
values of the four mononucleotides at three codon positions.

In the above Equation (3), k denotes the codon positions of
one of 16 dinucleotides located at a gene or negative sample.
At that time, we only considered short-distance association;
codon position 31 was not involved because it corresponds to
dinucleotides spanning two codons. The lowercase p denotes the
frequency of one dinucleotide at a given codon position. There
are a total of 32 frequency values for dinucleotides at 12 and
23 codon positions. With a similar transformation as used for
Equation (2), these 32 values change to 24 variables.

In this work, we added another 12 variables, which are derived
from 16 frequency values of dinucleotides at 31 codon positions,
as in Equation (4):

ti
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We have now adopted 45 identifying variables instead of the
33 variables in ZCURVE_V 1.0 to represent a gene or negative
sample sequence.

As the second improvement, we use five negative samples,
which were all derived from the seed ORF. As an improvement
over ZCURVE_V, two negative samples are derived via changing
the phase position of the seed ORF. In addition, we obtained
another three negative samples by changing the phase position
of the complementary strand sequence of the seed ORF. In
other words, the seed ORF contains six frames; the frame with
the correct start and direction constitute the positive sample,
whereas the other five frames are taken as negative samples.
When calculating variable values, we excluded stop codons for
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all ORF sequences and positive/negative samples because five
negative samples derived from the longest ORF would not adopt
standard start and stop codons.

Third, we also utilize the BLASTp (Camacho et al., 2009)
searching method to eliminate some false-positive predictions of
hypothetical proteins and to assign functions to genes that are
homologous to annotated genes with known functions. The E-
value thresholds of the two operations are very different because
one operation involves transferring functional information, while
the other only involves deciding the coding potential. Please
also note that we provide an option for predicting translation
start sites. For this reason, we use the subprogram GS-finder
to assign start sites for predicted genes. It has rather reliable
predictions of translation start sites and correctly assigned 90%
of 5 experimental sets of termini from E. coli and B. subtilis (Ou
et al., 2004).

Three Indexes Used to Evaluate Prediction
Results
We used the following three indexes to evaluate our work:

precision =
TP

TP + FP
(5)

recall =
TP

TP + FN
(6)

F − score =
2 ∗ precision ∗ recall

precision+ recall
(7)

where the TP denotes the number of genes that were correctly
predicted by the program, FP denotes the number of ORFs
that were wrongly predicted as genes by the program, and
FN denotes the number of genes that should be found by the
program but were missed. If the translation terminal position
of a prediction is consistent with the record in the database,
we assume this annotated gene have been correctly predicted
regardless of their overlapping ratio. Obviously, the higher these

three indexes, the better the program performed. F-score, as
a comprehensive index combining precision and recall, is a
main standard reference for evaluating the performance of the
software’s prediction algorithm.

Construction of the Benchmark Datasets
We used the RefSeq annotations of 5,705 viruses as the
major benchmark to evaluate the prediction performance of
four gene-finding programs. These viruses could be classified
into five groups: ssDNA (830 viruses), dsDNA (2028), ssRNA
(1629), dsRNA (809), and unknown (409); the viruses can
subdivided into hundreds of families, with Siphoviridae (687)
representing the largest family of our dataset. All strains of
one virus will be tested if several strains are available. RefSeq’s
annotation may have bias to varied extents. However, no
other datasets could be taken as benchmarks for large-scale
measurements. To compensate for the drawback of RefSeq, we
additionally constructed another benchmark of 100 viruses that
have higher quality annotations. UniProtKB provides protein
function annotations, and all entries correspond to validated or
curated proteins. Based on this database, we could rank our 5,705
viruses in descending order of proportion of curated protein
fraction. We then classified all viruses into 100 groups according
to genome size. For viruses in the 100 groups, we chose those
with the highest curated protein fraction as the representative of
each group.

RESULTS AND DISCUSSION

The Comparison Results Based on
Different Test Sets
To perform an objective evaluation, we tested 5,705 viral
genomes downloaded from RefSeq1 (in March 2017). During the

1NCBI FTP Site for Viruses. Available online at: ftp://ftp.ncbi.nlm.nih.gov/

genomes/Viruses/

TABLE 1 | The average prediction performance levels of Vgas, ZCUVE_V, Prodigal, and GeneMarkS for different genome sizes.

Software Vgas (%) ZCURVE_V (%) Prodigal (%) GeneMarkS (%) Combined (%)

All genomes (5705) Precision 88.60 87.70 87.63 86.68 92.19

Recall 92.22 81.06 91.10 87.97 93.68

F-score 88.91 81.68 87.68 85.33 91.80

Phages (1418) Precision 80.87 86.16 93.61 92.12 93.14

Recall 92.27 80.66 94.71 94.75 95.13

F-score 85.60 82.87 93.84 93.07 93.80

O
th
e
r
vi
ru
se

s

Small genomes Precision 91.86 88.29 85.24 84.38 92.25

(3514) Recall 92.95 82.31 90.50 85.56 93.65

(≤10 kb) F-score 90.76 81.70 85.60 82.20 91.51

Medium genomes Precision 88.23 88.34 86.63 86.60 89.21

(459) Recall 87.89 75.09 86.95 85.62 90.97

(10–30 kb) F-score 85.78 77.47 84.78 84.17 88.51

Large genomes Precision 87.67 91.07 88.81 88.00 91.55

(314) Recall 90.00 77.53 87.60 87.81 91.49

(>30 kb) F-score 87.72 82.26 87.45 87.22 90.89
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TABLE 2 | The average prediction performance levels of Vgas, ZCUVE_V, Prodigal and GeneMarkS for different genome types.

Software Vgas (%) ZCURVE_V (%) Prodigal (%) GeneMarkS (%) Combined (%)

ssDNA (830) Precision 87.96 78.42 74.20 74.01 90.39

Recall 90.90 79.76 88.68 85.77 91.65

F-score 87.83 75.81 78.30 76.69 89.72

dsDNA (2028) Precision 83.12 87.05 90.26 89.00 92.29

Recall 88.75 75.62 89.97 90.16 92.53

F-score 84.20 78.92 89.20 88.65 91.65

ssRNA (1629) Precision 90.13 88.18 85.29 83.92 89.27

Recall 95.30 83.87 92.74 86.18 95.37

F-score 91.13 82.65 86.81 82.37 90.64

dsRNA (809) Precision 98.67 98.28 97.87 97.87 98.72

Recall 98.71 95.68 96.36 94.87 98.66

F-score 98.26 95.92 96.37 95.32 98.35

Unknown (409) Precision 91.09 89.50 90.84 89.78 94.02

Recall 86.86 70.09 84.71 79.07 86.98

F-score 87.04 74.90 85.17 78.48 88.42

process of constructing and training the Vgas prediction model,
every virus involved was considered as an independent test set.
We ran Vgas for each virus to obtain gene prediction results. In
the BLASTp search procedure of the Vgas algorithm, we removed
the query species itself from the reference database to avoid its
unfair influence on the prediction.

We used the same dataset to test four other software programs
as a comparison: ZCURVE_V, Prodigal (meta option) (Hyatt
et al., 2012), GeneMarkS (Borodovsky and Lomsadze, 2014), and
Glimmer (Delcher et al., 1999). The same indexes were used to
measure the results. It should be noted that 1,041 viruses out of
5,705 viruses are so small that Glimmer could not achieve any
gene prediction; therefore, we excluded this program from the
assessment and only compared the performances of the other
three programs.

In the practical process of bacterial gene annotation, several
programs are often used to obtain collaborative predictions,
which will usually be better than the predictions derived from
individual programs (McHardy et al., 2004). In our previous
work (Guo and Zhang, 2006), we also demonstrated that
better results could be obtained for virus genomes when we
jointly used ZCUVE_V and GeneMark. Here, we again test this
strategy by combining Vgas, Prodigal, and GeneMarkS after
running each of the programs individually. In the case of joint
applications, if more than two software programs found the
same gene, this gene was kept in the final result; otherwise (only
one program predicted this gene), the gene was removed. As
shown in Table 1, the general results support Vgas as the best
prediction program, as it showed the highest values for all three
measuring indexes among the three programs. Consistent with
our inference, the joint strategy provided better predictions than
only Vgas. We then divided all 5,705 viruses into four groups:
phage, small genomes (≤10 kb), medium genomes (10–30 kb)
and large genomes (>30 kb). In this case, Vgas’ performance
fell short for phages but still achieved the best index values
for the other three groups. Especially in the small virus group,

Vgas greatly surpassed the other two programs, with 6% higher
precision, 2% higher recall, and a 5% higher F-score. Given
that this group occupies most (3,514/5,705 = 61.6%) of the
virus size profile, Vgas should be the preferred choice for
practical annotation, particularly in the case of small-size viruses.
Additionally, it is most sensible if Vgas is used jointly with
Prodigal and/or GeneMarkS.

We also classified the dataset of 5,705 viruses into five groups
including ssDNA (830 viruses), dsDNA (2028), ssRNA (1629),
dsRNA (809), and unknown (409). The group of unknown
represents those viruses that have not yet been classified into
any of above other four groups in GenBank. As shown in
Table 2, we can see that Vgas achieved the highest F-scores
in the group for ssDNA (87.83%), ssRNA (91.13%), dsRNA
(98.26%), and unknown (87.04%) among the four software
programs; in ssDNA in particular, the performance of Vgas was
markedly better than that of the other three. For the dsDNA
group, although Vgas did not perform the best, the results
were acceptable, and its performance was greatly improved over
the original ZCURVE_V, with an F-score of 84.20% compared
with 78.92%.

For further confirmation of Vgas’ performance, we repeated
the above test based on a curated dataset with 100 viruses, instead
of RefSeq. As shown in Table 3, Vgas obtained the highest F-
score of 83.6%, higher than Prodigal and GeneMarkS (79.64 and
78.57%, respectively). Additionally, collaborative prediction was
better than the use of any one software program.

Comparison of the Annotation Function of
Vgas With Other Software Programs
Some software programs are widely used for annotating
prokaryotic genomes, such as Prokka (Seemann, 2014) and RAST
(Aziz et al., 2008). The former uses Prodigal 2.6 and the latter
uses Glimmer3 as their ab initio gene-finding programs. Hence,
their performance for finding viral genes will be generally worse
than Vgas, as shown in Tables 1–3. Like the two annotating
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TABLE 3 | The average performance levels of Vgas, GeneMarkS and Prodigal for

the curated viruses set.

Software Vgas (%) GeneMark (%) Prodigal (%) Combined (%)

Precision 79.08 73.00 73.28 78.96

Recall 93.82 90.00 93.15 94.53

F-score 83.60 78.57 79.64 84.24

systems, Vgas can also assign functions to genes that are highly
similar to experimentally known genes referenced in public
databases. After we checked a few widely studied viruses, such
as HIV and HBV, it was found that Vgas could assign functional
information for more genes than Prokka and RAST. Although
these two systems could be used for virus gene annotation,
they should be principally devised for bacteria. Therefore, their
reference genome databases may not contain gene sequences
from sequenced viruses. We believe that this deficiency may
result in the inconsistent performance of the two systems
compared with Vgas. In a nutshell, Vgas is more suitable for viral
gene annotation.

The Analysis of Predicted Novel Genes
Here, we comprehensively analyzed additional predicted genes
by Vgas for 5,705 viruses. After performing BLASTp against
the GenBank and RefSeq databases, we found that 86 identified
predictions were highly similar to previously annotated genes
(bit score > 150, e-value < 10−40), and the functions of
these genes’ products had been experimentally validated or
reliably inferred. Information for all of the 86 newly predicted
genes and their most similar genes from the RefSeq database
are listed in Supplementary Table 1. Among them, 46 do not
have any overlapping nucleotides with other genes in the
same genome. Most of the remaining genes have sequence-
overlapping ratios of <10, indicating that they are predicted
to be coding genes based on their coding potentials rather
than falling in the shadow regions of longer genuine genes.
Meanwhile, these genes are homologs of functionally validated
genes, and it is believed that all or at least the majority of
them truly encode proteins. Note that these 86 genes were newly
identified by us and have not been previously reported in RefSeq.
Furthermore, GeneMarkS missed 52 of the newly predicted
genes, and Prodigal missed nine of them. Our identification of
these genes would provide help for studies comparing related
viruses. These results illustrate that Vgas could be used to find

novel genes from previously annotated viral genomes, enriching
the gene set.

CONCLUSION

Vgas, as an improved version of ZCURVE_V, combines an ab
initio method and a similarity-based method to automatically
find viral genes and annotate the gene functions. Systematic
tests illustrated that the program was competitive with extant
programs, such as Prodigal and GeneMarkS. Vgas can also be
jointly used with other programs to improve the performance of
single gene finders. As an application example of the new system,
86 novel genes were identified and assigned explicit functions
when we validated our program on 5,705 test viruses. We hope
that Vgas could be an alternative virus gene finder to annotate
new genomes or to reannotate extant genomes.
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