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Abstract

Monitoring and modeling biomedical, health care and wellness data from individuals and converging data on a population
scale have tremendous potential to improve understanding of the transition to the healthy state of human physiology to
disease setting. Wellness monitoring devices and companion software applications capable of generating alerts and
sharing data with health care providers or social networks are now available. The accessibility and clinical utility of such
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data for disease or wellness research are currently limited. Designing methods for streaming data capture, real-time data
aggregation, machine learning, predictive analytics and visualization solutions to integrate wellness or health monitoring
data elements with the electronic medical records (EMRs) maintained by health care providers permits better utilization.
Integration of population-scale biomedical, health care and wellness data would help to stratify patients for active health
management and to understand clinically asymptomatic patients and underlying illness trajectories. In this article, we
discuss various health-monitoring devices, their ability to capture the unique state of health represented in a patient and
their application in individualized diagnostics, prognosis, clinical or wellness intervention. We also discuss examples of
translational bioinformatics approaches to integrating patient-generated data with existing EMRs, personal health records,
patient portals and clinical data repositories. Briefly, translational bioinformatics methods, tools and resources are at the
center of these advances in implementing real-time biomedical and health care analytics in the clinical setting.
Furthermore, these advances are poised to play a significant role in clinical decision-making and implementation of data-
driven medicine and wellness care.

Key words: scientific wellness; wellcare; clinical decision support; health monitoring; individualized medicine; wearables;
health information technology

Introduction

Precision medicine is defined as the prevention and treatment
strategies that take individual variability into account [1].
Implementing precision medicine in a clinical setting requires
seamless integration of data from clinical evaluations and bio-
medical investigations with genomics and other physiological
profiling to characterize an individual patient’s disease progres-
sion. Implementing precision medicine practices in clinical set-
tings requires coordinated efforts to integrate data from both
healthy and disease states in individuals. Recently, Li et al. [2]
showed that converging quantitative data from laboratory
measurements, diagnoses and procedure codes from electronic
medical records (EMRs), medication data and genomic profiles
of Type-2 diabetes patients helped to identify new clusters of
patient sub-population that can be targeted using precision
therapies. Such examples of precision medicine investigations
have illustrated that integrating genomics-based risk profiling
and clinical measurements improves our understanding of the
onset of disease and variation between individual’s illness or
wellness phenotypes. Characterizing each person’s individual
baseline health state instead of resorting to population-based
variable distributions could enable earlier identification of true,
personalized pathologic changes while preventing unnecessary
testing following incidental findings [3–6].

Genome- and phenome-wide studies are effectively using
clinical data from EMRs linked to patient samples from clinical
repositories or biobanks including studies from eMERGE (elec-
tronic MEdical Records and Genomics; http://www.gwas.net)
network, Clinical Implementation of Personalized Medicine
through Electronic Health Records and Genomics (CLIPMERGE
PGx) program [7] and Informatics for Integrating Biology and the
Bedside (i2b2; https://www.i2b2.org/) [8–15]. Similar initiatives
are underway to incorporate diverse data elements including
exposome data and assess how patient–environment inter-
actions could impact health [16–21]. Emerging evidence sug-
gests that integrating deep molecular profiling technologies
(genomic, transcriptomic, proteomic or metabolomic) collect-
ively defined as multi-omic data with clinical information ex-
plains some of the clinical variation between individuals
[22–24]. Such cross-platform or multi-technology initiatives are
required for the efficient utilization of health monitoring data
for prediction, diagnosis and developing smart clinical decision
support systems.

Understanding the molecular, physiological, social and envir-
onmental basis of healthy states and diversion to complex,

common, rare or chronic disease is a challenge for experimental
biologists and clinician investigators alike. The patients were char-
acterized earlier in the process of their evolution toward an appar-
ent disease phenotype, and the phenotypic characterizations were
often narrow and aimed at eliminating many natural confounders
such as comorbidities. Standard clinical research studies collect
data routinely after patients have a clinically significant disease
phenotype, failing to capture data about the healthy and subclin-
ical state, which limits the discovery of early diagnosis or prophy-
laxis information. Clinical data repositories maintained by
hospitals have limited access to longitudinal health monitoring
data captured by personalized health-monitoring devices or vice
versa. Better tools and protocols are needed to capture, aggregate,
analyze, visualize and use wellness data in the clinical setting. In
this article, we provide an overview of biomedical and health care
real-time data streams, data types, sources and devices that can
generate the data and various scientific and technical aspects for
integrating and using such streams to develop data-rich transla-
tional bioinformatics resources. Further, we discuss the use of
such resources in a clinical setting and how these resources could
further enhance the application of translational bioinformatics
tools and resources in a clinical setting.

Real-time biomedical, health care and
wellness data streams

Translational bioinformatics methods have made progress to-
ward implementation of genomic medicine at the point of care,
and seamless integration within EMRs [25–27]. Community-wide
efforts improved to the implementation of genomic medicine
into the clinic in a short span of time. Similarly, community en-
gagement by patients, providers and payers are critical for inte-
grating wellness science into EMRs and are vital to their use at
the point of care [28–33]. Integrating patient-generated health
care data with existing health data into the EMR, or personal
health records (PHRs) along with other biological and genetic data
could provide information to assess patients’ progression from
health to subclinical disease to a clinically significant pathological
state. Further, such efforts may additionally account for hetero-
geneity among patients. Real-time biomedical and health care
data stream refers to the compendium of data aggregated by indi-
viduals using health-monitoring devices or data generated and
captured in EMR and other health care software systems during
ambulatory or inpatient visits that may aid in diagnosis, progno-
sis, interventions and stratifications. These data types can be
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generated using fitness or health-tracking wearable devices (dis-
tance walked, steps counted), biosensors (heart rate variability or
continuous glucose), by health care providers in the clinical set-
tings (respiration rate) via diagnostic equipment (echocardiog-
raphy) or clinical monitoring devices (vital signs), and using deep
profiling using multiscale biological experiments (whole genome
or exome sequencing for profiling mutation landscapes, gene ex-
pression analysis or metabolomics experiments to find relevant
biomarkers). Further integration of these data with individual-
level information including socioeconomic information, vari-
ations in weather and location-based environmental quality (pol-
lution) data could provide precise information to develop
predictive models capable of identifying and estimating the
causal or reactive role of various factors contributing to wellness
and illness.

Aggregation of real-time biomedical and
health care data

Currently, the biomedical and health care data are captured from
clinical research or clinical trials across disparate databases (Table
1). These databases are primarily designed to obtain numerical
and categorical data from patients during the incidence of a dis-
ease or based on disease prevalence or based eligibility criterion to
participate in a clinical trial. On the other hand, integrated appli-
cation development frameworks like Apple ResearchKit (http://
www.apple.com/researchkit/) and Google Fit (https://developers.
google.com/fit/?hl¼en) offer a convenient option for wellness data
gathering. Apple ResearchKit is a comprehensive framework for
developing research applications that can interact with various
consumer devices and embedded sensors. ResearchKit enables
the research community to develop applications that seamlessly
integrate data, for example, the accelerometer in iPhone can track
walking steps or photoplethysmography-based heart rate sensing
can monitor temporal fluctuations in heart rate. Researchers (see
AsthmaHealth App: http://apps.icahn.mssm.edu/asthma/) and
pharmaceutical companies [34] are now leveraging Apple
ResearchKit-based applications for developing applications to re-
cruit directly for clinical trials and gather patient data using
mHealth-based applications. Modern health care delivery strat-
egies aim to provide optimal care to individual patients with af-
fordable cost. Application of big data analytics, machine learning
and predictive modeling could help in delivering data-driven per-
sonalized precision care [35–40].

Publicly available biomedical, health care and wellness
data repositories

Public biological data repositories for molecular data are mature
and growing, but standards and repositories for wellness and
health monitoring data are lacking. Publicly available genomic
and phenomic data improve the discovery and translation of re-
search findings from the bench to the bedside [41]. In 2015, the
annual database issue of Nucleic Acids Research enlisted 56
new molecular biology databases and reported recent updates
to 115 databases. For example, data related to the cancer gen-
ome, exome and transcriptome are available for analyses using
The Cancer Genome Atlas [42, 43]. Genotype and phenotype
data can be retrieved for meta-analyses or replications studies
from dbGAP [44, 45]. Gene expression signatures across various
disease models were archived at databases as Gene Expression
Omnibus [46] or Gene Expression Atlas [47]. Biological pathway
data based on community-wide biocuration [48] efforts can be
accessed from a variety of databases including BioGPS, KEGG

and WikiPathways [49–51]. Specialized molecular-class-specific
databases that catalog a group of proteins related to molecular
mechanisms or disease types are also available. For example,
proteins associated with 3D domain swapping, a key molecular
basis for neurodegenerative diseases, is compiled in the
3DSwap knowledgebase [52]. Such efforts are underway to com-
pile and provide health care data in the public domain. For ex-
ample, various multi-stream recordings of physiologic data can
be obtained from the Massachusetts General Hospital/
Marquette Foundation database PhysioNet [53].

While the data on biomolecular genome and phenome data
are feature rich and dense, the availability of health monitoring
databases in the public domain is scarce. Standard, clinical re-
search studies do not collect data until after patients have a
clinically significant disease phenotype, failing to capture data
pertaining to the healthy and subclinical state, which limits the
discovery of early diagnosis or prophylaxis information. Data on
healthy populations and longitudinal health monitoring is
rarely captured or archived in a format that enables reuse or
deep analyses. With >50% of the population in the United
States tracking at least one health-monitoring data type using
electronic or paper-based logs, developing data capturing solu-
tions that integrate health data elements with the EMR main-
tained by heath- and wellness-care providers would deliver
better insights. To address this important challenge, collecting
health-monitoring data on a population scale and developing
scientific and technical resources and methods to correlate it
with biomedical, multi-omic data and clinical data from a pa-
tient’s EMRs are required.

Consumer devices for biomedical, health care and
wellness monitoring

Adoption to digital health tools is not surprisingly highest in the
subset of population that uses the Internet most (http://rock
health.com/data/digital-health-consumer-adoption-survey-
data/). A recent survey (n¼ 4017) indicates that currently 80% of
the Internet-using population leverages one or more digital
health tools for gathering information about conditions (71%),
reviews about health care services or physicians (50%), health
tracking (17%), wearables (12%), genetic information (7%) or tele-
medicine (7%). Leveraging the wellness and health-monitoring
data being generated by patients could help in designing better
intervention strategies, but incorporating them in routine clin-
ical research or integration with other data modalities requires
better translational bioinformatics resources.

An array of consumer health-monitoring devices is currently
available in the market; summaries of features of a sample of
some of them are provided (Table 2). The majority of currently
available health-monitoring devices (commonly referred as
‘wearables’ [54–66]) focus on fitness or monitoring of lifestyle-
related variables. Common information tracked includes fitness
measures such as steps climbed or distance covered in a run or
walk, gait and posture analysis, heart rate, calories burned and
quality of sleep. Some of the health-monitoring devices also
allow users to manually log daily calorie intake and compute
calories burned to provide a score. Although such scoring sys-
tems often lack extensive validation, the personalized nature of
such metrics may motivate individuals to alter maladaptive be-
haviors over time. A subset of such health-monitoring devices
provides the capability to monitor physiological variables
including blood pressure, respiration and blood oxygenation
levels, as well as other test values that have been routinely
measured in a diagnostic laboratory. Scientific investigations on
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these devices have validated portions of the features they
measure [67–69], demonstrated sustained changes in patient
behavior [70] and shown benefits to patients with special exer-
cise health considerations [71]. A subset of these devices, such
as the Withings blood pressure monitor, have been medically
approved in the United States and validated in additional stud-
ies that fulfill the European Society of Hypertension
International Protocol Revision 2010 requirements [72, 73].

Many sensors or wearable devices have a companion mobile
application that uses Bluetooth, Zigbee, infrared waves, ultra
band wireless communication or a (universal serial bus) USB-
based sync service to update health-monitoring data from the
wearable monitor to a connected computer or data aggregation
database [74, 75]. As part of the mobile Health initiative (http://
www.hhs.gov/open/initiatives/mhealth/), mobile applications
have been designed that provide software modules to harness
the internal sensors in mobile phones for the capture of health
data. A challenge with integrating such data is that most de-
vices are manufactured as a consumer electronic device and are
not endorsed by US Food and Drug Administration (FDA) or
other regulatory bodies. The data from such health monitors
are often isolated in product-specific databases managed by the
vendors of the health-monitoring devices. Initiatives and organ-
izations like Human API, Aqua.io, Vivametrica (http://www.viva
metrica.com) and ‘Here is My Data’ (http://www.hereismydata.

com) address unification of data from such diverse resources.
While such integration is useful for creating better consumer
tools, there remains a relative lack of such efforts that integrate
with health care and clinical settings to develop actionable rec-
ommendation tools. Meanwhile, the introduction of health
monitoring and telemedicine devices approved by the FDA pro-
vide real-time and remote health monitoring of patients with
chronic conditions for rapid monitoring of blood glucose levels or
other variables [76]. While a subset of these data are currently
available to the care provider, a systematic way to integrate these
data during the ‘disease window’ of the patient with data from
his or her prior healthy state is currently limited.

Vital sign monitoring using wearable devices and
biosensors

Several devices are currently in different stages of development
including initial marketing, or experimental prototyping to
measure physiological variables. Some of the available data
streams have a clear and well-established utility for monitoring
health and wellness including heart rate, respiratory rate and
effort, inhaled/expired CO2, cardiac output, blood pressure, oxy-
gen consumption and blood oxygenation. More advanced sen-
sors capture additional vital signs such as brain activity with
encephalogram (EEG), muscle activity with electromyography

Table 2. Features of consumer health-monitoring devices

Consumer device Health features monitored Medical field(s) Source

Basis B1 wrist band Heart rate, accelerometer, body temperature,
ambient temperature, skin conductance,
caloric burn

CV, Endo, Psych https://www.mybasis.com/

BodyMedia Link
Armband

Heat flux, body temperature, motion and
skin conductance, activity level, calorie
burn and sleep

CV, Endo http://www.bodymedia.com/

Fitbit Aria Weight, body fat %, BMI CV, Endo https://www.fitbit.com/aria
Fitbit Surge GPS, altimiter, heart rate, accelerometer,

activity, caloric burn and sleep
CV https://www.fitbit.com/surge

Hexoskin smart shirt ECG, respiratory rate, tidal volume,
acceleromter, position, sleep

CV, Pulm http://www.hexoskin.com/

iHealth BP5 Blood pressure CV, Renal http://www.ihealthlabs.com/
iHealth Glucometer Blood glucose Endo http://www.ihealthlabs.com/
Jawbone UP3 Accelerometer, heart rate, respiratory rate,

skin conductance, skin temperature and
ambient temperature, activity, sleep and
caloric intake

CV, Endo, Pulm, Psych http://jawbone.com/store/buy/up3

MapMyFitness Record activity, food intake CV http://www.mapmyfitness.com/
Melon Headband Three-channel EEG, infer concentration,

relaxation
Neuro, Psych, Devel http://www.thinkmelon.com/

Muse headband Seven-channel EEG, infer concentration,
relaxation

Neuro, Psych, Devel http://www.choosemuse.com/

Nike Fuelband Activity CV http://www.nike.com
Scanadu Scanaflo Urinalysis Renal, Endo https://www.scanadu.com/scanaflo
Scanadu Scout Temperature, blood pressure, heart rate,

blood oxygenation and ECG
CV, Pulm https://www.scanadu.com/scout

Sensimed Triggerfish Eye shape and blinking, infer intraocular
pressure

Ophtho http://www.sensimed.ch/

Withings BP Monitor Blood pressure, heart rate CV, Renal http://www.withings.com/
Withings Pulse Accelerometer, heart rate, blood

oxygenation, activity, sleep and
caloric burn

CV, Pulm http://www.withings.com/

Zephyr BioPatch Heart rate, respiratory rate,
accelerometer, ECG, activity

CV, Pulm http://zephyranywhere.com/

CV, cardiovascular; Devel, development; Pulm, pulmonary medicine; Endo, endocrinology; Neuro, neurology; Ophtho, ophthalmology.
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(EMG) and skin monitoring using microfluidics-based sensors.
Although these sensors have applicability in managing specific
diseases, their utility in terms of general wellness monitoring
has yet to be established. Embedded sensors are currently avail-
able for glucose monitoring using tears for diabetic patients [77].
Adhesive skin patches or circuits provide opportunities to de-
sign a range of wireless physiological monitoring devices capable
of passively collecting data for multi-day periods [78]. Medical tex-
tiles are being developed that measure vital signs without being
obtrusive [79]. Biosensors [80–85] are also being used for various
health applications including health monitoring.

Exposome monitoring using wearable devices and
biosensors

The ‘exposome’ is defined as the total of environmental expos-
ure to humans and have shown as an indicator of disease sus-
ceptibility (for example, lung cancer among those exposed to
cigarette smoke). Additional devices track patients’ ambient en-
vironmental conditions to assess their local environment for air
quality, light [86], climatic variations, ozone [87] and volatile or-
ganic compounds [88–90]. Real-time integration of exposome
data with health monitoring data and other data elements in
EMR or PHR would help to elucidate how environmental factors
influence both disease and healthy states of individuals and
communities.

Disease-specific monitoring sensors

In addition to consumer devices that monitor health traits that
are ubiquitously relevant to health, many consumer devices are
being developed that have a particular application setting.
Devices to monitor rehabilitation and instrumental activities of
daily living have been especially prominent given the essential
need to assess how a patient’s functionality is changing over
time. Gait monitoring has been done through smart insole sen-
sors [91], wearable accelerometers and gyroscopes that can be
embedded in smart textiles, goniometers, as well as video
recording and floor/environment-based vibration and radio-fre-
quency identification (RFID) sensing. These systems have appli-
cations in prosthetic and orthotic design, rehabilitation after an
amputation, reconstruction [92] or injury, assistance for pa-
tients with neurodegenerative disease [74, 93], identifying
movement disorders [94] and detecting/preventing falls [95].
Several brain biofeedback devices are available for consumers
that use EEG technology to assess brain activity. Brain activity
information can be used for monitoring and/or biofeedback
training in patients with neurologic diseases including migraine
[96], epilepsy [97] and post-stroke rehabilitation [98, 99]; psychi-
atric disease including subclinical stress [100], anxiety, depres-
sion, addiction and attention deficit/hyperactivity disorder
[101]; and developmental disease including autism spectrum
disorder [102].

Pharmacological monitoring sensors

Medications are used to treat either existing conditions or symp-
toms and to prevent prophylactic illness in high-risk individuals.
Prescription drugs are used by almost 70% of Americans, and 20%
of the population takes five or more; however, only half of the pre-
scribed medications are taken as prescribed, and 20–30% never get
filled [103]. Failure to take medications as directed can have devas-
tating consequences, such as organ rejection in transplant recipi-
ents; while taking excess medication can increase side effect risks
or cause toxicities, such as prolonged nonsteroidal anti-

inflammatory drug (NSAID) use leading to gastric ulceration or ex-
cessive anticoagulant use leading to bleeding. Recently, the FDA
approved an ingestible sensor that can be co-administered with a
medication that wirelessly records patients’ pharmacological sta-
tus and prescription adherence and is highly accurate in multiple
clinical contexts (i.e. hypertension, tuberculosis) [104, 105]. This
methodology will help to understand how prescription medica-
tions might influence health-monitoring traits. Integrating data
from a diverse set of vital sign monitoring devices, biosensors or
nanobiosensors, environmental exposure and pharmacological
profiles into the existing clinical workflows or EMR is a challenge,
and there need to be pilot clinical trials and outcome assessment
studies of implementation as part of precision medicine
workflows.

Real-time monitoring in clinical setting

Mining data streams is an evolving concept in computer science
and data mining although is common in finance for risk model-
ing, financial engineering and stock trading [85, 106–109]. Owing
to widespread adoption of EMRs, real-time mining of clinical
data is possible in the setting of precision medicine. EMRs are
currently used to systematically log a patient’s clinical history.
In an ambulatory setting, clinical data elements including tem-
perature, blood pressure and other vital signs are measured at
the time of appointment and used as a baseline data points for
clinical decisions. During an inpatient visit, vital signs are rou-
tinely measured with a temporal frequency that depends on the
reason for hospitalization as well as the clinical status of the pa-
tient. Often, the real-time clinically relevant data monitored
during an inpatient stay in the hospitals are not systematically
stored in EMR for querying or aggregation for analyses. We pro-
pose that initiatives to capture and store real-time data during
the duration of hospitalization and correlate it with past and fu-
ture health monitoring data can improve patient care and re-
duce costs in both inpatient and outpatient visits including
intensive care units. An interest in analyses of real-time data
streams and real-time clinical decision support systems has re-
cently been reported, but these implementations had limited
access to the historic health monitoring data of the patients
during the non-disease states [110–112].

Quality control of real-time data streams for
clinical applications

Regardless of the data streams being aggregated, there are sev-
eral usability issues that clinicians and researchers must evalu-
ate during the selection of a particular device for disease or
wellness monitoring. Wireless monitors that are passive, nonin-
trusive, comfortable and with a long battery life should be ideal.
Extensive comparative effectiveness studies are required to
understand the choice of device in a disease setting and usabil-
ity preferences and functionalities in different age and gender
groups. Orthogonal validation of data streams generated by a
wellness-monitoring device and an equivalent clinical grade
monitor is necessary to incorporate data from devices for clin-
ical decision-making and interventions. Hence, device compari-
son studies that validate the data are also the important factor
for considering a wearable for monitoring to improve popula-
tion health or personalized disease management. The quality of
data obtained from the wearables would need multiple levels of
quality control and normalization strategies before using for
clinical research. A sudden increase in heart rate could be
induced by emotional or physical reasons; while the sensors
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capture both, the aggregation applications may not be able to
differentiate both, and using such data for triggering clinical de-
cisions or actions are not ideal. Annotation of data using various
metadata or tags and data cleaning should be part of such inte-
gration systems. Real-time biomedical data compiled from vari-
ous sensors using device-specific data feeds can be aggregated
after rigorous quality control using statistical and data normal-
ization techniques into databases and combined with other
data elements for analyzes. Visualization tools, shared decision
aids and clinical decision systems (CDS) that leverage the real-
time health care and wellness care (wellcare) data streams
would improve the actionability of such data streams in diagno-
sis, prognosis, stratification and optimal intervention selection.

Integrating health monitoring data streams
into PHRs, EMRs and patient portals

With the advent of large-scale adoption of health-monitoring
devices, health care and wellness monitoring data are currently
captured in an unprecedented scale. However, the data are cap-
tured in a fragmented system, and a user with multiple health-
monitoring devices cannot manage or integrate diverse data
streams through a single web or mobile application. To use
health monitoring data as an important aspect of precision
medicine in the clinical setting, efficient protocols and stand-
ards for data capture, storage, integration and exchange stand-
ards are required. Integration of health monitoring data with
clinical data in EMR has great potential to assist both patients
and providers in predicting, diagnosing, treating and managing
complex or chronic conditions. Providers must realize that
health monitoring data can be both reliable and of critical im-
portance. For example, remote monitoring of implanted life-
critical devices has been implemented at several institutions

[113, 114], and assessments of these continuous data streams
found that they lead to non-inferior patient outcomes [115, 116],
cost savings [116, 117] and earlier identification of monitor mal-
function [118]. Efforts are underway to connect ResearchKit and
HealthKit health data streams into intuitional EMRs or PHRs.
Medicare and Medicaid services provide meaningful use (MU;
http://www.cms.gov/Regulations-and-Guidance/Legislation/
EHRIncentivePrograms/Meaningful_Use.html) guidelines for
health care providers to receive incentive payments. One of the
recommendations for the next stage of MU is to engage patients
and families in their care by enabling patients to access and trans-
mit patient-generated health information (http://www.healthit.
gov/facas/sites/faca/files/MUWG_Stage3_14_Feb_04_v5.pdf).

A systematic approach should be established to consent a po-
tential user, and after completing the consent, the data can be
transferred to verified software and database systems at individ-
ual hospitals or the health system where the patient seeks care
using secured data protocols. Secured data fetching technologies
that adhere to privacy and protection of personal health informa-
tion (PHI) can be used for the data transfer. Further initiative can
be taken to streamline the intra-hospital or intra-health system
exchange of health monitoring data streams. Existing standards
based on Health Level 7 (HL7; https://www.hl7.org/) and health
information exchanges (HIE; http://www.healthit.gov/providers-
professionals/health-information-exchange/what-hie) could pro-
vide a basis for such an integration of a consumer device and
clinical data. Unstructured data captured in text format using
web forms in wellness or clinical applications can be used as a
possible data resource for clinical research using natural lan-
guage processing (NLP) tools. Historical data on the use of over-
the-counter (OTC) medication and diet journaling [119] from
health monitoring tools and online journals compiled by patients
can be extracted using NLP tools to better understand both health

Table 3. Standards in health and clinical informatics that can leverage integration of health monitoring data to EMRs

Name Description URL

CDISC Clinical Data Interchange Standards Consortium is a standards
development collaboration to streamline medical research
and health care

http://www.cdisc.org/standards-and-
implementations

Health IT at NIST
Standards

Provides various information regarding Health IT Standards
and details for implementing high-quality health information
technology applications and projects

http://healthcare.nist.gov/

HIE Data interoperability guidelines provided to implement health
system, state or national level health information exchanges

https://www.healthit.gov/HIE

HIPAA The Health Insurance Portability and Accountability Act, a federal
act that provides national standards for EHR transactions and
identifiers for providers and payors and aid in protecting patient
information

http://www.hhs.gov/ocr/privacy/

HITSP Health care Information Technology Standards designed by public
and private partnership to develop health information technology
systems that allow better interoperability

http://www.hitsp.org/

HL7 Standards and framework for the exchange, integration, sharing and
retrieval of electronic health information that supports clinical practice
and the management, delivery and evaluation of health services

http://www.hl7.org/

MU The Medicare and Medicaid EHR Incentive Programs and associated
guidelines provide financial incentives for the ‘meaningful use’
of certified EHR technology to improve patient care

https://www.healthit.gov/policy-
researchers-implementers/meaningful-
use-regulations

OMOP Observational Medical Outcomes Partnership informs the appropriate
use of observational health care data sets

http://omop.org/

PHI Protected health information standard is any patient-related information,
including information about the provider or payer and other data that
can be linked to an individual. PHI standards and guidelines are designed
by institutions to protect patient identify

http://www.hhs.gov/ocr/privacy/
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and disease state. Such data streams could help care providers to
predict clinical symptoms and suggest therapeutic regimes that
may not interact with OTC medications or lead to adverse drug–
drug interactions.

Data elements, data capturing technologies, aggregation sys-
tems and clinical or health care ontologies for integrating
health-monitoring data into EMR were partially defined as the
current ecosystem of standards, toolkits and resources (Tables 3
and 4). Integrating health-monitoring data poses several tech-
nical challenges to existing data management and analytics of
EMR. The high-volume influx of data from health-monitoring
devices can be integrated using currently available real-time
computational infrastructure platforms (Table 5). To interact
with the health monitoring data, Application Programming
Interfaces (APIs) can be designed to query, retrieve or integrate
required data elements over a period of interest. For example,
health-monitoring data-based APIs can be designed to access
and compare data from health-monitoring devices before, dur-
ing and after taking medication—this would help physicians
understand the impact of medication on health traits of

individual patients. An important part of integration of health
monitoring data with EMR would be communicating the tem-
poral trends in health with respect to the onset of disease and
other factors using intuitive data visualization tools. Efforts are
needed to develop innovative visualization tools to communi-
cate various health trends to both patients and providers. The
insight on the individual’s longitudinal health and holistic con-
siderations meets the Patient-Centered Outcomes Research
Institute (http://www.pcori.org) mission to improve the ability
to discern which health care options are best for a particular pa-
tient and potentiates informed individualized health decisions.
Ontology for home-based care [56] has been proposed, but its in-
tegration with existing medical or clinical terminologies are
limited; hence, an additional set of ontologies or new terms
related to pertinent health monitoring data elements needs to
be designed for effective integration of such health monitoring
data into the EMR. To facilitate the meaningful interpretation of
data, a similar process should be applied to various clinical en-
vironments and contexts of health care delivery. Developing
ontologies, storage, software and APIs to interoperate health-

Table 4. Resource for extraction, integration, storage or reference of clinically relevant data elements from health care monitoring devices and
digital applications to EMRs

Name Description Reference

Apache cTAKES Tools and APIs for unstructured data http://uima.apache.org/
Apache UIMA Tools and APIs for unstructured data http://uima.apache.org/
Aqua.io Medical vocabulary APIs http://aqua.io/
CDT Current dental terminology http://www.ada.org/en/publications/cdt/
CPT Current procedural terminology http://www.ama-assn.org/ama/pub/physician-

resources/solutions-managing-your-practice/
coding-billing-insurance/cpt.page

CVX HL7 standard code set for vaccines administered http://www2a.cdc.gov/vaccines/iis/iisstandards/
vaccines.asp?rpt¼cvx

FHIR Fast Health care Interoperability Resources https://www.hl7.org/fhir/
HCPCS Health care Common Procedure Coding System http://www.cms.gov/Medicare/Coding/

MedHCPCSGenInfo/index.html?redirect¼/
MedHCPCSGeninfo/

HealthData.gov Provides diverse health care data sets http://healthdata.gov/dataset/search
HealthData.gov API Diverse set of APIs to access HealthData.gov data http://healthdata.gov/data-api
HealthData.gov Hub 1339 health care data sets (as of May 2014) http://hub.healthdata.gov/
HumanAPI An integrated API service http://humanapi.co/
LOINC A universal code system for tests, measurements and observations http://loinc.org/
MedTagger Text mining tool with options for indexing based on dictionaries,

information extraction based on patterns and machine
learning-based named entity recognition

http://sourceforge.net/projects /ohnlp/
files/MedTagger/

MetaMap Map biomedical text to the UMLS Metathesaurus or, equivalently,
to discover Metathesaurus concepts referred to in text

http://metamap.nlm.nih.gov/#MetaMapJavaApi

OHNLP Open-source consortium to promote past and current development
efforts and to encourage participation in advancing future
efforts

http://ohnlp.org/index.php/Main_Page

OpenCDS Collaborative effort to develop open-source, standards-
based CDS tools and resources

http://www.opencds.org/

OpenICE Open-Source Integrated Clinical Environment is
designed as a framework for integrating apps
and devices into the Medical Internet of Things

https://www.openice.info/

OpenNLP Text mining https://opennlp.apache.org/
PheKB Knowledgebase for discovering phenotypes from EMRs http://phekb.org/
RxNORM Normalized names for clinical drugs and links its names

to many of the drug vocabularies commonly used in
pharmacy management and drug interaction software

https://www.nlm.nih.gov/research/umls/rxnorm/

SMART Appstore for health http://smarthealthit.org/about/
SNOMED CT Comprehensive, multilingual clinical health care terminology http://www.ihtsdo.org/snomed-ct/
SPHINX Web-based tool for exploring drug response implications of

genetic variation across the eMERGE PGx project cohort
http://www.emergesphinx.org/
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monitoring data with EMRs would also help develop individual-
ized CDS, improve existing CDS and wellness mHealth applica-
tions by providing actionable and on-demand feedback to
patients.

Data models for health care and wellcare
analytics

Currently, biomedical and health care data are captured and
analyzed using diverse data models [10, 120–124]. Various data
elements like real-time, streaming, structured, unstructured
and categorical data can be modeled as unified data model. For
example, ‘individualome’ is defined as a data model that encap-
sulates data elements that consist of environmental data, social
health monitoring data, biomedical data, multi-omic and clin-
ical data elements for an individual (Figure 1). Individualome
model captures temporal, categorical and continuous data
elements about a patient from various biomedical, health care,
wellness, social and environmental data streams. Initiatives to
capture and integrate health, biomedical, multi-omic and clin-
ical data, using a unified data model would help us to design
precise, data-driven CDS and enable precision medicine as part
of routine clinical practice in the near future. Platforms for
health outcome research such as the Observational Medical
Outcomes Partnership (OMOP; http://omop.org) can already ac-
commodate these additional patient features to improve data
utilization in large-scale studies.

Data engineering for real-time biomedical,
health care and wellness data streams

The large volume of data coming from all the different health-
monitoring devices and constituting the ‘individualome’ requires
large-capacity hardware infrastructures for storage and process-
ing. Such resources can be implemented locally at the data cen-
ters associated with hospitals or deployed on secured cloud
computing or virtual private server computing environments. In
particular, given the sensitivity of the information, only secured

and HIPAA-approved architectures should be considered. To this
aim, dedicated cloud-computing platforms, e.g. Amazon cloud,
provide a ready-to-use, robust and reliable solution (Table 5)
[125]. Local infrastructures are an option as well, but with a
higher maintenance cost of system administration. New data is
continuously streamed to the system from devices characterized
by different formats and protocols. Given the diversity, dynami-
city and scale of the data, NoSQL tools (e.g. Apache Cassandra,
Elasticsearch) should be preferred to relational databases (e.g.
MySQL, PostgreSQL), which would require a predefined and fixed
data schema that might be difficult to extend if necessary when
new devices are added to the framework.

Every new measurement is independently pushed to the
system and related to persons and devices through IDs and
medical record numbers. However, to derive person-oriented
patterns, data analysis techniques require data to be aggregated
and processed by an individual. Consequently, all the data com-
ing from different devices should go through an Extract,
Transform and Load (ETL) process before they can be used for
automatic analysis [126]. In particular, measurements are first
received, pre-processed and normalized or transformed into a
person-centered format (e.g. ideally one record per person),
which is then loaded into the database to join all the measure-
ments already recorded. The ETL pipeline can be run in real-
time (i.e. every time measurements are received) as well as at
predefined time intervals (e.g. every night), depending on the
requirement of the applications and of the systematic studies.
Existing EHR solutions are not designed using data aggregation,
normalization or analytics as the primary use case. Thus, an
ETL pipeline must be matched with a unified interface to realize
the actionable clinical insights obtained by analyzing data from
an individual over various time periods.

Continuous streaming data analytics in
biomedicine

The availability of large-scale health monitoring data streams
introduces endless possibilities to unveil patterns in the EMRs

Table 5. Scalable technologies that can be used for computation, integration and analytics of health monitoring data integrated with EMRs

Type Name Reference

Distributed computing for batch and
streaming data processing

Apache Hadoop http://hadoop.apache.org/
Apache Storm http://storm.incubator.apache.org/
Apache Spark https://spark.apache.org/
Apache Fink https://flink.apache.org/
Apache Samza http://samza.apache.org/

Data storage Apache Cassandra http://cassandra.apache.org/
MongoDb http://www.mongodb.org/
Neo4j http://www.neo4j.org/
Elastic https://www.elastic.co/

Data visualization Gephi http://gephi.github.io/
EHDViz http://ehdviz.dudleylab.org
Kibana https://www.elastic.co/products/kibana

Deep learning Theano https://pypi.python.org/pypi/Theano
Tensor Flow http://www.tensorflow.org/

Graph processing Pregel https://kowshik.github.io/JPregel/pregel_paper.pdf
Apache Giraph https://giraph.apache.org/

Machine learning Apache Mahout http://mahout.apache.org/
Spark MLlib https://spark.apache.org/mllib/
Weka http://www.cs.waikato.ac.nz/ml/weka/index.html
Amazon Machine Learning http://aws.amazon.com/machine-learning/
Microsoft Azure http://azure.microsoft.com/
Ayasdi http://www.ayasdi.com/
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that can be used for clinical support (e.g. disease risk prediction,
pharmacogenomics-based drug prescription) [127]. A full review of
machine intelligence methods appropriate to these scenarios is
beyond the scope of the perspective (also see the recent reviews
for a comprehensive overview [128, 129]), but the following points
need to be considered in designing informatics solutions for
streaming data analytics. First, data should be modeled by defin-
ing latent variables that have high predictive value using tech-
niques such as latent Dirichlet allocation, mixture models or
Gaussian processes. These techniques define lower dimensional-
ity compact representations of the data that will speed up and im-
prove the training of the prediction models. Both bag-of-words
approaches (that do not consider the time sequence of the events)
and time series models (such as hidden Markov models, autore-
gressive models or dynamic time warping) should be considered
and might work well depending on the task [130]. Given the con-
tinuous streaming nature of new data, incremental learning algo-
rithms should be favored to estimate the different models. In this
case, the predictive model is updated each time it sees a new in-
stance of the data. Incremental learning is distinct from batch al-
gorithms where the model is trained using all the data. While this
approach can be adapted to stream data by periodic or need-based
update or recalibration of predictive models using also the new
data, the expected amount of health data streamed by wearable
and monitor systems could also influence the scalability of

machine learning and predictive modeling systems. In the litera-
ture, there are incremental versions of the most common predict-
ive models, such as support vector machines, neural networks
and Bayesian networks. Always for the sake of scalability, un-
supervised algorithms mining patterns in the data without requir-
ing any human-based additional information should be favored to
supervised approaches that require additional manual work to de-
fine training labels. Data quality and false-positive rates are chal-
lenging in the implementation of predictive models for real-time,
learning health systems [131]. Choice of algorithms, interoperabil-
ity and end-to-end integration of the algorithm and its actionabil-
ity will have a direct impact on patient care. Several advanced
algorithms are developed and implemented for anomaly detec-
tion, intrusion detection or fraud detection in the field of finance
[132]. Adopting similar approaches by combining text mining, ag-
glomerative clustering, frequent item set mining, time series mod-
eling, rules engineering that interface with existing EHR systems
could aid in developing better solutions.

Patient and physician engagement for
real-time data aggregation

Considering patient inputs and patient engagement in design-
ing software systems are essential [133]. Integration of real-time
wellness data aggregation system with existing patient portals,

Figure 1. Flowchart of individualome—a health care and wellcare data model for incorporating biomedical, health care and wellness monitoring information with

EMRs. Various health data streams can be integrated into a consolidated data model we call individualome. Standards for health care data from Table 2 are indicated

at points of implementation. The individualome data can be used for various applications including diagnostics, prognostics and personalized clinical trials. The find-

ings from these applications can be used to generate actionable recommendations, sharing with consumers how to best improve aspects of their health and mitigate

personalized disease risks. Current diagnostics and prognostics are based on standard clinical data; by adding multi-omic data and continuous data from environment

and personal health repositories, we will be able to build precision models of human health and disease and identify indolent/subclinical stages of disease.
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PHRs, health system-wide EMRs or by providing additional
measures for patient engagement could lead to better adher-
ence from patient communities. Designing mobile- or web-
based applications and visual aids to provide tutorial on how to
capture and sync data from various wearable devises. Usability
and design of the wearables and the companion software appli-
cations are vital for the adherence of wearable and subsequent
data aggregation. Designing information pamphlets to educate
patient communities about importance of real-time data in clin-
ical research and development of shared decision-making soft-
ware wizards that offer a walkthrough of risks and benefits
associated with data capturing, aggregation, sharing and inte-
gration with health informatics software applications.

Physicians have limited time for patient interaction, and
introducing additional data burden could affect the physician–
patient interaction time [34, 35]. Hence, intuitive user-interface,
scalable computing architectures and informatics solutions that
seamlessly combine data from wearables, standard clinical care
operations and patient profiling experiments are necessary to

implement smart, real-time learning health care systems. Such
systems could use smart algorithms that distill the data and only
alert the physician when there is an actionable task to perform.
Ideally, such a solution would not only save physician time but
also strengthen his or her ability to quickly address patient con-
cerns. For example, smart algorithms can be designed to auto
populate pertinent data for physician review when a patient or
provider generates a clinical question.

Ethical, legal and social implications of
real-time health monitoring

Integrating real-time health monitoring data would have sig-
nificant ethical, legal and social implications (ELSI). Hence, the
ownership rights of the data and the control of how patients
can dynamically opt-in and opt-out of studies are important for
building real-time data aggregation systems. Enhancement of
existing ELSI and policy guidelines to accommodate incorpor-
ation of health monitoring data exchange, integration, sharing

Figure 2. From health monitoring to predictive modeling of diseases: edges are different health monitoring data streams; nodes indicates disease areas where the

health monitoring data can be used for prognostic, diagnostic, clinical, therapeutic or wellness interventions. 1: psychiatric and neurological disease, cerebrovascular

disease, stress responses/autonomic reactivity, chronic pain; 2: cardiac arrest, myocardial infarction, coronary heart disease, anxiety, aerobic fitness levels; 3: chronic

back pain, movement disorders (Parkinsonism), tremors, rehabilitation recovery, agility testing, dystonia, myalgia, chronic fatigue syndrome; 4: hypertension, ortho-

static hypotension, chronic kidney disease, peripheral arterial disease, vasculitis (e.g. Lupus, Raynaud’s disease); 5: movement disorders, rehabilitation, epilepsy, myal-

gia; 6: chronic and acute lung diseases, obstructive sleep apnea, sleep disorders, narcolepsy, synucleopathies; 7: insulin level (Type 1 or Type 2 diabetes); 8: diabetes,

cardiovascular disease, inflammatory bowel disease, irritable bowel syndrome, gluten sensitivity, eating disorders; 9: chronic and acute lung diseases; 10: hyper/hypo-

thyroidism, female endocrinology, obstructive sleep apnea, narcolepsy, neurologic, psychiatric, chronic fatigue syndrome and developmental disease.
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and retrieval will be required to enable such integration.
Structured ELSI and policy guidelines would also help patients
or healthy volunteers decide on what data should to be inte-
grated into their EMR. Databases that store such high-volume
data would need to be secured to ensure a high degree of protec-
tion for sensitive patient data [134, 135]. The introduction of the
Sensible Oversight For Technology Which Advances Regulatory
Efficiency (http://www.fda.gov/downloads/MedicalDevices/
DeviceRegulationandGuidance/GuidanceDocuments/
UCM263366.pdf) (SOFTWARE) Act of 2013 provides regulatory
guidelines for development and implementation clinical
software and health software along with existing regulations
recommended by FDA for mobile app [136] and CDS [137].
Twenty-first Century Cures Act (https://www.congress.gov/bill/
114th-congress/house-bill/6) further enhances the promise of
improving the medical innovation for drug discovery by con-
verging multiple streams of medicine, engineering and science
[138]. Data-intensive applications that use wellness data should
adhere to these standards for regulatory approval and thus en-
able reuse and transfer of software applications across multiple
hospitals or health systems. Further studies are required to
understand the impact of the wellness data sharing from pa-
tient perspective and its utility in the clinical setting from phys-
ician perspective.

Clinical applications of real-time biomedical
and sensor data streams

Real-time biomedical or health monitoring allow for the charac-
terization of intra-individual physiologic variation and the inter-
individual impact of circadian fluctuations on physiological
measures. Further, such tools allow for clinicians and scientists
to examine physiology across a wide range of temporal reso-
lutions that cannot be reproduced using the monitoring methods
commonly used in the legacy health care system. Thus, active
and passive monitoring and aggregation of individual-level well-
ness data using wearables and analytics of such data streams in
the setting of disease prevalence and comorbidities provides a
new way to study human diseases (Figure 2). The factors contri-
buting to wellness state of human physiology are poorly under-
stood, and understanding key cellular and molecular pathways
associated with various aspects of wellness including physical-
activity-induced health benefits would help to develop new thera-
pies for non-communicable lifestyle diseases like atherosclerosis,
heart disease, stroke, obesity and type-2 diabetes [139, 140].
Although this is not a trivial undertaking, such efforts could have
a substantial impact on the management of highly prevalent dis-
eases that comprise major sources of health care costs and mor-
tality. Wearables and wearable data have various allied health
care and wellness applications including improving recovery, re-
habilitation, healthy behavior and mood enhancement [141–144].

Identification of missing variables to understand
idiopathic conditions

Prognosis, diagnosis, treatment and management of idiopathic
disease are challenging for care providers. Idiopathic conditions
require increased hospitalization and affects patients’ quality of
life, morbidity and mortality [145]. Conditions like idiopathic re-
strictive cardiomyopathy [146, 147] and idiopathic interstitial
pneumonia were associated with significantly higher mortality
rates than a comparative disease with known etiology [148]. For
example, respiratory diseases classified under interstitial lung
disease including idiopathic interstitial pneumonias and its

subtypes including idiopathic pulmonary fibrosis, non-specific
interstitial pneumonia, desquamative interstitial pneumonia,
respiratory bronchiolitis-ILD (interstitial lung disease), crypto-
genic organizing pneumonia, acute interstitial pneumonia and
lymphocytic pneumonia need more extensive investigations
than conditions with specific clinical or sub-clinical phenotypes
[149–152]. While factors contributing to the clinical phenotypes
observed in patients are currently limited, integrating health-
monitoring data with clinical data would provide additional fea-
tures to elucidate subtypes or associations of various idiopathic
diseases.

Real-time diagnosis of asymptomatic disease
manifestations

Screening and management of patients with asymptomatic car-
diovascular diseases including sudden cardiac death [153],
asymptomatic incidences of heart attack [154], stroke, periph-
eral arterial disease and related disease manifestations are
associated with significant mortality and morbidity, and the
early detection of such pathology is of paramount importance.
Emerging evidence suggests that predictive models can be de-
signed to stratify patients at risk for cardiovascular outcomes
[155–157]. Capturing continuous vital information for patients
as they perform their daily activities of daily living will allow
further insight into their state of health than single time-point
measurements made in the clinic, translating to improved in-
formation for subsequent clinical decision making. Vital signs,
like blood pressure, and most measurable physiology demon-
strate a circadian pattern with significant fluctuations occurring
throughout the day in healthy individuals. Currently, clinical
decisions are based on the ‘normal’ blood pressure of 120/
80 mmHg, and patients are considered hypertensive at 140/
90 mmHg; however, studies with continuous monitoring of
vitals have found that in a single healthy individual, blood pres-
sure can range from �100/60 mmHg at night to 480/350 mmHg
during heavy weight lifting [158]. For patients who experience
episodic symptoms like chest pain on exertion or asthma at-
tacks, continuous health vital sign monitoring provides a way
of characterizing acute attacks within the patient’s normal daily
activities, as opposed to the current practice of using contrived
cardiac stress tests or administering provoking drugs as a chal-
lenge test to induce acute attacks to make a diagnosis during
the clinical visit. Further, such ‘everyday monitoring’ eliminates
the confounding variables associated with the often stressful
and anxiety-provoking environment of health care facilities. By
capturing continuous vital sign data for populations of patients,
we will be able to develop more sophisticated and elegant mod-
els for a patient’s normal physiology, and enable identification
of subtle or activity-specific changes toward pathophysiology
early in the course of disease progression [112, 159, 160].
Improved characterization of this healthy-to-disease state tran-
sition will open the door to earlier and more effective preventa-
tive measures, and may have a substantial impact on
developing predictive interventions for highly prevalent and
morbid diseases including coronary artery disease and stroke.

Implementing informatics applications using
real-time biomedical, health care and wellness
data streams

Wearable sensors offer a unique way to gather data not avail-
able at the point of care. Integration of data from sensors and
developing mHealth, clinical informatics and health informatics
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applications to integrate seamlessly with existing infrastructure
is essential for the use of diverse sensor data in a clinical setting
[142, 161–166]. We are developing several clinical dashboard
systems that converge health care and wellness data streams
(Figure 3). For example, EHDViz (Figure 3A) is a clinical dash-
board development framework to implement dynamic visual-
ization dashboards that leverage a suite of open-source
technologies (Manuscript submitted). Developing such clinical
informatics or health informatics applications and testing the
usability, utility and actionability of such applications are ne-
cessary for hospital or health-system wide adherence of such
applications.

Role of translational bioinformatics in
personalized biomedical, health and wellness
monitoring

Data-intensive biological experiments and their translation to
effective therapies, diagnostic aids and clinical interventions
are common in medicine [167]. The first attempt for the clinical
interpretation of whole genome showed that the index patient
is at increased risk of cardiovascular disease that were not typ-
ically illustrative with existing risk prediction models [168] and
the compendium of variants implicated in rare, common or or-
phan diseases are growing at a rapid pace. Temporal profiling of

Figure 3. Visualizing biomedical, health care and wellness data streams. (A) A screenshot from EHDViz: a clinical data visualization dashboard combining provider gen-

erated clinical data with patient generated data. (B) Analytics dashboard implemented using Elastic and Kibana to analyze a large cohort of patients (n¼8517) with 2.91

million data points of laboratory measurements.
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a single patient for 14 days using biological (genomics, prote-
omics, metabolomics and transcriptomics) and clinical pheno-
types have revealed how longitudinal measurements of
multiscale biological data showed the dynamics of biological
pathways during illness and wellness [169, 170].
ClinicalTrials.gov lists 113 studies that use wearable devices
(https://clinicaltrials.gov/ct2/results?term¼%22wearable%22).
Studies that implement wearables are targeted at patient popu-
lations with various conditions including heart failure, osteo-
arthritis, myocardial infarction, gait imbalance, etc. Wellness or
health-monitoring devices are currently used for a variety of
clinical studies, but studies that combine genomics or other
multiscale biological experiments and wearables are limited
[171].

Health monitoring data can complement EMRs for informing
clinical decisions in select contexts. Translational bioinfor-
matics approaches will be needed to determine the clinical sig-
nificance of these new data streams, as there is little prior
knowledge to guide the interpretation of results. While these
data can provide a greater understanding of an individual’s
unique state of health and prevent unnecessary testing from in-
cidental clinical findings, individualized risk models must be
created that discern harmless deviation from the average popu-
lation physiology from pathologic changes. In the absence of
these models and informed interpretation of their results, in-
nocuous incidental findings in new large data streams can lead
to unnecessary follow-up testing and treatment, as previously
cautioned against in genomic medicine. Integrating heath
monitoring data and correlating it with various multi-omic data
types can help elucidate intra-individual variations within a pa-
tient, and interaction effects between various clinical traits and
disease phenotypes. Such integration would also help to see
how the molecular profile of a patient evolves prior, during or
after the onset of a disease [172]. Translational bioinformatics
applications are required to improve the existing health infor-
mation technology infrastructure and develop better applica-
tions that can integrate multiple biomedical data streams with
health care and wellness data streams. Such applications could
help in three broad areas: diagnostic alerts, predictive modeling
and data-driven clinical trials.

Diagnostic alerts

A recent clinical trial result shows that automated mHealth
interventions with tracking and texting would improve physical
activity [173]. Wearable devices with EHR integration can be ex-
tended to design alert systems that provide continuous feed-
back to patients and care providers [174]. For example, tracking
of the walking trend of a patient using a wearable device and
integrating with health care providers during post-operative re-
habilitation period and providing regular feedback using a
mHealth application and assigning walking tasks could aid in
improving the rehabilitation experience.

Predictive modeling

Design, development and implementation of the predictive mod-
els using health care, biomedical and wellness data could improve
the process of data-driven health care delivery. For example,
patients can be assessed for a variety of health risks hospital-
ization including hospital-acquired conditions like falls or air
embolism (HAC, https://www.cms.gov/medicare/medicare-fee-for-
service-payment/hospitalacqcond/hospital-acquired_conditions.
html) and hospital-acquired infections like sepsis or pneumonia

(HAI; see http://www.cdc.gov/hai/), and necessary stratification
measures can be taken. Ambulatory patients can be reviewed for
wellness trends and inform them about their compliance or de-
viation to the wellness guidelines and potential risk of the onset
of chronic diseases by integrating genomic risk scores with data
from wearable devices. Developing real-time predictive models
that aid in HAC, HAI and improving patient-provider feedback
will lead to better measures for patient safety and improve the
quality of care delivery.

Data-driven clinical trials

A recent FDA guideline for clinical trials and investigations de-
tails the importance of the risk-based approach and implemen-
tation of monitoring systems as part of clinical trials (See:
http://www.fda.gov/downloads/Drugs/ . . . /Guidances/
UCM269919.pdf). Patients enrolled in clinical trial require mul-
tiple visits to the clinic or clinical trial center for measuring vital
signs and compiling data that could contribute to the outcome
of the study. For critically ill or bed-ridden patients, this is a
challenging task and influences the quality of life. Wearables
and real-time data integration using data from wearables or
home-based monitoring system with clinical-trial databases
would enable such data collection coherent.

Future outlook

Implementing precision medicine in the clinical setting requires
careful integration of multiple streams of data. We propose that
precision medicine can enhance personalized clinical decisions
with the access to health monitoring data of various physiological
parameters of a patient before the incidence of disease, during the
indolent/subclinical onset of disease and post-treatment. To en-
able precision medicine, a rapid and rational approach to integrat-
ing data from different sources is required. Comparable with the
benefit of integrating genomic and other multiscale biological
data for clinical decision-making and therapeutic stratification,
defining individualized health status as the control of a patient
could help to better understand the disease overall and tailor
therapies and wellness interventions with better efficiency [175].
Improved big data analytics methods and predictive models that
couples environmental data elements like weather and air quality
and physiologic health monitoring with the existing EMR or PHR
of patient would help to provide a better perspective of complex,
chronic or rare human diseases. For example, the individualome
data model and its data elements, integrated components and
tools built on top of the model could help both health care pro-
viders and patient communities to understand, treat and manage
diseases in better resolutions. Wellness interventions will also
empower patients with timely alerts on health status or prognos-
tic indications. As we continue into the era of individualized medi-
cine, health-monitoring devices capable of monitoring different
traits relevant to the disease phenome are integrated into such
models, as individualome will play key role in health care.
Although a necessary focus of modern data-driven medicine relies
on potential methods of meaningfully integrating data from wear-
able technology and personal physiologic monitors into EMRs, it is
important to keep in mind that the PHR may soon emerge as a re-
source equivalent to that of EMR at a fundamental level. PHRs
may slowly comprise greater and greater proportions of EHRs with
the relatively low regulatory burden, low financial barriers to entry
and the rapid pace at which PHRs and related tools are being de-
veloped. PHRs, unlike EMRs, are designed to deliver value to pa-
tients, rather than provide an income stream to hospital systems.
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The interoperability and portability of many PHR solutions may,
over time, drive patients to demand that health care facilities play
along. Further, it is this same set of attributes that makes collec-
tions of PHRs attractive targets for data collection when conduct-
ing health and wellness investigations using personal health
monitoring data. Furthermore, a unified effort from industry, aca-
demia, health care information technology, regulatory agencies
and care providers is required to address this emerging challenge.
Initiatives to capture and integrate health care data with
multiscale biomolecular and wellness data would help to design
precise CDS and provide individualized care models for patients
[36, 176].

Conclusions

Currently, clinical data repositories maintained by hospitals
have limited access to health monitoring data from personal-
ized health-monitoring devices or vice versa. Transparent,
industry-academic-clinical collaborations are required to define
health and wellness monitoring data interoperability along
with existing initiatives for secure data interoperability that ad-
here to patient privacy and health care data compliances. New
data models and analytic methods are required for effective in-
tegration of health monitoring data with EMRs and data types
from multiscale biological profiling methods. We envisage that
data models like individualome model will emerge as a commu-
nity standard for wider adoption. As more and more patients
and healthy volunteers are using health-monitoring devices,
the need to integrate the data from such devices to the EMR and
PHR is increasing. In the next 5 years, several open standards,
data models and technologies will evolve to integrate health-
monitoring data with EMR. Efforts for integration of health
monitoring data with clinical, biomedical and multi-omic data
types in the EMRs will mature. Advances in nanobiotechnology,
microfluidics, material science, integrated circuit design and
biosensor technologies will help to create health-monitoring de-
vices with smaller footprints as skin patches or health monitor-
ing tags with the ability to measure unique health traits.
Custom designed, individualized devices to capture a particular
feature relevant to patients will also be emerging. Practical data
integration approaches using wireless protocols would enable
seamless integration of health monitoring data and observa-
tional data in EMR. One of the use case for the actionability of
health monitoring data is in the ability to integrate data from
health-monitoring devices with the EMR or PHR of a patient
coupled with alerts that patients and providers can receive for
clinical, therapeutic or wellness interventions. Such initiatives
will also lead to new and better endpoints for patient well-being
and disease outcomes and help to define new intervention pro-
cedures to improve wellness and avoid or delay the patient
transition from wellness to illness.

Key Points
• The ability to combine data from health-monitoring de-

vices with the electronic medical record, personal
health record, patient portal or other medically relevant
health information data may provide valuable tools to
aid in diagnosis, prevention and early interventions.

• New data models, computing infrastructure and inte-
gration systems are necessary for effective integration
of health monitoring data with electronic medical re-
cords, data from pan-omics and multiscale experimen-
tal profiling.

• Transparent, industry-academic-clinical collabor-
ations, interoperability guidelines and standardiza-
tions are needed to define health-monitoring data
interoperability along with existing initiatives for se-
cure data interoperability that adhere to current stand-
ards, patient safety and privacy compliances.

• Different features of real-time data capture, aggrega-
tion, analytics, visualization and integration of
wellness data and its potential scientific, clinical and
informatics applications and various challenges asso-
ciated with scientific wellness are discussed.

• Integrating real-time, streaming biomedical, health
care and wellness data with existing translational bio-
informatics resources will accelerate the implementa-
tion of data-driven medicine in the clinical setting.
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