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To achieve closed trajectory motion planning of redundant manipulators, each joint angle has to be returned to its initial position.
Most of the repeatable motion schemes have been proposed to solve kinematic problems considering only the initial desired
position of each joint at first. Actually, it is very difficult for various joint angles of the robot arms to be positioned in the expected
trajectory before moving. To construct an effective kinematic model, a novel optimal programming index based on a recurrent
neural network is designed and analyzed in this paper. ,e repetitiveness and timeliness are presented and analyzed. Combining
the kinematic equation constraint of manipulators, a repeatable motion scheme is formulated. In addition, the Lagrangemultiplier
theorem is introduced to prove that such a repeatable motion scheme can be converted into a time-varying linear equation. A
finite-time neural network solver is constructed for the solution of the motion scheme. Simulation results for two different
trajectories illustrate the accuracy and timeliness of the proposed motion scheme. Finally, two different repetitive schemes are
compared and verified the optimal time for the novelty of the proposed kinematic scheme.

1. Introduction

Robot manipulators have been playing an important role in
various kinds of engineering fields. ,ey have been widely
used to perform effective and high-intensive repetitive work,
such as car assembling, logistics handling, and sculpturing
[1–3]. Robot arms usually have two types in needs of special
operators. One is the redundant manipulators which have
more degrees of freedom (DOF) than the given tasks re-
quired while the other one is the ordinary nonredundant
manipulators which can complete the objective directly.
Correspondingly, nonredundant manipulators refer to the
one that has no additional DOF when performing a given
task. Redundant manipulators are more flexible and ad-
vantageous for its redundant DOF. ,at is the reason why it
is increasingly important in practical engineering applica-
tions [4, 5].

One of the fundamental problems in redundant ma-
nipulators motion controlling is redundancy solutions,
known as inverse kinematics, which attracts many re-
searchers’ interests [6, 7]. Given the position and pose of the

end-effector, calculating the homologous trajectories of joint
angles with the redundant manipulators is named inverse
kinematics. Liegeios-Chauvel et al. put forward a gradient
projection method based on inverse kinematics solution to
divide the particular motion controlling into zero space by
solving the optimization goal to regulate the solutions for
redundancy [8]. From then on, many researchers study
pseudo inverse approaches for kinematic equation of re-
dundant manipulators [9, 10]. However, these approaches
do not only take a heavy burden of calculations, but also
require the Jacobian of manipulators to be full rank, which is
hard to realize.

With the development of neural networks, recurrent
neural networks based on negative gradient directions are
emerged. Due to the high efficient ability for computing,
gradient neural networks (GNNs) are widely used in
identifications and matrix equations [10]. GNN is set up by
establishing non-negative direction function and to obtain
a scheme for kinematic controlling. When applied to motion
planning of redundant manipulators, the convergent errors
generated by GNN are always lagged behind the ideal one.
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,at is, every joint angle of manipulators cannot return to
their initial position in the end, which may cause non-
repetition phenomenon in trajectory planning of the robot
manipulators. With the deepening of research studies in
repeatable controlling of redundant manipulators, various
velocity schemes based on online quadratic optimization
have been developed. Such optimal schemes incorporate the
equality and inequality constraints and avoid the limitation
of joint angles and joint velocities. For efficient repetitive
tasks, Zhang et al. firstly introduced a repetitive motion
index as the optimization criterion, using Zhang neural
network (ZNN) to solve the redundancy problems [11–13].
,en, various motion schemes combining the physical joint
constraints are formulated as an optimal programming
index subjected to the kinematic equation of manipulators.
In addition, theoretical analyses prove that the motion
schemes can be converted into time-varying equations by
using the Lagrange multiplier. When considering necessary
conditions of Karush-Kuhn-Tucker (KKT) for nonlinear
optimization problems, such an optimal programming index
also can be converted into linear variational inequality (LVI)
and a piecewise linear projection equation (PLPE) [14, 15].
Various neural networks have spung up to solve the LVI and
PLPE. Simulations on different types of redundant ma-
nipulators are studied and different shapes of the trajectory
tasks are given, which verified the effectiveness and supe-
riority of the proposed optimal programming index for
repeatable motion planning as well as the corresponding
neural solvers [16, 17].

Although, most of the aforementioned approaches for
repeatable motion planning of redundant manipulators are
effective, the convergent time of the dynamical equations has
not been ensured. ,at is the optimal programming index
for motion controlling using neural solvers can make the
joint angles of the manipulators back to initial desired
position as long as time goes infinity. For the perspective of
finite-time convergence, Li et al. first proposed a finite-time
neural network (FTNN)model to solve the repetitive motion
scheme based on ZNN in order to ensure that the convergent
time is finite [18]. ,en, around this FTNN, various revised
FTNN models are constructed to accelerate the convergent
rate of ZNN [19–21]. In the literature [22], a motion scheme
of mobile robot arms based on finite-time convergence
property has been set up to apply in the grasping work of the
manipulators.

A redundant manipulator is a part of a robot. It is hard
to locate every joint angle in the desired state at first. It is
not efficient for adjusting the positions of joint angles
through self-movement. However, most of the above re-
petitive motion plans and different neural solvers, which
are mainly for ideal initial state, do not consider the de-
viations of manipulators.,ese models of repetitive motion
planning based on pseudo inverse and asymptotic con-
vergent dynamic recurrent neural networks have been
studied by many researchers. Few studies are reported for
finite-time repeatable motion controlling when the joint
angles are deviated from the initial desired position at first
[23]. In the literature [24], only a new type of terminal
neural network is researched for solving motion scheme of

ZNN, which has been designed from the perspective of
controlling. In [25], initial deviations of joint angles are
considered. ,e optimization performance indices is still
based on infinite-time convergence, and only the neural
solver for motion scheme is designed for finite-time
convergence.

,e remainder of this paper is organized as follows.
,e kinematic equations of redundant manipulators are
established in Section 2. Section 3 gives out the optimal
programming index, and a repeatable motion scheme of
manipulators is formulated and analyzed. In Section 4,
a terminal recurrent neural network algorithm is pro-
posed to solve the mentioned motion scheme. In Section
5, simulation results on two different path trajectories
with Katana6M180 manipulators verified the effective-
ness and superiority of the repeatable motion scheme and
the terminal neural solver. Finally, remarks and con-
clusions are presented in Section 6. ,e main contribu-
tions of this paper are summarized in the following
aspects:

(1) A new optimal programming index for repeatable
motion planning of redundant manipulators is
exploited. It is the first time to use this performance
index, which can ensure the joint angles back to their
initial desired positions in finite time no matter
considering the initial state of each joint of the
manipulators.

(2) A special kind of neural model based on recurrent
neural networks is presented to solve the repeatable
motion scheme. ,e activation of the neural solvers
has adopted limited-value function, which is appli-
cable in practical application problems.

(3) Two different tracking tasks with redundant ma-
nipulator Katana6M180 are introduced to illustrate
the superiority and effectiveness of the proposed
repeatable motion scheme. Comparison results of
various repetitive motion schemes are visualized in
the end.

2. Kinematic Structure of Katana6M180
Robot Arm

In this section, a redundant manipulator Katana6M180
model has been set up for illustrating the effectiveness of
the proposed repeatable motion scheme. ,e mechanical
structure of the Katana6M180 robot arm is shown in
Figure 1. ,e Katana6M180 robot arm is composed of five
degrees of freedom (DOF) with three-DOF elbow for
revolute joints, two-DOF wrist for revolute joints, and
a gripper connected to the end-effector. ,e range of an-
gular motion of Katana6M180 is displayed in Table 1. From
the Table 1, joint θ1 is the angle between horizontal line and
link 1 (l1), joint θ2 is the angle between link 2 and link 3,
joint θ3 is the angle between link 3 and link 4, and joint θ4 is
the angle between link 4 and link 5. Joint θ5 is between
motor 5 and motor 6. In Table 1, it is shown that the
rotation and extension of the joint angles are limited by the
mechanical arm itself.
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2.1. Kinematic Foundation of Katana6M180 Robot Arm.
In this section, a kinematic frame for Katana6M180 is for-
mulated with the DH parameters, homogeneous matrix,
transformation matrix, and Jacobian matrix. ,e kinematic
redundant arm of Katana6M180 is shown in Figure 2. From
Figure 2, z4 and z5 are parallel to each other and are vertical to
z3. z4 is orthogonal to x4 and x5. ,e motion point o4 in the
frame of o4x4y4z4 is chosen to work in coordination with o3,
which is the original point of o3x3y3z3. ,e length of a4 is
zero. From the end of the end gripper, the turning point o5 of
the frame o5x5y5z5 is fixed at the end of link 5. y4 is supposed
to be the center of the right-handed frames. ,e D-H pa-
rameters are shown in Table 2.

,e homogeneous transformation matrix for K6M180 is

T
0
5 �

T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (1)

where T11 � C1C23C5 + S1S5, T21 � C234C5S1 − C1S5, T12 �

C5S1 − C1C234S5, T22 � − C1C5 − C234S1S5, T13 � C1S234,
T23 � S1S234, T14 � C1(l2C2 + l3C23 + (l4 + l5)S234), T24 �

S1(l2C2 + l3C23 + (l4 + l5)S234), T31 � C5S234, T41 � 0, T32 �

− S234S5, T42 � 0, T33 � − C234, andT34 � l1 − (l4 + l5) C234 +

l2S2 +l3S23. Moreover, Cijk is the simplified notation for
cos(θi + θj + θk). Sijk is the simplified notation for
sin(θi + θj + θk). Considering the position of the end-ef-
fector, the x, y, z compose the three dimensions of the
following position vector r05 of the K6M180 frame:

r
0
5 �

C1 l2C2 + l3C23 + l4 + l5( S234( 

S1 l2C2 + l3C23 + l4 + l5( S234( 

l1 − l4 + l5( C234 + l2S2 + l3S23

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (2)

,e solutions for inverse kinematic problems are not
suitable for using forward kinematic formations. For the
existence of singularity with the robotic arms, it is necessary

Motor 4

L3 = 139mmL4 =
12

4mm

L6 =
31

5mm

L2 =
190m

m
Motor 3

Motor 5

Motor 6

Motor 2

Motor 1

Link 3

Link 4

Link 5

Gripper

Link 1

L1
=

20
3,

5m
m

Link 2

Figure 1: Design structure of redundant manipulator Katana6M180.

Table 1: Joints motion range of Katana6M180 redundant
manipulator.

Joint angle Offset angle Motion range Unit
θ1 0 345.5 Degree
θ2 124.25 140 Degree
θ3 52.7 241.5 Degree
θ4 63.5 232 Degree
θ5 8.5 332.2 Degree
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to find out an appropriate kinematic solution to solve the
inverse kinematics.

2.2. Traditional Solution for Inverse Kinematic of Kata-
na6M180 Robot Arm. Given a special trajectory with the
end-effector of the Katana6M180 manipulator, the inverse
problem is to solve each joint angle corresponding to the
moving trail of the end-effector in the dimensional space.
For the solving method for redundant manipulators, alge-
braic algorithms, iterative algorithms, and geometric algo-
rithms are the primary solutions for trajectory planning
problems. Algebraic algorithms do not propose a systematic
method for choosing a special solution of the possible ways
for motion planning of redundant arms. Iterative algorithms
take a burden of the computational time, and in the sin-
gularity situations, experimental error may not reach to zero
in a long time.

3. Repeatable Motion Scheme for
Redundant Manipulators

As mentioned above, given a desired trajectory for re-
dundant manipulators, each joint angle of the robot arm has
to be returned to its desired initial position in the end.
Traditional algorithms for inverse motion designing are not
applicable for repetitive control especially in the situation
that the initial position of the manipulators may not be in
their desired places at first. Furthermore, the joint con-
straints of redundant manipulators should be taken into
account. Motivated by these practical ideas, a repeatable
inverse motion scheme for redundant manipulators is for-
mulated as follows:

minimize
1
2

_θ(t) + βθc 
T _θ(t) + βθc 

subject to J(θ) _θ � _r∗ + kp r∗ − f(θ)( ,

(3)

where c � |θ(t) − θ∗(0)|αsgn(θ(t) − θ∗(0)). 0< α< 1, θ∗(0)

is the desired initial position of the joint variable vector.
,e design parameter βθ > 0 is used to form the joint
displacement of the manipulators. kp > 0 ∈ R represents the
magnitude parameter to control the convergent speed of
the end-effector. r∗ is the desired motion trajectory of the
end-effector. _r∗ is the speed vector of the end-effector.
Considering that the initial position of the end-effector may
not be at the desired initial point, the position error be-
tween the actual trajectory f(θ) and the desired motion
trajectory r∗ are needed to be reduced for changing the
motion direction.

3.1. Convergent Analysis. According to the ZNN theories,
the following equation has been formulated:

_E(t) � − μE(t), (4)

where E(t) � θt − θ0, μ> 0. It follows the fact that the
convergent error E(t) reduces to zero as time goes by. By
applying the ZNN theory, we get the scheme
_θ(t) � − μ(θ(t) − θ(0)), then, _θ(t) + μ(θ(t) − θ(0)) � 0.
,erefore, we obtain the ZNN repetitive index:

1
2
( _θ(t) + μ(θ(t) − θ(0)))

T
( _θ(t) + μ(θ(t) − θ(0))). (5)

Motivated by the ZNN theory, a finite-time convergent
neural network model has been proposed, which greatly
reduced the convergent time. ,e error dynamics of the
finite-time convergence neural model is described as
follows:

_E(t) � − βθ|E(t)|
αsgn(E(t)). (6)

Setting the following Lyapunov function,

V(t) �
1
2

E
2
(t). (7)
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Figure 2: Mechanical assignment for Katana6M180 manipulator.

Table 2: D-H parameters of Katana6M180 redundant manipulator.

Linki ai αi di θi

1 90∘ 0 l1 θ1
2 0 l2 0 θ2
3 0 l3 0 θ3
4 90∘ 0 0 θ4
5 0 0 l4 + l5 θ5
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,e derivation of equation (7) with respect to time is as
follows:

_V(t) � − βθ|E(t)|
α
|E(t)| � − βθ

�����
2V(t)

 1+α
 < 0. (8)

For _V(t)< 0, the finite-time convergent model (6) is
asymptotically stable in the end. In addition, the above
equation can be rewritten as

1
V1+α/2(t)

dV(t) � − βθ2
(1+α)/2

dt . (9)

Integrating both sides produces
2

1 − α
V

(1− α)/2
(t) −

2
1 − α

V
(1− α)/2

(0) � − βθ2
(1+α)/2

t. (10)

When E(t) has been converged to zero, V(t) � 0,
V(1− α)/2(t) � 0, equation (8) is rewritten as follows:

ts �
2(1− α)/2

βθ(1 − α)
V

(1− α)/2
(0). (11)

For repetitive motion planning of redundant manipu-
lators, we set E(t) � θ(t) − θ∗(0), and the dynamical
equation (6) can be changed into (11).

_θ(t) + βθ θ(t) − θ∗(0)



αsgn θ(t) − θ∗(0)(  � 0. (12)

,at is,
_θ(t) + βθ θ(t) − θ∗(0)



αsgn θ(t) − θ∗(0)( 

����
����
2
2 � 0. (13)

According to the solution of norm problem (11), we set
the repeatable motion index in equation (3).

3.2.SchemeFormulation. For the repeatable motion scheme
(3), the performance kinematic index is reformulated as
( _θ(t) + βθc)( _θ(t) + βθc) � _θ(t)T _θ(t) + 2βθcT _θ(t) + βθcTβθc.
Since the motion scheme is only considered the velocity
level and _θ(t) is the variable vector, the term βθcTβθc is
visualized as a positive constant. Although the limits of
joint velocity and joint angle are not emerged into the
scheme index, the range of rotated joints is still reflected in
the program. Due to the deviations among initial positions
of joint angles, a feedback control r − f(θ) is added into the
motion equation of redundant manipulators to guarantee
that the end-effector will back to the desired initial tra-
jectory at last.

By analyzing and verifying the above deductions, the
repeatable motion scheme (3) can be simplified as the fol-
lowing index:

minimize
1
2

_θ
T _θ + βθc

T _θ

subject to J(θ) _θ � _r∗ + kp r∗ − f(θ)( ,

(14)

where kp > 0 ∈ R represents a feedback gain parameter.
c � |θ(t) − θ∗(0)|αsgn(θ(t) − θ∗(0)). Besides, 0< α< 1,
θ∗(0) is the initial position of joint angle vectors.,emotion
scheme (12) visualizes the basic kinematics of the redundant
manipulators. From the optimization equation (12), joint

velocity level limitations for joint angle and joint velocity are
difficult to be combined with the motion scheme. ,e sit-
uation of exceeding the joint limits has been considered in
the simulation programs.

4. Neural Network Solving

Considering the scheme of repeatable motion planning, we
change equation (12) by using the method of Lagrange
multipliers.

L( _θ(t), λ(t), t) �
_θ

T
(t) _θ(t)

2
+ βθc

T _θ(t)

+ λT
(t) J(θ) _θ(t) − _r

∗
− kp r

∗
− f(θ)(  ,

(15)

where λT(t) ∈ R1×m denotes the Lagrangian-multiplier
vector.

zL( _θ(t), λ(t), t)

z _θ(t)
� _θ(t) + βθc + J

T
(θ)λ(t) � 0,

zL( _θ(t), λ(t), t)

zλ(t)
� J(θ) _θ(t) − _r

∗
− kp r

∗
− f(θ)(  � 0.

(16)

,e following time-varying equation (14) can be
obtained:

W(t)y(t) � υ(t). (17)

With

W(t) �
I JT(t)

J(t) 0
⎡⎣ ⎤⎦ ∈ R

(n+m)×(n+m)
,

y(t) �
_θ(t)

λ(t)

⎡⎣ ⎤⎦ ∈ R
n+m

,

v(t) � − βθc _r
∗

+ kp r
∗

− f(θ)(  
T ∈ R

n+m
,

(18)

where vector I represents the identity matrix. We may
calculate the convergent error by setting

E(t) � W(t)y(t) − υ(t). (19)

According to the neural solver (10), we get the following
dynamic system equation form for trajectory planning:

_y � _Wy +(W + I) _y − _v + βθ|Wy − v|
αsgn(Wy − v).

(20)

5. Applications to Redundant Manipulators

In this section, two experimental examples are displayed
and analyzed to illustrate the repetitiveness and finite-
time convergence of the proposed motion scheme (12)
for neural model solving. Comparisons on different
repetitive motion schemes based on Katana6M180
manipulator are introduced to substantiate the
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superiority and timeliness of the proposed index for task
controlling.

5.1. Triangle-Path Tracking Task. For this experimental
simulation, the end-effector of the Katana6M180 manipu-
lator is required to track a triangle path. During the sim-
ulation, t ∈ [0, T], the desired trajectory of the manipulator
is defined as follows:

r
∗
x �

0.05 sin2
0.5πt

3
 , 0≤ t≤ 3,

0.05 sin2
0.5π(t − 3)

3
 , 3< t≤ 6,

− 0.1 sin2
0.5π(t − 6)

3
 , 6< t≤ 9,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r
∗
y �

0.05
�
3

√
sin2

0.5πt

3
 , 0≤ t≤ 3,

− 0.05
�
3

√
sin2

0.5π(t − 3)

3
 , 3< t≤ 6,

0, 6< t≤ 9,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r
∗
z � 0.

(21)

,e side length is assumed to be 0.18m. ,e task com-
pleting time is set T � 9 s. ,e desired initial position of each
joint angle is set to θ∗(0) � [2π/5, π/2, 0, − π/6, π/3, 0]T rad.
Considering the deviation of joint angles before tracking, the
initial position of each joint angle is set to be θ(0) �

[2π/5, π/2, 0, − π/6, π/3 + 0.5, 0]T rad. Furthermore, design
parameter βθ � 1, kp � 1, α � 0.1. ,e simulation profiles are
shown in Figures 3–5. In Figure 3(b), the end-effector of
K6M180 is tracking a triangle path. ,e end-effector comes
back to its desired initial position though the initial positions
are not correctly settled. In Figure 3(a), the error position of
XYZ has converged to zero around 6 s and the convergent
precision is less than 2.4 × 10− 4 at the end of the tasks. From
Figure 4 the end-effector rapidly moves to the desired
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Figure 3: Simulation profiles for Katana6M180 manipulator synthesized with motion scheme (12).
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motion trajectory under the repeatable motion scheme
(12). ,at is the joint-drifting phenomenon can be reme-
died under the neural network solving control. With the
Figure 5, the corresponding trajectory profiles of joint
angles and joint velocities demonstrated the final statement
of the manipulator. It is shown that all the joint angles have
been returned to the desired position, and the motion
velocity of each joint angle has been reduced to zero in the
end. For obvious illustration, Table 3 shows the convergent
errors of six joints. From Table 3, the maximum error in
joint position is 3 × 10− 4.

5.2. Circular-Path Tracking Task. In this part, the end-ef-
fector of the manipulator what we provide has been planned
to rack a circular path. ,e radius of the tracking circle is set
to be 0.05m. ,e corresponding profiles synthesized with
the motion scheme (12) under the neural solver are shown in
Figures 6–8. Figure 6 shows the trajectory of each joint angle
along themotion procedure. From Figure 6, we can find each
joint has performed a closed path at last. ,e end-effector of
the manipulators has been returned to the desired initial
position although the deviations existed at first. End-effector
path and position error XYZ are shown in Figure 7. From
Figure 7(a), we can obviously discover the end-effector has
chased the desired task in several time and has performed
a precise circular path with time. In Figure 7(b) the con-
vergent precision in three direction XYZ is about 2 × 10− 3,
which demonstrates that the task is completed well.

5.3. Comparisons. As we discuss the repeatable motion
scheme, the ZNN method formulated with the repetitive
motion plan has been provided in many literatures [24, 25].
It can be generalized in velocity level as follows:
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Figure 5: Trajectory profiles with joint angles and joint velocities of the manipulator.

Table 3: Error deviations of the Katana6M180 manipulator under
the different scheme (12) and scheme (17), which are solved by
neural networks tracking a circular path.

Joint Finite-time solving scheme ZNN solving scheme
θ1(9) − θ1(0) − 0.00001982 − 0.0001762
θ2(9) − θ2(0) − 0.00002644 − 0.0002344
θ3(9) − θ3(0) − 0.000009387 − 0.00006367
θ4(9) − θ4(0) − 0.000009656 − 0.00007636
θ5(9) − θ5(0) − 8.022 × 10− 9 − 7.012 × 10− 8

−0.2
−0.1

0
0.1

0.2−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
X (m

)

Y (m)

Wrist trajectory

Elbow
trajectoryBase

End-effector
trajectory

0

0.2

0.4

0.6

0.8

Z 
(m

)

Figure 6: Trajectories of each joint angle to follow the circular-path
tracking.
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minimize
1
2

_θ
T _θ + μ(θ − θ(0))

T _θ

subject to J(θ) _θ � _r∗ + kp r∗ − f(θ)( ,

(22)

where μ> 0 is the magnifying parameter to scale the con-
vergent speed. In the motion index (17), the end-effector of
the redundant manipulator can return to the initial position
after executing the triangle trajectory as long as time is
infinite. ,at means the convergent time is supposed to be
infinity, which is not applicable in real-time processing. In
addition, the initial position of the joint angles is assumed to
be in the desired position at first, which may lead to the
inaccurate convergence by manipulators. In order to illus-
trate the advantages of our finite-time model in repetitive
motion, the comparison experiments are simulated on the
same Katana6M180 manipulators. For simplifying the
simulation results, we use the error norm JE � ||Wy − v||F to
compare the convergent speed and the improved convergent
precision. ,e corresponding results are shown in Figures 8
and 9. As seen in Figure 8, synthesized with motion scheme
based on ZNN, the convergent rate is gradually catch up the
red line, which is obviously slower than the finite-time
solving scheme. For clear comparisons, we use JE in Figure 9
and the convergent rate of finite-time solving scheme rea-
ches to zero in 1 s. ,e convergent precision is about
2 × 10− 4. For comparisons, Table 3 lists the error of the joint
angles by different repeatable motion schemes. ,e finite-
time solving scheme remedies the initial position deviation,
that is θi(9) − θi(0)< 2.644 × 10− 5. ,e deviations of the
joint angle based on ZNN is around 3.744 × 10− 4, which
shows larger convergent precision in joint-drifting
phenomenon.
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Figure 7: Path profiles of the end-effector when it is tracking the given path under the scheme index (12).
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6. Conclusion

In this paper, a method of solving redundant robot repetitive
motion based on neural network has been proposed. ,e
solution for manipulator motion planning not only im-
proves the convergent precision but also accelerates the
convergent rate. ,e motion scheme makes the end-effector
of the manipulators return to the desired initial position in
finite time, which is more applicable in the practical engi-
neering fields. In addition, theoretical analysis and simu-
lations verify the superiority and timeliness of the proposed
method in solving time-varying problems, especially in
motion planning of manipulators. However, robustness for
the new repeatable motion scheme is not considered in the
theoretical analysis, even if instable phenomena may affect
the convergent rate. ,e effect of interference phenomenon
for repetitive planning of the redundant manipulators will be
considered in the future.
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