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Abstract

Disease recurrence in surgically treated lung adenocarcinoma (AC) remains high. New

approaches for risk stratification beyond tumor stage are needed. Gene expression-

based AC subtypes such as the Cancer Genome Atlas Network (TCGA) terminal-

respiratory unit (TRU), proximal-inflammatory (PI) and proximal-proliferative

(PP) subtypes have been associated with prognosis, but show methodological limita-

tions for robust clinical use. We aimed to derive a platform independent single sample

Abbreviations: AC, adenocarcinoma; CLAMS, Classification of Lung Adenocarcinoma Molecular Subtypes; DMFS, distant metastasis-free survival; FFPE, formalin-fixed paraffin-embedded; NCC,

nearest centroid classification; NSCLC, nonsmall cell lung cancer; OS, overall survival; PI, proximal-inflammatory; PP, proximal-proliferative; SSP, single sample predictor; TRU, terminal-

respiratory unit.
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Cancer; The National Health Services (Region

Skåne/ALF) predictor (SSP) for molecular subtype assignment and risk stratification that could

function in a clinical setting. Two-class (TRU/nonTRU=SSP2) and three-class (TRU/

PP/PI=SSP3) SSPs using the AIMS algorithm were trained in 1655 ACs (n = 9659

genes) from public repositories vs TCGA centroid subtypes. Validation and survival

analysis were performed in 977 patients using overall survival (OS) and distant

metastasis-free survival (DMFS) as endpoints. In the validation cohort, SSP2 and

SSP3 showed accuracies of 0.85 and 0.81, respectively. SSPs captured relevant biol-

ogy previously associated with the TCGA subtypes and were associated with progno-

sis. In survival analysis, OS and DMFS for cases discordantly classified between

TCGA and SSP2 favored the SSP2 classification. In resected Stage I patients, SSP2

identified TRU-cases with better OS (hazard ratio [HR] = 0.30; 95% confidence inter-

val [CI] = 0.18-0.49) and DMFS (TRU HR = 0.52; 95% CI = 0.33-0.83) independent of

age, Stage IA/IB and gender. SSP2 was transformed into a NanoString nCounter

assay and tested in 44 Stage I patients using RNA from formalin-fixed tissue, provid-

ing prognostic stratification (relapse-free interval, HR = 3.2; 95% CI = 1.2-8.8). In con-

clusion, gene expression-based SSPs can provide molecular subtype and independent

prognostic information in early-stage lung ACs. SSPs may overcome critical limita-

tions in the applicability of gene signatures in lung cancer.
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1 | INTRODUCTION

Lung adenocarcinoma (AC) is the most frequent histological type of

nonsmall cell lung cancer (NSCLC).1 Compared to other NSCLC

tumors, AC tumors have been associated with specific molecular and

etiological traits, including a nonsmoking patient history and onco-

genic driver alterations (eg, EGFR mutations and various fusion

genes).2-5 In advanced-stage AC, immune checkpoint and tyrosine

kinase inhibitors are now clinical routine. In surgically treated cases,

chemotherapy remains the main adjuvant treatment option, guided by

the TNM classification.6 Despite an overall favorable prognosis, surgi-

cally treated lung cancer is still associated with a high-risk of meta-

static relapse, even for tumors of the lowest stage (Stage I).7 Based on

the lack of significant survival benefit in Stage IA disease,8 adjuvant

therapy was not recommended for this particular group, while Stage

IB patients may receive treatment. Clearly, additional prognostic and

predictive tools are needed to improve therapy decisions in surgically

treated AC.

Surgically resected AC has been intensively studied using differ-

ent high-throughput molecular profiling techniques. Gene expression-

based studies have reported prognostic gene signatures and

suggested the existence of molecular subtypes in AC.4,9-15 The TCGA

study on AC concluded three transcriptional subtypes termed the

terminal-respiratory unit (TRU), the proximal-inflammatory (PI) and

the proximal-proliferative (PP) subtypes.4,9 These subtypes have been

associated with different clinicopathological and molecular variables,

but also patient outcome.9,13 Specifically, the TRU subtype shows

overrepresentation of patients with a nonsmoking history, tumors

with EGFR mutations, tumors of lower stage, lower tumor proliferation

in general, and importantly improved patient outcome.4,9,13 In con-

trast, both the PI and PP subtypes are associated with a patient

smoking history and show features of often aggressive disease,

including high frequencies of different nontargetable driver mutations,

What's New?

New tools are needed in order to improve risk stratification

and therapy selection in early-stage lung adenocarcinoma.

Inherent differences in gene expression between adenocar-

cinoma subtypes could facilitate the development of such

tools. The authors of this study derived platform-indepen-

dent, single-sample predictors (SSP) of adenocarcinoma sub-

types, based on gene expression. Derived SSPs successfully

provided prognostic information in surgically treated stage I

lung adenocarcinoma patients. The single-sample classifier

was readily translated into assays applicable to archival tis-

sue, indicating clinical utility. The findings highlight the clini-

cal relevance of transcriptional signatures and gene

expression predictors in lung adenocarcinoma, warranting

their further investigation and development.
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higher proliferation and specific morphologic growth patterns.4,9,13

Recent large-scale analyses have demonstrated that, based on current

treatment options (surgery with or without chemotherapy/radiother-

apy), the robust prognostic power of the gene expression subtypes

lies in the two-class distinction of TRU vs nonTRU samples and is

mainly related to differences in expression of proliferation-associated

genes.13

The current classification scheme for TRU, PI and PP subtypes

involves classification of a new sample according to the nearest cen-

troid classification (NCC) approach.9 While NCC type classifiers have

been used extensively for classification of tumors (eg, the PAM50

classifier in breast cancer16), this type of classifier presents some limi-

tations concerning the prediction of independent samples.13,17-19 Ide-

ally, a single sample predictor (SSP) that does not require any

preprocessing, is independent of gene expression platform and capa-

ble of predicting a single sample is desirable. In this context, predictors

based on gene rules assessed on an intrasample basis have been pro-

posed as a solution.17,18,20-22

In our study, we aimed to derive SSPs of the TRU/nonTRU and

TRU/PI/PP subtypes. Using machine-learning in 1655 AC cases and

independent validation in 977 AC cases we developed a 36-gene SSP of

the TRU/nonTRU subtypes. This SSP provided refined prognostic cate-

gorization of patients compared to the existing classification approach

and also independent prognostic information in surgically treated Stage I

AC. As a proof of concept, the SSP was translated into a NanoString

nCounter XT assay and tested in archival tissue specimens (formalin-

fixed paraffin-embedded [FFPE]) for prediction of disease relapse.

2 | MATERIALS AND METHODS

2.1 | Patient datasets

Twenty-two publicly available gene expression datasets (n = 2632

samples) were assembled. Forty-three samples overlapped between

two datasets. Complete datasets (ie, all samples) were partitioned into

an SSP training cohort (n = 17 datasets, n = 1655) or a validation

cohort (n = 5 datasets, n = 977) (Figure 1). Partitioning was directed

toward having training and validation cohorts with mixed technical

platforms, and that the validation cohort should include both patients

with only surgical treatment and patients with adjuvant chemother-

apy, to allow relevant outcome analyses. Clinicopathological charac-

teristics for training and validation datasets are outlined in Table 1,

based on data from original studies. Mutation status (EGFR/KRAS, etc.)

for these public cohorts is highly limited.

To test SSPs in FFPE, two cohorts were used. First, Fragments

Per Kilobase of transcript per million mapped reads data were

obtained from the GSE143486 dataset, representing 30 RNA

sequenced Stage I ACs with no adjuvant therapy. Secondly, RNA from

a cohort of 44 patients, diagnosed between 2006 and 2015 at differ-

ent Nordic institutions, with surgically treated Stage I AC were col-

lected. The 44 patients were selected using a “case-control” approach

based on recurrence (locoregional and/or distant) to fit with the

NanoString multiplexing scheme. Twenty-three patients presented

with recurrence within 5 years from diagnosis (56.5% Stage IA, 43.5%

IB), and 21 were recurrence-free 5 years from diagnosis (76% Stage

IA, 24% IB), thus forming two patient groups: (a) “poor” (case) and

(b) “better” (control) outcome. Patients in the two groups were

selected to balance gender, smoking status and original patient institu-

tion. The selection was verified through statistical testing, finding no

statistically significant difference in gender, smoking status or Stage

IA/IB (Fisher's exact test >0.05). Clinicopathological variables were

collected from patient charts. Complete clinical mutation/gene fusion

status was not available for this retrospective cohort.

2.2 | Pathology assessment of lung AC growth
patterns

Assessment of histological growth patterns were assessed in patients

from Karlsson et al36 (GSE60644, n = 16) and Djureinovic et al37

(GSE81089, n = 110) as reported in Salomonsson et al.43 Briefly, all his-

tological slides were reviewed for each case for investigation of growth

patterns. The cases were graded according to predominant growth pat-

tern: lepidic predominant (incl. minimally invasive AC) were classified as

low grade, acinary and papillary predominant as medium grade and

micropapillary and solid predominant or invasive mucinous AC as high

grade (Reference 44 and the WHO classification from 2015).

2.3 | Preprocessing and TCGA NCC classification
of gene expression data

Preprocessing of gene expression data was performed as described in

Cirenajwis et al.22 Common gene symbols across the 22 datasets were

extracted (n = 9659) to create a uniform expression matrix. To gener-

ate training/reference classes for the SSPs, NCC was performed for

each dataset separately to assign each sample a TCGA subtype (TRU,

PI or PP) based on the highest (Pearson) correlation as described else-

where.9,22 In addition, a two-class constellation consisting of TRU vs

nonTRU cases was also generated and used for SSP training.

2.4 | AIMS single sample classifier

The AIMS17 method was implemented using source scripts available

from the GitHub repository (https://github.com/meoyo/trainAIMS).

Training was performed on raw gene expression data (n = 9659 genes)

from the 1655 training samples as outlined in Cirenajwis et al22 with

the exception for the Lee et al and CLCGP datasets for which only

normalized gene expression data could be obtained from public repos-

itories. Briefly, the training cohort was trained against either the two-

class (TRU/nonTRU) or three-class (TRU/PI/PP) constellations to

generate the AIMS-based predictors referred to as SSP2 or SSP3,

respectively. No further preprocessing of gene expression data was

performed. To avoid unequal rule contribution in rule selection due to
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size differences across datasets for the merged training cohort,

the AIMS algorithm applied a weighted form of rule selection pro-

vided by the R package “Rgtsp.” The derived SSP2 and SSP3 models

will be available as an R package “Classification of Lung Adenocarci-

noma Molecular Subtypes” (CLAMS) at Bioconductor (www.

bioconductor.org).

Unknown treatment
(n = 140)

Validation datasets
n = 977

(Unprocessed gene expression data)

Shedden et al. (n = 444)

Okayama et al. (n = 226)
Fouret et al. (n = 103)

Zhu et al. (n = 71)

Tang et al. (n = 133)

SSPs
1. TRU/PP/PI (SSP3)

2. TRU/nonTRU (SSP2)

NCC subtypes
TRU/PP/PI

TRU/nonTRU

NCC subtypes
TRU/PP/PI

TRU/nonTRU

Datasets
n = 2632, 22 datasets

(Normalized & mean-centered
gene expression data)

(A) (B)

Training cohort
n = 1655, 17 datasets 
(unprocessed gene 

expression data)

+

Adjuvant 

chemotherapy
n = 200

(22 cases overlap Shedden & 

Zhu)

Shedden et al. (n = 89)
Fouret et al. (n = 33)

Zhu et al. (n = 39)
Tang et al. (n = 39)

Surgically treated

n = 637
(21 cases overlap 
Shedden & Zhu)

Nearest centroid classification 
(Wilkerson et al. Plos One 2012

In silico validation

AIMS

Development of 
NanoString assay

(TRU/nonTRU, SSP2)

GSE143486
Surgically treated

Stage I, n = 30

Validation in FFPE

SSP2 model

Surgically treated
Stage I, n = 44

No relapse within 5-years (n = 21)
Relapse within 5-years (n = 23)

F IGURE 1 Flow-chart of study. A, Approach to derive molecular subtype training class through nearest centroid classification (NCC) of all
datasets individually using the scheme reported by Wilkerson et al.9 For the two-class subtype approach, PP and PI subtypes were combined to a

single nonTRU class. B, Training and validation scheme for deriving a two-class SSP for TRU/nonTRU (SSP2) and a three-class SSP for TRU/PI/PP
subtypes (SSP3) based on the AIMS single sample method. Of the total 22 datasets included, 5 were reserved as independent validation datasets
and were also used for evaluation of prognostic performance of the SSP models in both surgically treated only and adjuvantly treated patients. A
patient overlap existed for the Shedden et al and Zhu et al cohorts. Patients overlapping were excluded from one cohort in survival analyses. An
additional external validation of the SSP2 model was also performed in archival RNA from 44 Stage-I patients treated with surgery only, by
pairing the SSP2 model with the NanoString nCounter XT technology
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2.5 | Pathway analysis

Pathway analysis was performed using the PANTHER Classification Sys-

tem (http://pantherdb.org) and the overrepresentation test application

to identify significant biological pathways covered by the SSPs. Default

settings were used, and gene ontology terms with a false discovery rate

adjusted Fisher's exact test P < .05 were considered significant.

2.6 | A NanoString SSP gene expression assay

To test the applicability of CLAMS in archival tissue (ie, RNA from

FFPE tissue), a NanoString (www.nanostring.com) nCounter XT assay

was designed based on the CLAMS genes for TRU/nonTRU (SSP2)

prediction. RNA from FFPE tissue was extracted using the AllPrep

DNA/RNA FFPE Kit (Qiagen, Hilden, Germany). A 300 ng RNA was

used in the nCounter XT CodeSet Gene Expression Assay and counts

were generated on a SPRINT instrument after the manufacturer's

instructions (NanoString Technologies, Seattle, WA). Four cartridges

(12-sample) were run with 44 samples and 4 controls in total. Gener-

ated counts were background corrected and generated gene expres-

sion data were quality assessed as described.45,46 All samples passed

quality thresholds.

2.7 | Statistical analysis

All statistical analyses were performed as two-sided tests using R

(www.r-project.org). Classification performance (accuracy and bal-

anced accuracy) for SSP2 and SSP3 were analyzed in each validation

dataset separately. For analysis of individual gene expression across

the molecular subtypes in the validation cohort (n = 934, no

TABLE 1 Datasets included in our study

Datasets
Total
(N) Accession Platform

Sex:
males
(%)

Stage
I (%) OS DMFS

Adj.
chemo
(N)

NCC

status:
TRU vs non
TRU (%)

Cohort
assignment

Chitale et al23 a 102 Chitale U133

2plus

Affymetrix 41 69 Yes No 0 41 Training

CLCGP24 b 98 CLCGP Illumina 48 44 Yes Yes 0 34 Training

Bild et al25 58 GSE3141 Affymetrix NA 45 Yes Yes 0 36 Training

Lee et al26 63 GSE8894 Affymetrix 54 NA No Yes 0 38 Training

Tomida et al27 117 GSE13213 Agilent 51 68 Yes No 0 40 Training

Hou et al28 45 GSE19188 Affymetrix 56 NA Yes No 0 31 Training

Lu et al29 60 GSE19804 Affymetrix NA 58 No No 0 38 Training

Wilkerson et al9 116 GSE26939 Agilent 46 53 Yes No 0 41 Training

Rousseaux et al30 85 GSE30219 Affymetrix 78 95 Yes Yes 0 34 Training

Botling et al31 106 GSE37745 Affymetrix 43 66 Yes No 0 35 Training

Seo et al32 87 GSE40419 RNAseq 61 63 No No 0 41 Training

Tarca et al33 77 GSE43580 Affymetrix 68 53 No No 0 42 Training

Chen et al34 92 GSE46539 Illumina 17 NA No No 0 37 Training

Der et al35 127 GSE50081 Affymetrix 51 72 Yes Yes 0 39 Training

Karlsson et al36 77 GSE60644 Illumina 42 88 Yes No 0 40 Training

Djureinovic

et al37
115 GSE81089 RNAseq 37 58 Yes No 0 35 Training

TCGA4 c 230 TCGA RNAseq NA NA No No 0 39 Training

Shedden et al38 444 Shedden Affymetrix 50 62 Yes Yes 89 37 Validation

Okayama et al39 226 GSE31210 Affymetrix 46 74 Yes Yes 0 43 Validation

Fouret et al40 d 103 E-MTAB-923 Affymetrix 16 58 Yes No 33 42 Validation

Zhu et al41 e 71 GSE14814 Affymetrix 52 59 Yes Yes 39 35 Validation

Tang et al42 133 GSE42127 Illumina 51 67 Yes No 39 38 Validation

aSamples were divided into two cohorts based on the different Affymetrix platforms, U133A and U133 2plus. Only the latter subset was included in the

analysis.
bCLCGP, The Clinical Lung Cancer Genome Project (http://www.uni-koeln.de/med-fak/clcgp/).
cThe Cancer Genome Atlas Network (TCGA).
dData obtained from the “ArrayExpress” database (https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-923/).
ePresent dataset overlaps with Shedden et al (43 samples).
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overlapping samples), genes were ranked (from 1 to 9659) sample-

wise using the function “rankGenes” provided by the R package

“singscore” (version 1.5.0).47

2.8 | Survival analysis

Survival analyses were performed using the R “survival” package (ver-

sion 2.43.1) with overall survival (OS), distant metastasis-free survival

(DMFS) or recurrence-free interval (for NanoString FFPE samples) as

endpoints defined according to original studies (Table 1). Survival cur-

ves were compared using Kaplan-Meier estimates and the log-rank

test. Hazard ratios (HR) were calculated through univariable or multi-

variable Cox regression using the “coxph” R function. Survival data

was censored at 5 years to account for differences in follow-up time

between validation datasets.

3 | RESULTS

3.1 | Clinical and molecular subtype characteristics
of the patient cohort

Twenty-two reported gene expression datasets for lung AC (n = 2632

patients in total) were divided into a training cohort (n = 1655) and a

validation cohort (n = 977) (Figure 1, Table 1). All datasets were classi-

fied on a per cohort basis, according to TCGA TRU/PP/PI subtypes by

the NCC method. Similar proportions of subtypes were observed

across the datasets (Figure 2A), despite substantial differences in, for

example, distribution of tumor stage and technical platform (Table 1).

This observation is an illustration of the inherent feature of NCC clas-

sification relying on gene centering across samples, which if not

accounted for make sample classification cohort dependent.13,22 Still,

TCGA NCC subtypes retained reported associated clinical features,4,9

including a higher proportion of Stage I tumors, never-smokers and

patients with EGFR mutations in TRU-classified tumors in both train-

ing and validation cohorts (Supplementary Figure S1).

3.2 | Deriving SSPs for TCGA lung AC subtypes

Based on TCGA NCC subtypes for 1655 training samples and 9659

genes present across all datasets, AIMS17 was used to derive a two-

class SSP for TRU vs nonTRU samples (SSP2) and a three-class SSP

for the TRU/PI/PP subtypes (SSP3). SSP2 consisted of 18 gene rules

(n = 36 unique genes), while SSP3 consisted of 47 gene rules per sub-

type (n = 141 gene rules in total, n = 259 unique genes) (Figure 2B;

Supplementary Table S1). Reclassification of the 1655 training sam-

ples showed an accuracy of 0.85 for SSP2 and 0.82 for SSP3 vs TCGA

NCC classifications, acknowledging the circular nature of this analysis.

Fifty-six percent (20/36) of the SSP2 model genes overlapped with

the original 506 NCC genes, and 83% (15/18) of gene rules involved at

least one NCC gene (Figure 2C). For SSP3, corresponding values were

56% (144/259 genes) and 79% (112/141 gene rules). Functional analy-

sis of SSP gene rules were investigated by gene set enrichment analysis

(Supplementary Table S2). For the SSP2 model, selected genes were

strongly enriched for the cell cycle gene ontology process. For the

SSP3 model, additional significant gene ontology processes, besides the

cell cycle, included leukocyte migration and chemotaxis, extracellular

matrix and structure, cell migration and localization terms.

For two cohorts (Karlsson et al36 and Djureinovic et al37) in the

training dataset, we had access to reviewed pathology assessments of

histological lung AC growth patterns (lepidic predominant, acinary and

papillary predominant, and micropapillary and solid predominant) for

126 cases. Cross tabulation of SSP2 classifications vs these histologi-

cal subtypes revealed that 87.5% of cases with lepidic predominant

growth patterns were of the TRU subtype. For TRU cases, 14.3% had

lepidic growth patterns, 71.4% acinary and papillary predominant

growth patterns and 14.3% micropapillary and solid predominant

growth patterns. Corresponding values for nonTRU cases were 1.3%,

63.6% and 35.1% (Fisher's exact test, P = .001). When excluding the

small number of lepidic cases, corresponding values were 83.3%

acinary and papillary predominant patterns, and 16.7% micropapillary

and solid predominant patterns in TRU classified cases, and 64.5%

and 35.5%, respectively, in nonTRU cases (Fisher's exact P = .035).

These general patterns were retained also when viewing the individ-

ual datasets, although not reaching statistical significance due to lower

numbers. Together, these results indicate an association of the SSP

classifications with histological AC growth patterns.

3.3 | Validation of SSP2 and SSP3 as predictors of
AC molecular subtype

SSP2 and SSP3 models were validated in 977 independent samples

derived from five datasets analyzed by either Illumina or Affymetrix

gene expression microarrays (Table 1, Figure 1). Importantly, the

SSP2/SSP3 models do not rely on any preprocessing, thus new sam-

ples are classified independently based on raw data only.

Per validation dataset, the proportion of TRU classified samples

for the NCC vs SSP2 model was first compared (Figure 2D). Differ-

ences were observed for specific datasets. The Okayama et al48

dataset showed a notably higher fraction of SSP2-TRU samples than

the NCC classifier, a pattern partly also present in the Fouret et al40

and Tang et al42 datasets. Across all validation samples, an accuracy of

0.85 for SSP2 and 0.81 for SSP3 were observed when compared to

NCC subtypes. Variations between individual datasets in accuracy

were observed as outlined in Figure 2E.

3.4 | Clinical and molecular characterization of
discordantly classified samples by SSP and NCC
methods

In the 977-sample validation cohort, 137 cases (14%) were discor-

dantly classified between the NCC (2-class) and SSP2 models.
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This subset of patients had a higher proportion of never-smokers

(Fisher's exact test P = .02) and Stage II tumors (P = .0007) compared

to concordantly classified patients (Supplementary Figure S2A). To

further dissect discordant cases, all validation cases were given a label

corresponding to the class assignment by the two methods

(NCCstatus-SSPstatus). This formed four groups: (a) TRU-TRU (=concor-

dant TRU), (b) TRU-nonTRU, (c) nonTRU-TRU and (d) nonTRU-

nonTRU (=concordant nonTRU). Analysis of the MKI67 gene expres-

sion ranks (Ki67, a well-established proliferation-related gene) indi-

cated higher proliferation in the concordant nonTRU group as

compared to the concordant TRU group. For discordantly classified

cases, the MKI67 expression pattern was consistent with the SSP2

classification, meaning, for example, lower expression in nonTRU-TRU

compared to TRU-nonTRU (Supplementary Figure S2B). The majority
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of discordant cases had an intermediate correlation (eg, between

0 and 0.2) to the TCGA NCC centroids (TRU/PI/PP) and were weakly

separated by the NCC method (Supplementary Figure S2C,D).

3.5 | Molecular subtype prediction by NCC and
SSP models vs patient outcome

Based on the prognostic analyses of TCGA NCC subtypes reported by

Ringner et al,13 outcome analysis was restricted to the TRU/nonTRU con-

text. Patients in the validation cohort were stratified by treatment status

into a prognostic group (n = 616 unique patients treated with surgery

alone) and an adjuvant chemotherapy treated group (n = 178 unique

patients) (Figure 1, Table 1). The four NCCstatus-SSPstatus groups were

used to address the question of which classifier appeared more “clinically

meaningful” for discordantly classified cases based on survival outcome.

In the prognostic arm, concordant TRU patients (including

patients of all stages) had an improved OS compared to concordant

nonTRU patients, with a 5-year survival rate of 82% vs 54%, respec-

tively (Figure 3A). The subset of patients (n = 104 in total, 16.9%) with

discordant NCC (2-class)/SSP2 class (TRU-nonTRU and nonTRU-TRU)

showed differences in OS (P = .0015, log-rank test) (Figure 3B). The

patient group classified as TRU by NCC and nonTRU by SSP2 (TRU-

nonTRU) had a similar survival pattern as the concordant poor out-

come nonTRU patient group (Table 2, Figure 3A). These patients had

a significantly increased risk of death (HR = 2.90; 95% confidence

interval [CI] = 1.37-6.32; P = .005), as compared to the concordant

TRU patient group. The reverse was observed for the nonTRU-TRU

patient group, which showed a survival pattern similar to that of the

concordant better outcome TRU group (Table 2, Figure 3A). Thus,

based on patient survival, discordantly classified patients seem to be

more “accurately” classified by the SSP2 model. Similar trends were

observed for DMFS, considering that this analysis included patients of

all stages (Table 2, Figure 3C,D).

In the adjuvant chemotherapy patient group, survival differences

between the concordant TRU and nonTRU groups were less pro-

nounced at 5 years postsurgery, with an OS rate of 57% and 45%,

respectively (Figure 3E). Herein, 12.9% (n = 23) had discordant subtype

labels. The slightly lower discordance rate may be due to that adjuvant

chemotherapy is selectively given to high-risk patients, which concep-

tually should more often be intrinsic nonTRU. Given the low number of

discordant cases, especially for the DMFS endpoint (Figure 3F), larger

datasets are needed to determine whether the findings in surgically

treated patients translate to adjuvant treated discordant patients.

3.6 | Association of patient outcome with SSP2
prediction in surgically treated Stage I disease

In surgically treated Stage I patients from the validation cohort, the

SSP2 predicted TRU patient group was significantly associated with a

better OS (89% 5-year survival) with a hazard ratio of 0.29 (95%

CI = 0.18-0.46; P < .0001), as compared to the nonTRU patient group

(65% 5-year survival) (Figure 4A). Of Stage IA patients with OS data,

73% were TRU-classified, while for Stage IB only 48% were TRU-clas-

sified. The better OS of TRU-classified cases remained significant also

in subgroups of Stage IA or IB patients (log-rank P = .007 and 90% 5-

year survival, and P = .0002 and 85% 5-year survival, respectively, and

was also observed independently of age and gender in Stage IA

(HR = 0.36; 95% CI = 0.17-0.75; P = .007) or Stage IB (HR = 0.26;

95% CI = 0.13-0.52; P = .0001).

In TRU-classified patients, Stage IA/IB was not associated with

differences in OS (log-rank P = .31). SSP2 classification added inde-

pendent prognostic information in a multivariable Cox regression

model for OS including age, Stage IA/IB, and gender as covariates for

Stage I patients (TRU HR = 0.30; 95% CI = 0.18-0.49; P < .0001). For

DMFS, SSP2 also significantly stratified patients into better (TRU, 5-

year DMFS = 79%) and worse (nonTRU, 5-year DMFS = 62%) out-

come (Figure 4B), supported by univariable (TRU HR = 0.48; 95%

CI = 0.31-0.74; P = .0008) and multivariable Cox regression analyses

using age, Stage IA/IB and gender as covariates (TRU HR = 0.52; 95%

CI = 0.33-0.83; P = .006).

3.7 | An assay based on SSP2 applicable to FFPE
tissue

To test our SSP2 model in FFPE tissue, we created an R-based imple-

mentation (referred to as CLAMS) and paired it with the NanoString

nCounter XT technology to create a “complete” assay. We applied this

assay to FFPE RNA from 44 Stage-I ACs treated surgically only.

Twenty-one of the patients were metastasis-free 5 years after diagno-

sis (forming a “better” prognosis group), while the remaining

23 patients had a relapse (loco-regional/distant) within 5 years (rep-

resenting a “poor” outcome group).

CLAMS prediction of the 44 cases classified 39% (17/44) as TRU

and 61% (27/44) as nonTRU (Supplementary Table S3, including all

data). Of TRU-classified samples 88% were Stage IA, while for non-

TRU 52% were Stage IA. Hierarchical clustering of raw counts for

CLAMS genes across the 44 cases confirmed the TRU/nonTRU

CLAMS subgroups (Figure 4C), further supported by gene rule fulfill-

ment for predicted cases (Supplementary Figure S3). CLAMS classifi-

cation was next compared to the two patient prognosis groups

(no relapse/relapse, Supplementary Table S3, Figure 4D). Of the TRU

classified patients, 71% were metastasis free after 5 years, in contrast

to only 33% of the nonTRU classified patients (accuracy for CLAMS

groups vs relapse status was 0.68). The specificity (no relapse in TRU

group) was 0.71, sensitivity (relapse in nonTRU group) was 0.67 and

the positive predictive value was 0.78 (relapse in poor group also

being nonTRU). For discrepant cases predicted as TRU but with

relapse, we observed slightly elevated expression of MKI67 and

lowered Napsin A expression (NAPSA), consistent with a more non-

TRU like phenotype. Moreover, nonTRU cases without relapse

showed elevated expression of MKI67, as compared to TRU cases, sig-

naling why these were likely classified as nonTRU by CLAMS

(Figure 4E).
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Survival analysis of this selective Stage I cohort showed that

CLAMS stratified patients into better and worse prognosis (log-rank

P = .02, HR = 3.2, 95% CI = 1.2-8.8), with a 4-year relapse-free rate of

82% for the TRU group, while only 41% for the nonTRU group

(Figure 4F). In multivariable analysis, CLAMS remained significant

when using gender, age and Stage IA/IB as covariates (HR = 3.3, 95%

CI = 1.04-10.5), and borderline nonsignificant when including also

smoking status (never/smoker) in the model (P = .06).

In a second validation, we applied CLAMS to 30 FFPE Stage-I

tumors with RNA sequencing data (GSE143486). CLAMS stratified

patients into better and worse survival (Figure 4G) and remained sig-

nificant in multivariable analysis (nonTRU, HR = 8.8, 95% CI = 2.2-34)

using age, gender and Stage IA/IB as covariates and OS as clinical

endpoint.

4 | DISCUSSION

In the current study, we present a gene expression-based classifier of

lung AC molecular subtypes applicable to single samples irrespectively

TABLE 2 Cox regression analysis of transcriptional subtypes in lung adenocarcinoma (surgically treated patients)

Univariable analysis Multivariable analysisa

Events (N) HR 95% CI P* Events (N) HR 95% CI P* Included confoundersa

Overall survivalb

Subtypesc 159/590 157/586

TRU-TRU 1.00 Ref (<.001) 1.00 Ref (<.001) Stage, gender, age

TRU-nonTRU 2.9 1.37-6.32 .005 3.0 1.38-6.42 .005

nonTRU-TRU 0.69 0.32-1.48 .3 0.76 0.35-1.65 .5

nonTRU-nonTRU 3.3 2.30-4.84 <.001 2.9 1.92-4.23 <.001

Stage 157/586

I 1.00 Ref (<.001) 1.00 Ref

II 3.1 2.17-4.41 <.001 2.5 1.73-3.61 <.001

III 7.2 4.66-11.10 <.001 5.4 3.46-8.41 <.001

Gender 159/590

Female 1.00 Ref (.3) 1.00 Ref

Male 1.2 0.87-1.61 .3 0.96 0.70-1.33 .8

Age (yr) 159/590

1.04 1.02-1.06 (<.001) 1.03 1.01-1.05 <.001

Distant metastasis-free survivald

Subtypesc 146/454 145/452

TRU-TRU 1.00 Ref (<.001) 1.00 Ref (<.001) Stage, gender, age

TRU-nonTRU 3.0 1.38-6.39 .005 3.0 1.39-6.52 .005

nonTRU-TRU 1.8 1.06-3.02 .03 1.4 0.77-2.35 .2

nonTRU-nonTRU 2.8 1.88-4.15 <.001 2.1 1.37-3.21 <.001

Stage 145/452

I 1.00 Ref (<.001) 1.00 Ref

II 3.2 2.28-4.58 <.001 2.8 1.89-4.02 <.001

III 3.3 1.71-6.39 <.001 3.0 1.48-5.65 .001

Gender 146/454

Female 1.00 Ref (.3) 1.00 Ref

Male 1.2 0.87-1.66 .3 1.1 0.77-1.49 .7

Age (yr) 146/454

1.02 1.002-1.04 (.03) 1.02 1.01-1.05 .02

Abbreviation: CI, confidence interval.
aThe following confounders were included in the model: Stage (not Stage IV because of too few cases), gender and age. The confounders were selected

based on their significance from the univariable analysis with P ≤ .05 (except for gender).
bFollow-up starts after surgical resection of the tumor lesion and ends at death by any reason (=event).
cGroups were created based on a combination of two classifiers' outcome: TRU or nonTRU. Classifier1 (=NCC) − Classifier2 (=SSP).
dFollow-up starts after surgical resection of the tumor lesion and ends at distant metastasis occurrence (=event).

*P-value for the pairwise comparisons were calculated using the Wald test. Overall P-values (also from the Wald test) are given within the parentheses.
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of technical platform or cohort composition. Moreover, the classifier

represents an independent prognostic assessment tool for surgically

treated tumors in this disease and can be translated into an assay

applicable for routine clinical tissue.

The SSP2 TRU/nonTRU and the SSP3 TRU/PI/PP models both

included cell proliferation as a significant biological process, in line

with our previous findings of expression of proliferation-related genes

representing the main prognostic component in the NCC model.13

Moreover, the functional analyses of SSP models demonstrate that

SSP machine-learning using thousands of genes can identify biologi-

cally relevant features that can be grouped into interpretable biologi-

cal processes.

Overall, we observed an accuracy of 0.85 for the SSP2 and 0.81

for the SSP3 models based on all validation samples (irrespective of

disease stage). However, one has to bear in mind that the SSP models

were trained on molecular assignments obtained by the NCC method,

which itself comprises inherited robustness problems.13 Specifically,

the NCC subtype training labels are not optimal for certain cohorts,

due to a cohort composition different from that in which the original

NCC centroids were derived. Illustrating this, notable differences in

the proportion of TRU-classified samples were observed between the

NCC and SSP classifiers for specific validation datasets (Figure 2D),

most prominently in the Okayama et al dataset.48 This dataset con-

sists of 74% Stage-I tumors, and patients in this dataset have been

shown to have a generally very good prognosis.15 Thus, in this con-

text, NCC classification infers a predicted poor outcome class (ie, non-

TRU) to patients with an intrinsically good prognosis due to the

prerequisite of gene-centering in the NCC model. In contrast, SSP

classifiers appear able to handle cohort composition bias due to their

ability to classify samples truly independently. These findings illustrate

the benefits of gene expression-based SSPs in a possible clinical con-

text if there are no standardized relevant reference datasets for gene-

centering available.

The proposed TRU, PI and PP subtypes have been associated

with different molecular and clinicopathological characteristics,4,9,13

and we also demonstrate an association with histological growth pat-

terns of lung AC. The perhaps most clinically useful feature of the

expression subtypes is their association with patient outcome in early

stage (operable) disease.13 While we find that both TRU/nonTRU

NCC and SSP2 classifications are associated with patient outcome in

early stage patients, actual patient outcome favors the SSP2 classifica-

tion for discordantly classified cases. This observation is crucial in the

context of SSP applicability, allowing a platform agnostic gene

signature to be applied to individual patients without any data

preprocessing or reference cohorts. Functional analyses of SSP2 and

SSP3 suggest that, in a prognostic context, these predictors provide a

relative division between low- and (more) high-proliferative tumors.

Application of the SSP2 model to 504 squamous cell lung carcinomas

assembled from public datasets22 classified 96% of tumors as non-

TRU, without any prognostic association (exploratory analysis, Supple-

mentary Figure S4). This opposite result compared to AC is likely due

to an intrinsically higher proliferation rate in squamous tumors com-

pared to AC tumors (shown by, eg, Reference 49). This further illus-

trates the differences in underlying prognostic gene expression

components in the histological subtypes of lung cancer, which could

be one of the reasons underlying the difficulty in validating gene sig-

natures from NSCLC studies of mixed histologies in histology specific

cohorts.15

While a gene signature predictive of response to chemotherapy is

highly desirable in resected lung AC, our results do not support that

the proposed molecular subtypes currently seem to match that need.

Instead, the current potential clinical value of our derived predictors

lies in improved risk stratification of surgically treated Stage-I patients.

This risk stratification could aid in identifying patient subsets for

which, on a group level, additional adjuvant treatment appears less

motivated (TRU-cases). For remaining patients (nonTRU), it may be

argued that additional adjuvant treatment could be considered. Ide-

ally, such claims need to be supported by randomized trial data that

investigates the benefit of additional adjuvant treatment to otherwise

untreated patients stratified by the molecular assay. Such studies

have, to date, not been reported in lung cancer, in contrast to, for

example, breast cancer.50 To allow for the latter, robust assays appli-

cable to degraded RNA from fixated tissue are needed. This has repre-

sented a challenge for introducing gene expression-based signatures

into the clinic. As a countermeasure, focused gene expression

methods, such as the NanoString nCounter technique, have been used

in breast cancer (the ProSigna test). To address the requirement of

analyzing degraded RNA, we paired our SSP2 model (CLAMS) with

the NanoString nCounter XT technology forming a “complete” assay.

In FFPE RNA from 44 Stage-I patients, we could demonstrate that the

assay could recapitulate SSP2 gene rules, and that NanoString gene

expression was representative of the expected subgroups. These

results were supported also by application of the SSP2 model to FFPE

RNA sequencing data. Together, these findings show, to the best of

our knowledge for the first time in lung cancer, that in silico derived

SSP rules can be transferred to an FFPE applicable assay. In the

F IGURE 4 SSP2 performance on surgically treated Stage-I lung adenocarcinomas. A, Kaplan-Meier plot of OS for surgically treated Stage-I
patients in the validation datasets (only patients with outcome data), stratified by SSP2 classification. B, DMFS for surgically treated Stage-I

patients in the validation datasets, stratified by SSP2 classification. C, Hierarchical clustering (Pearson correlation and ward.D linkage) of log2
count NanoString data for 44 FFPE Stage-I tumors using the 36 genes present in the SSP2 model through the CLAMS package. D, Confusion
matrix of CLAMS prediction vs clinical status of relapse (loc-regional/distant) yes/no. E, Gene expression of MKI67 (Ki67) and NAPSA (Napsin A)
across the 44 NanoString cases stratified by CLAMS prediction and clinical relapse status. Groups in gray represents agreement between TRU/no
relapse and nonTRU/relapse. F, Kaplan-Meier plot of recurrence-free (loco-regional/distant) interval for the 44 NanoString cases stratified by
CLAMS prediction. G, Kaplan-Meier plot of OS for 30 Stage-I tumors from GSE143486 stratified by CLAMS prediction. FFPE RNA for these
samples were analyzed by RNA sequencing. In all Kaplan-Meier plots, P-values were calculated using the log-rank test
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selected set of 44 analyzed patients (ie, not population-representa-

tive), the assay translated into a significant difference in recurrence-

free interval, with a similar 4-year recurrence-free outcome as in the

in silico validation cohort (Figure 4). While SSP performance in the

FFPE cohort could desirably have been higher, one should bear in

mind that, at present, there is a shortage of clinical risk stratification

tools for patients with lowest disease stage subjected to curative sur-

gery, and for whom current guidelines do not recommend adjuvant

therapy. Moreover, surgical treatment may of course cure patients

with high-proliferative tumors (nonTRU) that have not yet metasta-

sized, whereas low-proliferative tumors (TRU) may have acquired

metastatic potential early in their development. Such instances repre-

sent limitations for prognostic gene expression models based on surgi-

cal specimens.

In summary, we have derived platform independent single sample

gene expression classifiers of proposed transcriptional subtypes in

lung AC that also provides risk stratification in surgically treated

Stage-I patients. Our SSP2 and SSP3 models now allow unrestricted

usage of the TCGA subtypes even in highly selected lung AC cohorts,

including advanced stage tumors. In malignancies such as breast can-

cer, gene expression signatures have now made their way into clinical

practice to support clinical decision-making about adjuvant therapy.

Whether a similar development will occur in early stage lung AC

remains to be seen. However, robust gene expression predictors that

have been translated into actual assays is an important first step in

demonstrating that a similar development may be worthwhile

exploring.
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