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Abstract
The intraclass correlation coefficient (ICC) is a classical index of measurement reli-

ability. With the advent of new and complex types of data for which the ICC is not

defined, there is a need for new ways to assess reliability. To meet this need, we pro-

pose a new distance-based ICC (dbICC), defined in terms of arbitrary distances among

observations. We introduce a bias correction to improve the coverage of bootstrap

confidence intervals for the dbICC, and demonstrate its efficacy via simulation. We

illustrate the proposed method by analyzing the test-retest reliability of brain connec-

tivity matrices derived from a set of repeated functional magnetic resonance imaging

scans. The Spearman-Brown formula, which shows how more intensive measurement

increases reliability, is extended to encompass the dbICC.
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1 INTRODUCTION

With the increasing availability of new and complex forms

of data, there is a corresponding need for new ways to assess

measurement reliability. This article aims to help meet this

need by reformulating the intraclass correlation coefficient

(ICC), a standard index of reliability, in terms of distances

between observations.

We begin by defining the ICC as developed in classical test

theory (Lord and Novick, 1968; Fleiss, 1986; Mair, 2018),

which views a measured scalar quantity 𝑋 as the sum of an

underlying true score 𝑇 and an error term 𝐸. Suppose we

have a sample of 𝐼 individuals with true real-valued scores

𝑇1,… , 𝑇𝐼 drawn from a population with variance 𝜎2
𝑇

; and that

for each 𝑖, the 𝑖th individual is measured 𝐽𝑖 times, yielding

observations

𝑋𝑖𝑗 = 𝑇𝑖 + 𝜀𝑖𝑗 , (1)

𝑗 = 1,… , 𝐽𝑖, where the 𝜀𝑖𝑗’s are drawn from a distribution

with mean 0 and variance 𝜎2𝜀 , independently of each other and

of the 𝑇𝑖’s. Then for distinct 𝑗1, 𝑗2 ∈ {1,… , 𝐽𝑖}, the correla-
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tion between the 𝑗1th and 𝑗2th observations for individual 𝑖 is

easily shown to be

𝜌 =
𝜎2
𝑇

𝜎2
𝑇
+ 𝜎2𝜀

. (2)

This quantity is the classical ICC.

Reliability measures for more complex settings include

replacing model (1) with the generalizability theory model

of Cranford et al. (2006), as well as generalizations of (2)

to multivariate data (Alonso et al., 2010), including high-

dimensional data (Shou et al., 2013). All of these extensions

assume a model that is more complex than (1), but still of

an additive (signal plus noise) form. However, for complex

objects that are measured or estimated in modern biomedi-

cal research, such as motion patterns or brain networks, such

an additive representation is typically inapplicable. There is

thus a need for a new reliability index appropriate for general

data objects.

Our work was motivated by the study of functional connec-

tivity in the human brain by means of resting-state functional
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F I G U R E 1 Top: Matrices 𝑹 of correlations among 80 ROIs comprising the default mode network and visual network in our fMRI data set. The

left and right matrices, respectively, attain the highest and lowest connectivity scores − log |𝑹| observed in our data set. Middle: Brain maps (axial

view) corresponding to the same two correlation matrices, and displaying pairs of regions with absolute correlation above 0.6. Orange nodes and

links refer to the default mode network; green nodes and links refer to the visual network; links between the two networks are shown in black.

Bottom: Same brain maps, sagittal view. The fMRI data are presented in Section 4, and the connectivity score − log |𝑹| is discussed briefly in Web

Appendix A
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magnetic resonance imaging (fMRI). Briefly, fMRI produces

a time series of brain activity, known as the blood oxygen-

level-dependent (BOLD) signal, at each of a set of regions

of interest (ROIs). Resting-state fMRI means that the partici-

pants in the study were not performing any particular task or

viewing a stimulus during the brain scan. Functional connec-

tivity refers to association among activity levels in different

parts of the brain, and can be measured in many ways (Yan

et al., 2013). One of the most common functional connectiv-

ity measures is a simple Pearson correlation matrix of regional

BOLD signals. Figure 1 displays two such correlation matri-

ces, along with associated brain graphs, for a set of 80 ROIs

to be discussed in Section 4. These particular examples were

chosen to illustrate high and low connectivity, according to a

metric described in Web Appendix A.

In order to be confident that such correlation matrices, and

the scientific conclusions derived from them, are trustworthy

and reproducible, it is necessary first to be able to assess their

reliability (Noble et al., 2019). Our proposed methodology

offers a means to that end.

Our basic proposal, a reformulation of the ICC based on

distances between observations, is outlined in Section 2, and

estimation of the resulting reliability index is discussed in Sec-

tion 3. An application to an fMRI data set is presented in

Section 4. In Sections 5-7, we extend the Spearman-Brown

(SB) formula, a fundamental result in reliability theory, to our

distance-based ICC, and revisit our fMRI data set in light of

this extension. A concluding discussion appears in Section 8.

2 DISTANCE-BASED RELIABILITY
MEASUREMENT

A novel reliability index applicable to general data objects

can be defined by rederiving the ICC (2) in terms

of squared distances among observations. Let MSD𝑏 =
𝐸𝑖1≠𝑖2

[(𝑋𝑖1𝑗1
−𝑋𝑖2𝑗2

)2] and MSD𝑤 = 𝐸𝑗1≠𝑗2
[(𝑋𝑖𝑗1

−𝑋𝑖𝑗2
)2]

be the mean squared differences for measurements between

and within individuals, respectively. Then MSD𝑏 = 2𝜎2
𝑇
+

2𝜎2𝜀 and MSD𝑤 = 2𝜎2𝜀 , and thus, the ICC (2) can be reex-

pressed as

𝜌 = 1 −
MSD𝑤

MSD𝑏

. (3)

The advantage of expression (3) is that, unlike (2), it extends

straightforwardly to general data objects (curves, networks,

etc), as long as a distance or dissimilarity 𝑑(⋅, ⋅) between such

objects is defined. One simply redefines MSD𝑏 and MSD𝑤

in (3) in a more general sense, as the between- and within-

individual mean squared distances

MSD𝑏 = 𝐸𝑖1≠𝑖2

[
𝑑
(
𝑋𝑖1𝑗1

, 𝑋𝑖2𝑗2

)2
]

and

MSD𝑤 = 𝐸𝑗1≠𝑗2

[
𝑑
(
𝑋𝑖𝑗1

, 𝑋𝑖𝑗2

)2
]
. (4)

Henceforth, we shall refer to (3), with MSD𝑏,MSD𝑤 given by

(4), as the distance-based intraclass correlation coefficient,
or dbICC.

We note that the same general strategy, of rederiving

variance-based formulas in terms of sums of squared dis-

tances, has previously been used to formulate distance-based

hypothesis tests (McArdle and Anderson, 2001; Mielke and

Berry, 2007; Reiss et al., 2010).

A simple example of extending (1) beyond the scalar real-

valued case is to let 𝑇𝑖, 𝜀𝑖𝑗 be mutually independent random

vectors, with covariance matrices 𝚺𝑇 ,𝚺𝜀, respectively, and

let 𝑑 be the Euclidean distance. Then (3) reduces straightfor-

wardly to

𝜌 = 1 −
tr(𝚺𝜀)

tr(𝚺𝑇 + 𝚺𝜀)
=

tr(𝚺𝑇 )
tr(𝚺𝑇 + 𝚺𝜀)

, (5)

the multivariate reliability measure referred to as 𝑅𝑇 (Alonso

et al., 2010), and as I2C2 (Shou et al., 2013) for images viewed

as vectors. Thus, the dbICC is an extension of these measures

to more general distances and data types.

3 ESTIMATING THE dbICC

3.1 Point estimation

Like the classical ICC (2), the proposed dbICC (3) can be esti-

mated in practice by plugging in consistent estimates of the

population quantities (4), as follows:

𝜌̂ = 1 −
M̂SD𝑤

M̂SD𝑏

, (6)

where

M̂SD𝑏 =

∑
1≤𝑖1<𝑖2≤𝐼

∑𝐽𝑖1
𝑗1=1

∑𝐽𝑖2
𝑗2=1

𝑑(𝑋𝑖1𝑗1
, 𝑋𝑖2𝑗2

)2∑
1≤𝑖1<𝑖2≤𝐼

𝐽𝑖1𝐽𝑖2
, (7)

M̂SD𝑤 =
∑𝐼

𝑖=1
∑

1≤𝑗1<𝑗2≤𝐽𝑖
𝑑(𝑋𝑖𝑗1

, 𝑋𝑖𝑗2
)2∑𝐼

𝑖=1
(𝐽𝑖
2

) . (8)

Figure 2 illustrates this schematically for a distance matrix

with rows and columns grouped by individuals: one esti-

mates MSD𝑏,MSD𝑤 by averaging the between- and within-

individual distances (B and W), respectively.

3.2 Bootstrap confidence intervals

The dbICC is intended for distance functions whose dis-

tribution may not be known. It is thus natural to turn to
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F I G U R E 2 Left: Schematic diagram of a matrix of distances among repeated observations of nine individuals, with rows and columns grouped

by individual. Distances in the half-squares along the diagonal are within-individual (W), while the rest are between-individual (B). Right: A similar

diagram, but for a bootstrap sample with repeated observations. Distances shown in green are nominally between-individual, but in reality, they are

within-individual

nonparametric bootstrapping as a distribution-free approach

to interval estimation for the dbICC. For 𝑟 = 1,… , 𝐵 with

suitably large 𝐵, let 𝜋𝑟
1,… , 𝜋𝑟

𝐼
be a sample with replacement

from {1,… , 𝐼}; then the 𝑟th bootstrap sample consists of

𝑋𝑟
𝑖𝑗 ≡ 𝑋𝜋𝑟

𝑖
𝑗 for 𝑖 = 1,… , 𝐼 and 𝑗 = 1,… , 𝐽𝜋𝑟

𝑖
. The resulting

ICC estimate is

𝜌̂𝑟 = 1 −
M̂SD

𝑟

𝑤

M̂SD
𝑟

𝑏

, (9)

where M̂SD
𝑟

𝑤, M̂SD
𝑟

𝑏 are bootstrap analogues of (7) and (8):

M̂SD
𝑟

𝑏 =

∑
1≤𝑖1<𝑖2≤𝐼

∑𝐽𝜋𝑟
𝑖1

𝑗1=1
∑𝐽𝜋𝑟

𝑖2
𝑗2=1

𝑑(𝑋𝑟
𝑖1𝑗1

, 𝑋𝑟
𝑖2𝑗2

)2∑
1≤𝑖1<𝑖2≤𝐼

𝐽𝜋𝑟
𝑖1
𝐽𝜋𝑟

𝑖2

, (10)

M̂SD
𝑟

𝑤 =

∑𝐼
𝑖=1

∑
1≤𝑗1<𝑗2≤𝐽𝜋𝑟

𝑖

𝑑(𝑋𝑟
𝑖𝑗1
, 𝑋𝑟

𝑖𝑗2
)2

∑𝐼
𝑖=1

(𝐽𝜋𝑟
𝑖
2

) .

The interval from the 𝛼∕2 to the 1 − 𝛼∕2 quantile of the 𝜌̂𝑟’s

can then be used as a 100(1 − 𝛼)% confidence interval.

These bootstrap estimates 𝜌̂𝑟, however, suffer from nega-

tive bias (over and above the well-known negative bias of the

classical ICC; Atenafu et al., 2012). Returning to the example

in Figure 2, consider a bootstrap sample in which individuals

1 and 2 are duplicates, as are individuals 5 and 6 and individu-

als 7-9. Then the blocks shown in the right subfigure in green

nominally refer to between-individual differences, but, in fact,

represent within-individual differences. Assuming MSD𝑤 <

MSD𝑏, counting these entries as between-individual will tend

to result in underestimation of MSD𝑏 and hence in nega-

tive bias in (9). The diagonal entries of these blocks are

zero, thereby compounding the bias. To remove this bias,

we can simply exclude such blocks from the summations in

(10); formally, we replace each occurrence of
∑

1≤𝑖1<𝑖2≤𝐼
with∑

1≤𝑖1<𝑖2≤𝐼,𝜋
𝑟
𝑖1
≠𝜋𝑟

𝑖2
.

3.3 A simulation study

Using multivariate data with Euclidean distance (the exam-

ple from the end of Section 2), we conducted a simulation

study to assess the accuracy of our point and interval estimates

of the dbICC. Values 𝑋𝑖𝑗 ∈ ℝ2 were drawn from (1) where

𝑇𝑖 ∼ 𝑁2(0, 𝑰2) and 𝜀𝑖𝑗 ∼ 𝑁2(0, 𝑐𝑰2) with 𝑐 = 4, 1, 0.25. By

(5), the (population) dbICC is then 𝜌 = 1
𝑐+1 , which equals

0.2, 0.5, and 0.8 for the above three values of 𝑐. The num-

ber of subjects 𝐼 was set to 10, 40, and 70, and the number

of measurements per subject 𝐽𝑖 fixed at 4. We took 500 repli-

cates with each combination of the above values of 𝜌 and 𝐼 .

Boxplots of the dbICC estimates are displayed in Figure 3.

The classical negative bias of ICC estimates (Atenafu et al.,
2012) is noticeable for 𝐼 = 10 when 𝜌 = 0.2, 0.5, but not for

the other settings.

Next, we considered bootstrap confidence intervals, with

𝐵 = 1200, without and with the bias correction of the
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F I G U R E 3 Boxplots of point estimates of dbICC, for true values 𝜌 = 0.2, 0.5, 0.8 (indicated by dashed lines) and for 𝐼 = 10, 40, 70

F I G U R E 4 Boxplots of median bootstrap estimate of dbICC, for true values 𝜌 = 0.2, 0.5, 0.8 (indicated by dashed lines) and for 𝐼 = 10, 40, 70
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T A B L E 1 Percent coverage of bootstrap 95% confidence

intervals, naïve (N) and corrected (C)

𝑰 = 𝟏𝟎 𝑰 = 𝟒𝟎 𝑰 = 𝟕𝟎
N C N C N C

𝜌 = 0.2 86.0 90.8 91.6 93.2 92.2 92.6

𝜌 = 0.5 84.8 90.6 91.4 92.0 94.0 94.6

𝜌 = 0.8 85.2 89.6 90.6 92.6 92.8 94.2

previous subsection. We performed 500 replicates for each

combination of the same 𝜌 and 𝐼 values as above, again with

𝐽𝑖 fixed at 4. Boxplots of the median of the 1200 bootstrap

estimates within each replicate are presented in Figure 4. For

𝐼 = 10 and to some extent for 𝐼 = 40, the correction yields

a marked reduction in the observed negative bias. Accord-

ingly, the coverage of 95% confidence intervals is improved

by the correction, as can be seen in Table 1. As noted above,

however, a small-sample negative bias (unrelated to bootstrap-

ping) occurs for point estimates of dbICC as for the classical

ICC, and hence the coverage remains quite poor for 𝐼 = 10.

4 FUNCTIONAL CONNECTIVITY
IN THE HUMAN BRAIN

As noted in the introduction, the dbICC was originally con-

ceived as a way to evaluate the reliability of functional con-

nectivity measures. To demonstrate how dbICC can be so

applied, here we reexamine part of a data set presented by

Shehzad et al. (2009) in an early study of the test-retest relia-

bility of resting-state functional connectivity. These authors,

followed by others (eg, Somandepalli et al., 2015; Choe et al.,
2017), focused on ordinary ICC at each of a set of brain loca-

tions or connections. The dbICC, by contrast, offers an over-

all index of reliability for fMRI-based correlation matrices,

viewed as gestalt measures of functional connectivity.

The data include BOLD time series of length 197, within

each of 333 ROIs derived by Gordon et al. (2016), for 𝐼 = 25
individuals, with 𝐽 = 2 such fMRI scans per individual; fur-

ther details are provided in the Appendix. We then computed

the distance between each pair of matrices 𝑹1,𝑹2 among the

25 × 2 = 50 correlation matrices thus derived, using each of

three distance measures:

(i) the 𝓁2 distance (square root of sum of squared differ-

ences) between vec(𝑹1) and vec(𝑹2);
(ii) the 𝓁1 distance (sum of absolute differences) between

vec(𝑹1) and vec(𝑹2); and

(iii)
√
1 − 𝑟, where 𝑟 is the correlation between the lower tri-

angular elements of 𝑹1 and those of 𝑹2 (correlation of

correlations); the rationale for this distance is explained

in Web Appendix B.

T A B L E 2 Point estimates and 95% bootstrap CIs for dbICC,

based on three sets of ROIs and three distance measures

𝓵𝟐 𝓵𝟏
√
𝟏 − 𝒓

All 333 ROIs 0.378

(0.329,0.424)

0.382

(0.335,0.426)

0.382

(0.338,0.426)

Default mode

network

0.488

(0.403,0.562)

0.493

(0.404,0.570)

0.487

(0.414,0.555)

Visual network 0.434

(0.362,0.508)

0.435

(0.354,0.515)

0.451

(0.401,0.500)

We stress that (i) and (ii) are not the distances induced by

the matrix 2- and 1-norms, since here we are interested in

entry-wise differences as opposed to treating the matrices as

operators. Distance (i) is, rather, the distance induced by the

Frobenius norm, which, in turn, is induced by an inner prod-

uct; consequently, this distance fits with the generalized true

score model presented below in Section 5.2. Since the matri-

ces are treated here as vectors, dbICC based on distance (i) is

equivalent to the I2C2 estimator of Shou et al. (2013) cited at

the end of Section 2, although these authors focused on MRI-

based images as opposed to regional connectivity matrices.

The dbICC estimates (6) based on distances (i)-(iii), along

with 95% bootstrap CIs, are given in the first row of Table 2.

While fairly consistent with the results of Shou et al. (2013),

these reliabilities are very low by classical standards.

We also examined two subsets of the 333 ROIs: 41 ROIs

constituting the default mode network of the brain (DMN;

Raichle et al., 2001), and 39 ROIs making up the brain’s visual

network. Correlations among the ROIs within each of these

networks tend to be high, as illustrated in Figure 1. Hence,

it comes as no surprise that dbICC values within each of

these two networks, presented in the second and third rows

of Table 2, are markedly higher than for the complete set of

ROIs. For each set of ROIs, the dbICC values are quite con-

sistent across the three distances.

A likely explanation for the relatively low dbICCs for the

complete set of 333 ROIs is that many pairs of regions are

essentially uncorrelated, and thus, their correlation estimates

largely reflect noise. This suggests that it might be possi-

ble to boost dbICC by thresholding small correlations. Fig-

ure 5 shows the effect on dbICC of soft-thresholding. Some-

what contrary to our expectation, soft-thresholding generally

increased dbICC only slightly at best, and often decreased it.

5 GENERALIZING THE
SPEARMAN-BROWN FORMULA

Is there a way to improve upon the low reliabilities found for

the functional connectivity data? A general approach to boost-

ing reliability, suggested by classical psychometrics, is to take

more measurements: for example, to average over replicates
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F I G U R E 5 Estimated dbICC, for the same distances and sets of ROIs as in Table 2, but with soft-thresholding of the correlation values. The

horizontal axis denotes the average percentage of the correlations that are shrunk to zero, as the threshold increases

of a measure, or to increase the number of questions on a test.

A well-known relation between the number of measurements

and the reliability appeared in Spearman (1910) and, in a more

familiar form, in Brown (1910). In this section, we extend this

relation to the distance-based ICC, and in Section 6, we reex-

amine the fMRI data results in light of our generalization of

the Spearman-Brown (SB) formula.

5.1 Measurement intensity and its effect on
reliability

The SB formula states that averaging each score over 𝑚 repli-

cates transforms the classical ICC from 𝜌 to 𝑚𝜌∕[1 + (𝑚 −
1)𝜌]. If we let 𝜌1, 𝜌𝑚, respectively, denote the raw ICC and

the ICC based on 𝑚 replicates, the formula can be written as

𝜌𝑚 = 𝑚𝜌1∕[1 + (𝑚 − 1)𝜌1], which with some rearrangement

becomes

𝜌𝑚
1 − 𝜌𝑚

= 𝑚
𝜌1

1 − 𝜌1
,

or alternatively

𝜌𝑚
1 − 𝜌𝑚

∝ 𝑚. (11)

Lord and Novick (1968) refer to 𝜌∕(1 − 𝜌) as the signal-to-

noise ratio (SNR), and accordingly, (11) may be paraphrased

as: the SNR is proportional to the number of measurements

whose average is taken.

Averaging over 𝑚 real-valued measurements can be viewed

as just one example of a broader notion of increasing mea-

surement intensity and thereby boosting reliability. Other

instances of measurement intensity 𝑚 include:

(E1) An estimated covariance or correlation matrix based

on a sample of 𝑚 multivariate observations. For func-

tional connectivity matrices as considered above in Sec-

tion 4, 𝑚 would be the number of time points recorded

by fMRI.

(E2) A curve estimate obtained by penalized spline smooth-

ing with 𝑚 observations.

Our goal in the next subsection is to derive a distance-based

SB relation, ie, an analogue of (11) in which 𝑚 denotes

measurement intensity and 𝜌𝑚 is the resulting dbICC. To do

this, we need a more general formulation of the true score

model (1).

5.2 A true score model for general Hilbert
spaces

The classical setting of real-valued measures, as well as exam-

ples (E1) and (E2), can all be viewed as instances of a general

setup in which the observations are of the form (1), but the 𝑇𝑖’s

are a random sample of true scores in a Hilbert space , while

the 𝜀𝑖𝑗’s are random measurement errors in . We define dis-

tance in  by 𝑑(ℎ1, ℎ2) = ‖ℎ1 − ℎ2‖, where ‖ ⋅ ‖ is the norm

induced by the inner product on . Define

Δ𝑇 = 𝐸
(‖𝑇𝑖1 − 𝑇𝑖2‖2) (12)
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and

Δ𝜀(𝑚) = 𝐸𝑚

(‖𝜀𝑖1𝑗1 − 𝜀𝑖2𝑗2‖2) , (13)

for 𝑖1, 𝑖2 ∈ {1,… , 𝐼} and 𝑗𝑘 ∈ {1,… , 𝐽𝑘} for 𝑘 = 1, 2, where

𝐸𝑚 denotes expectation for measurement intensity equal to 𝑚.

Note that the measurement intensity affects only the expected

distance between errors 𝜀𝑖𝑗 , but not that between scores 𝑇𝑖. We

make two assumptions, of which the first is implicit in (13):

(a1) The expectation in (13) is the same for 𝑖1 = 𝑖2 versus for

𝑖1 ≠ 𝑖2.

(a2) For all 𝑖1, 𝑖2, 𝑗1, 𝑗2,

𝐸(⟨𝑇𝑖1 − 𝑇𝑖2 , 𝜀𝑖1𝑗1 − 𝜀𝑖2𝑗2⟩) = 0. (14)

Then

𝜌𝑚 = 1 −
𝐸(‖𝑋𝑖𝑗1

−𝑋𝑖𝑗2
‖2)

𝐸(‖𝑋𝑖1𝑗1
−𝑋𝑖2𝑗2

‖2)
= 1 −

𝐸(‖𝜀𝑖𝑗1 − 𝜀𝑖𝑗2‖2)
𝐸(‖𝑇𝑖1 + 𝜀𝑖1𝑗1 − 𝑇𝑖2 − 𝜀𝑖2𝑗2‖2)

= 1 −
Δ𝜀(𝑚)

Δ𝑇 + Δ𝜀(𝑚)
[by (12),(13),(14)]

=
Δ𝑇

Δ𝑇 + Δ𝜀(𝑚)
,

and therefore

𝜌𝑚
1 − 𝜌𝑚

=
Δ𝑇

Δ𝜀(𝑚)
∝ 1

Δ𝜀(𝑚)
. (15)

In the classical case where 𝑋𝑖𝑗 is the mean of 𝑚 measure-

ments, 𝜀𝑖𝑗 is the mean of 𝑚 independent errors with mean 0

and common variance, so that

Δ𝜀(𝑚) = 𝐸(‖𝜀𝑖1𝑗1 − 𝜀𝑖2𝑗2‖2) ∝ 1∕𝑚;

plugging this into (15) leads directly to the rearranged SB for-

mula (11). In other cases, such as (E2), Δ𝜀(𝑚) ̸∝ 1∕𝑚, and

hence, the generalized SB formula (15) does not reduce to

(11).

6 APPLYING THE GENERALIZED
SB FORMULA TO THE fMRI DATA

Our goal in this section is to study the implications of the

generalized SB formula (15) for correlation matrices such as

those used in Section 4 as measures of functional connec-

tivity. In Section 6.1 we show that, in the simpler setting of

covariance matrix estimation, the relationship between mea-

surement intensity and reliability is essentially the same as

in the classical case of scalar measures. In Sections 6.2 and

6.3, we investigate the extent of agreement between what is

expected theoretically and what is observed with simulated

and real data.

6.1 An SB formula for covariance matrix
estimation

Let 𝚺1,… ,𝚺𝐼 be a random sample of 𝑝 × 𝑝 covariance matri-

ces, and for 𝑖 ∈ {1,… , 𝐼}, let 𝑺 𝑖1,… ,𝑺 𝑖𝐽𝑖
be sample covari-

ance matrices, each based on 𝑚 independent and identically

distributed (IID) observations 𝑖𝑗1,… ,𝑖𝑗𝑚 from a 𝑝-variate

normal distribution with covariance matrix 𝚺𝑖. These belong

to the Hilbert space  of real symmetric 𝑝 × 𝑝 matrices,

equipped with inner product ⟨𝑨,𝑩⟩ = tr(𝑨𝑩
𝑇 ); the norm

induced by this inner product is the Frobenius (entry-wise

𝓁2) norm used in the fMRI example of Section 4. Note that

here, unlike in the classical true score model, 𝑇𝑖 ≡ 𝚺𝑖 and

𝜀𝑖𝑗 ≡ 𝑺 𝑖𝑗 − 𝚺𝑖 are not independent since 𝜀𝑖𝑗 must be such that

𝑺 𝑖𝑗 = 𝑇𝑖 + 𝜀𝑖𝑗 is nonnegative definite. But as shown in the

Appendix, assumptions (a1) and (a2) of Section 5.2 hold, and

consequently,

Δ𝜀(𝑚) ∝
1

𝑚 − 1
. (16)

Thus by (15),

𝜌𝑚
1 − 𝜌𝑚

∝ 𝑚 − 1; (17)

this is almost exactly the classical SB relation (11), but with

𝑚 − 1 in place of 𝑚.

6.2 Log-log plots with simulated data

Suppose that, for a given collection𝚺1,… ,𝚺𝐼 of 𝑝 × 𝑝 covari-

ance matrices, we repeatedly generate sets of sample covari-

ances as in Section 6.1, but with varying values of 𝑚, and

obtain a dbICC estimate 𝜌̂𝑚, based on the 𝓁2 distance, for each

𝑚. Then the relation (17) suggests that the points

[log(𝑚 − 1), log{𝜌̂𝑚∕(1 − 𝜌̂𝑚)}] (18)

should lie approximately along a line with slope 1. To test

this suggestion with simulated data resembling the fMRI data

analyzed in Sections 4 and 6.3, we followed the above recipe

with

• 𝐼 = 25, 𝐽𝑖 ≡ 2 and 𝑝 = 333;

• 𝚺𝑖 (𝑖 = 1,… , 25) taken to be the mean of the two sample

covariance matrices from the 𝑖th participant’s two fMRI

scans; and
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• a range of 𝑚 values from 25 to 197, approximately equally

spaced on the log scale.

A plot of the resulting points (18) appears in the left panel

of Figure 6 (black dots), and the best-fit line through these

points has slope 0.997 with standard error 0.010, in agreement

with the theoretical slope 1.

Many aspects of the fMRI data reliability analysis in Sec-

tion 4 are not captured by the above simulation setup. Two of

the most prominent disparities are that for the real data, (a)

we computed dbICC for correlation, rather than covariance,

matrices, and (b) the multivariate observations are autocorre-

lated rather than independent (see Arbabshirani et al., 2014

and Zhu and Cribben, 2018, regarding the impact of such

autocorrelation).

The simulation study was expanded to partially address

these discrepancies. Using a standard implementation (Bar-

bosa, 2012) for vector autoregressive models of order 1

(VAR(1); Lütkepohl, 2005), we conducted further simulations

in which the 𝑗th multivariate time series for the 𝑖th individual

was given by 𝒙
(𝑖𝑗)
𝑡 = 𝜙𝒙

(𝑖𝑗)
𝑡−1 + 𝒖

(𝑖𝑗)
𝑡 (𝑡 = 2,… , 𝑚), with inde-

pendent innovations 𝒖
(𝑖𝑗)
𝑡 having zero mean and 333 × 333

covariance matrix 𝚺𝑖. The lag-1 autocorrelation 𝜙 was set to

the values 0.6 and 0.9, which are near the low and high ends

of the range of AR(1)-model-based estimates for individual

ROIs in our fMRI data. The resulting points (18), with 𝜌̂𝑚
derived from sample covariance matrices, are displayed in the

left panel of Figure 6. The right panel is analogous, but here

𝜌̂𝑚 is derived from sample correlation matrices. A compari-

son of the two panels indicates that, for given autocorrelation

settings, both the estimated SNR 𝜌̂𝑚∕(1 − 𝜌̂𝑚) and its depen-

dence on 𝑚 are very similar for covariance versus correla-

tion matrix estimation. Autocorrelation is seen to reduce reli-

ability and thus to shift the SNR markedly downward. More-

over, autocorrelation seems to attenuate the linear relationship

between 𝑚 and SNR: whereas in the IID setting, the slope is

1.018 for the sample correlation matrix, again very close to the

theoretical value 1, the slopes are smaller with autocorrela-

tion 0.6 (0.986 for covariance, 0.960 for correlation) and even

smaller for autocorrelation 0.9 (0.736 for covariance, 0.687

for correlation). In Web Appendix C, we present plots that

are analogous to Figure 6, but based on the 𝓁1 and
√
1 − 𝑟

distances, and we report the intercepts and slopes of the best-

fit lines for all cases.

6.3 Reliability based on subsets of the fMRI
time series

Next, we constructed log-log plots as above but based on sub-

sets of the real fMRI time series of Section 4 rather than on

simulated data. For values of 𝑚 ranging from 25 to the full

time series length 197, we took the middle 𝑚 observations

from each of the fMRI time series, and thus computed cor-

relation matrices 𝑹𝑖𝑗 (𝑖 = 1,… , 25; 𝑗 = 1, 2) using the same

three sets of ROIs as in Section 4: all 333 ROIs proposed

by Gordon et al. (2016), the default mode network, and the

visual network. Log-log plots for the resulting dbICC values

𝜌̂𝑚 appear in the right panel of Figure 6. For smaller 𝑚, these

plots are quite nonlinear and distinct from each other, but for

𝑚 > 100, they each appear to stabilize with a linear pattern

that is roughly parallel to the best-fit line for the simulations

with lag-1 autocorrelation .9.

This degree of agreement with the simulation results of

Section 6.2 is probably as much as can be expected, given

the significant discrepancies between the settings of the

simulated- and real-data analyses, which include the follow-

ing: (a) The simulations for different 𝑚 are independent,

whereas with the real data, for increasing 𝑚, we consider a

nested sequence of increasingly large subsets of the same time

series. (b) The real time series may not be multivariate normal

and presumably have more complex patterns of autocorrela-

tions and cross-correlations than the simulated data.

At any rate, it seems clear that the theoretical log-log plot

slope of 1 cannot be expected to characterize the reliabil-

ity improvement attainable via longer fMRI time series. Our

results offer hope that a slope around 0.7 might be attained,

but at least two further caveats are in order. One is that we

cannot extrapolate beyond𝑚 = 197, the full time series length

for our data. A second, subtler caveat concerns the true score

model (1), in the specific form outlined in Section 6.1. That

model assumes that for each 𝑖, the two sample covariance

matrices 𝑺 𝑖1,𝑺 𝑖2 are estimates of a common true covariance

𝚺𝑖. But if, in fact, the underlying covariance matrix differs

between the two fMRI scans for at least some of the partici-

pants, this is an additional source of within-subject distance

that is not removed by increasing the time series length 𝑚,

and thus, log[𝜌̂𝑚∕(1 − 𝜌̂𝑚)] may tend to level off rather than

increasing linearly with log(𝑚 − 1). In summary, while longer

fMRI scans might make correlation matrices more reliable as

measures of functional connectivity, the improvement would

likely be less dramatic than the results reported here might

lead us to expect.

7 FURTHER APPLICATION AND
EXTENSION OF THE SB FORMULA

Log-log plots like those in Figure 6 are a broadly applica-

ble tool for examining the relationship between measurement

intensity 𝑚 and reliability. As discussed in Web Appendix D,

for penalized spline smoothing (example (E2) of Section 5.1),

Δ𝜀(𝑚) ∝ 𝑚−8∕9. Thus, arguing as in Section 6.2, a linear

model fit to the points [log(𝑚), log{𝜌̂𝑚∕(1 − 𝜌̂𝑚)}] should

have slope
8
9 , a prediction that is borne out with simu-

lated data.
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F I G U R E 6 Left: Effect of measurement intensity on SNR
𝜌

1−𝜌
for covariance matrix estimation with simulated data. Both axes are plotted on

the log scale since, as explained at (18), this is expected to yield a linear relation with slope 1 for independent observations. Right: Simulation results

for correlation matrix estimation, along with results based on subsets of the fMRI time series

Some distances, such as the dynamic time warping distance

between signatures considered in Web Appendix E, do not

arise from the true score model (1), even in the generalized

(Hilbert space-valued) form of Section 5.2. Whether or not

the true score model applies, the dbICC (3) satisfies

𝜌

1 − 𝜌
=

MSD𝑏 − MSD𝑤

MSD𝑤

. (19)

The key to the derivation of (15) is simply that, by (12)-(14),

(i) MSD𝑤 = MSD𝑤(𝑚) = Δ𝜀(𝑚),
(ii) MSD𝑏 − MSD𝑤 = Δ𝑇 , which does not depend on 𝑚.

The same argument works more generally (ie, not only in

Hilbert spaces): as long as MSD𝑤 can be written as a func-

tion of 𝑚 whereas MSD𝑏 − MSD𝑤 does not change with 𝑚, it

follows from (19) that

𝜌𝑚
1 − 𝜌𝑚

∝ 1
MSD𝑤(𝑚)

, (20)

generalizing (15), which is itself a generalization of (11).

Log-log plots might be used in this more general setting

to estimate the effect of measurement intensity 𝑚 on 𝜌𝑚, as

opposed to confirming a theoretical relationship. By (20), if it

is expected that MSD𝑤(𝑚) ∝ 𝑚−𝛽 for some unknown 𝛽, then

we can regress values of log 𝜌̂𝑚
1−𝜌̂𝑚

on the corresponding values

of log(𝑚), and the resulting slope serves as an estimate of 𝛽.

A similar approach is used to estimate the Hurst exponent of

a long memory process (Beran, 1994).

8 DISCUSSION

In this paper, we have redefined the intraclass correlation

coefficient in terms of distances, and thereby extended this

reliability index to arbitrary data objects for which a distance

is defined. The proposed distance-based ICC leads to two

extensions of the SB formula, namely, (15) for Hilbert space-

valued data including covariance matrices, and (20) for more

general data objects.

In an early paper on extending the ICC to multivariate data,

Fleiss (1966) wrote that a classical (univariate) ICC value

less than about 0.70 “is, for most purposes, taken to indicate

insufficient reliability.” The much lower dbICC values that

we report for functional connectivity data, along with similar

results reported by others (eg, Shou et al., 2013), are a sober-

ing indication that in some cases, as technology has advanced,

the reliability of complex new measures has retreated. This

might help to explain the recently-much-discussed difficul-

ties surrounding scientific reproducibility, a desideratum that

is closely related to reliability (Yu, 2013).

While our presentation has focused on test-retest data, the

dbICC might also be applied to assess the reliability of results

obtained by algorithms, such as bootstrapping, which have a

stochastic component (cf. Philipp et al., 2018).
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While we have developed a distance-based analog of the

intraclass correlation coefficient, the distance correlation of

Székely et al. (2007) is comparable to interclass correla-

tion coefficients. Extending ideas from distance correlation

research to the intraclass setting may be an interesting avenue

for future work.
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APPENDIX

fMRI data description and preprocessing
The resting-state fMRI data set, downloaded from http://

www.nitrc.org/projects/nyu_trt, includes 25 participants

(mean age 29.44 ± 8.64, 10 males) scanned at New York

University. A Siemens Allegra 3.0-Tesla scanner was used to

obtain three resting-state scans for each participant, although

for this analysis, we considered only the second and third

scans, which were less than 1 hour apart. Each scan consisted

of 197 contiguous EPI functional volumes with time repeti-

tion (TR) = 2000 ms; time echo (TE) = 25 ms; flip angle (FA)

= 90◦; 39 number of slices, matrix = 64 × 64; field of view

(FOV) = 192 mm; voxel size 3 × 3 × 3 mm3. During each

scan, the participants were asked to relax and remain still

with eyes open. For spatial normalization and localization, a

high-resolution T1-weighted magnetization prepared gradi-

ent echo sequence was obtained (MPRAGE, TR = 2500 ms;

TE = 4.35 ms; inversion time = 900 ms; FA = 8◦, number of

slices = 176; FOV = 256 mm).

The data were preprocessed using the FSL (http://www.

fmrib.ox.ac.uk) and AFNI (http://afni.nimh.nih.gov/afni) soft-

ware packages. The images were (a) motion corrected using

FSL’s mcflirt (rigid body transform; cost function normal-

ized correlation; reference volume the middle volume) and

then (b) normalized into the Montreal Neurological Insti-

tute space using FSL’s flirt (affine transform; cost function

mutual information). (c) FSL’s fast was then used to obtain a

probabilistic segmentation of the brain to acquire white matter

and cerebrospinal fluid (CSF) probabilistic maps, thresholded

at 0.99. (d) AFNI’s 3dDetrend was then used to remove the

nuisance signals, namely, the six motion parameters, white

matter and CSF signals, and the global signal. (e) Finally,

using FSL’s fslmaths, the volumes were spatially smoothed

using a Gaussian kernel with FWHM = 6 mm.

The ROIs for our connectivity analysis are derived from

the work of Gordon et al. (2016), who parcellated the corti-

cal surface into 333 areas within which homogeneous con-

nectivity patterns are observed. Time courses for these 333

ROIs were obtained for each subject by averaging over all of

the voxels within each region. Each regional time course was

then detrended and standardized to unit variance, and then we

applied a fourth-order Butterworth filter with passband 0.01-

0.10 Hertz.

(a1), (a2), and 𝚫𝜺(𝒎) for sample covariance matrices
Sample covariance matrices of multivariate normal samples

are a special case of the true score model of Section 5.2 in

which, for each 𝑖, 𝑇𝑖 = 𝚺𝑖, a 𝑝 × 𝑝 covariance matrix, and for

each 𝑖, 𝑗,

𝜀𝑖𝑗 = 𝑺 𝑖𝑗 − 𝚺𝑖, (A.1)

where 𝑺 𝑖𝑗 is the sample covariance matrix of an IID random

sample 𝑖𝑗1,… ,𝑖𝑗𝑚 ∼ 𝑁𝑝(0,𝚺𝑖). Here, we verify assump-

tions (a1) and (a2) of Section 5.2 for this case, and derive

expression (16) for Δ𝜀(𝑚).
By (A.1), 𝜀𝑖1𝑗1 , 𝜀𝑖2𝑗2 in (13) are independent mean-zero

matrices, implying that

Δ𝜀(𝑚) = 𝐸
[
tr{(𝜀𝑖1𝑗1 − 𝜀𝑖2𝑗2 )

2}
]

= 𝐸[tr(𝜀2𝑖1𝑗1 )] + 𝐸[tr(𝜀2𝑖2𝑗2 )] − 2𝐸[tr(𝜀𝑖1𝑗1𝜀𝑖2𝑗2 )].

For 𝑖1 ≠ 𝑖2, 𝐸[tr(𝜀𝑖1𝑗1𝜀𝑖2𝑗2 )] = 0 since 𝜀𝑖1𝑗1 , 𝜀𝑖2𝑗2 are indepen-

dent mean-zero matrices. On the other hand, if 𝑖1 = 𝑖2 = 𝑖,

then 𝜀𝑖1𝑗1 , 𝜀𝑖2𝑗2 are independent and of mean zero, condition-

ally on 𝚺𝑖, and thus again

𝐸[tr(𝜀𝑖1𝑗1𝜀𝑖2𝑗2 )] = 𝐸[𝐸{tr(𝜀𝑖1𝑗1𝜀𝑖2𝑗2 )|𝚺𝑖}] = 0.

Hence, the expectation defining Δ𝜀(𝑚) does not depend on

whether or not 𝑖1 = 𝑖2, ie, (a1) holds; and

Δ𝜀(𝑚) = 2𝐸[tr(𝜀2𝑖𝑗)], (A.2)

for 𝜀𝑖𝑗 as in (A.1).

For (a2), it suffices to show that 𝐸[tr{𝚺𝑖1(𝜀𝑖1𝑗1 − 𝜀𝑖2𝑗2 )}] =
0. This follows since

𝐸[tr(𝚺𝑖1
𝜀𝑖1𝑗1 )] = 𝐸[𝐸{tr(𝚺𝑖1𝜀𝑖1𝑗1 )|𝚺𝑖1

}] = 0,

while 𝐸[tr(𝚺𝑖1𝜀𝑖2𝑗2 )] = 0 since 𝜀𝑖2𝑗2 is independent of 𝚺𝑖1 and

of mean zero.

https://github.com/wtagr/dbicc
https://doi.org/10.1111/biom.13287
http://www.nitrc.org/projects/nyu_trt
http://www.nitrc.org/projects/nyu_trt
http://www.fmrib.ox.ac.uk
http://www.fmrib.ox.ac.uk
http://afni.nimh.nih.gov/afni
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By a standard result in multivariate analysis, conditionally

on 𝚺𝑖, (𝑚 − 1)𝑺 𝑖𝑗 has a Wishart(𝚺𝑖) distribution with 𝑚 − 1
degrees of freedom; thus by Theorem 2.2.6 of Fujikoshi et al.
(2010),

𝐸[tr(𝑺2
𝑖𝑗)|𝚺𝑖] =

1
𝑚 − 1

[
(tr𝚺𝑖)2 + 𝑚tr(𝚺2

𝑖 )
]

and

𝐸[tr(𝑺 𝑖𝑗𝚺𝑖)|𝚺𝑖] = tr(𝚺2
𝑖 ).

These results lead to

𝐸[tr(𝜀2𝑖𝑗)|𝚺𝑖] = 𝐸[tr{(𝑺 𝑖𝑗 − 𝚺𝑖)2}|𝚺𝑖]

= 1
𝑚 − 1

[(tr𝚺𝑖)2 + tr(𝚺2
𝑖 )].

Combining this with (A.2) gives

Δ𝜀(𝑚) =
2

𝑚 − 1
𝐸[(tr𝚺𝑖)2 + tr(𝚺2

𝑖 )],

where the expectation is with respect to the distribution of the

true covariance matrices 𝚺𝑖. This confirms (16).


