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ABSTRACT
Gastric cancer is an aggressive cancer that is often diagnosed late. Early detection and
treatment require a better understanding of the molecular pathology of the disease. The
present study combined data on gene expression and regulatory levels (microRNA,
methylation, copy number) with the aim of identifying key genes and pathways for
gastric cancer. Data used in this study was retrieved from The Cancer Genomic Atlas.
Differential analyses between gastric cancer and normal tissues were carried out using
Limma. Copy number alterations were identified for tumor samples. Bimodal filtering
of differentially expressed genes (DEGs) based on regulatory changes was performed to
identify candidate genes. Protein–protein interaction networks for candidate geneswere
generated by Cytoscape software. Gene ontology and pathway analyses were performed,
and disease-associated network was constructed using the Agilent literature search
plugin on Cytoscape. In total, we identified 3602 DEGs, 251 differentially expressed
microRNAs, 604 differential methylation-sites, and 52 copy number altered regions.
Three groups of candidate genes controlled by different regulatory mechanisms were
screened out. Interaction networks for candidate genes were constructed consisting
of 415, 228, and 233 genes, respectively, all of which were enriched in cell cycle, P53
signaling, DNA replication, viral carcinogenesis, HTLV-1 infection, and progesterone
mediated oocyte maturation pathways. Nine hub genes (SRC, KAT2B, NR3C1, CDK6,
MCM2, PRKDC, BLM, CCNE1, PARK2) were identified that were presumed to be key
regulators of the networks; seven of these were shown to be implicated in gastric cancer
through disease-associated network construction. The genes and pathways identified in
our study may play pivotal roles in gastric carcinogenesis and have clinical significance.

Subjects Bioinformatics, Genetics, Genomics, Gastroenterology and Hepatology, Oncology
Keywords Network, Gastric cancer, Key gene, Multi-dimensional, Pathway

INTRODUCTION
Gastric cancer is the fifth most common cancer and third leading cause of cancer-related
death in the world, accounting for an estimated 951,600 new cases and 723,100 deaths
in 2012 (Torre et al., 2015). Symptoms usually appear late in the disease course and
most patients are diagnosed at an advanced stage, which contributes to poor prognosis
(McLean & El-Omar, 2014). Despite an overall decline in incidence and mortality rate
due to advances in our understanding of the disease, gastric cancer remains a significant
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health care burden worldwide (Van Cutsem et al., 2016). Early detection and treatment are
essential for improving gastric cancer outcome; this requires a better understanding of the
molecular pathology of the disease as well as identification of appropriate biomarkers and
drug targets.

Cancer is a complex disease that involves dysregulation atmultiple levels. Changes in gene
expression resulting from alterations inmicroRNA (miRNA) expression, DNAmethylation
level, and DNA copy number have been implicated in gastric carcinogenesis. MiRNAs
regulate target mRNA translation and degradation by binding to the 3′ untranslated region
(Tchernitsa et al., 2010). Several miRNAs have been linked to gastric cancer progression
and prognosis (Ueda et al., 2010; Xu et al., 2012). DNA methylation is another regulatory
mechanism implicated in tumor development; loss or gain of methylation marks at CpG
sites can activate oncogenes or inactivate tumor suppressor genes. Silencing of PTEN and
FOXD3 as a result of hypermethylation has been identified in gastric cancer (Kang, Lee &
Kim, 2002; Cheng et al., 2013). Genomic instability due to copy number alteration (CNA)
is also associated with altered gene expression in carcinogenesis (Liang, Fang & Xu, 2016).
For example, amplification of 8q24, 10q26, 11p13, and 20q13 and deletion of 5p15 and
9p21—which encompass the MYC, FGFR2, and IRX1 loci—have been reported in gastric
cancer (Guo et al., 2010; Deng et al., 2012; De Souza et al., 2013).

Differentially expressed genes (DEGs) can be identified by expression profiling, but
most of them may have non-essential roles in carcinogenesis (Fan et al., 2012). Research
on critical biological process and molecule identification should take into consideration
the interaction of multiple factors and regulatory mechanisms. However, this presents a
challenge in terms of combining data from different experiments to generate biological
meaningful and experimentally testable models. A modified network-based method that
analyzes individual genes and their interactions as well as upstream regulatory mechanisms
is an effective approach (Ping et al., 2015; Rajamani & Bhasin, 2016). While interaction
networks can reveal links between genes and pathways; incorporating regulatory change
can provide additional insight for their dysregulation (Chuang et al., 2007).

The Cancer Genome Atlas (TCGA) dataset contains cancer-related omics profiles that
are useful for systems biology-based investigations of gastric cancer. In the present study, we
used data on gene expression and regulatory levels (miRNA expression, DNA methylation,
DNA copy number) of stomach adenocarcinoma (STAD) obtained from TCGA to carry
out a multi-dimensional analysis as well as regulatory interaction filtering and network
analysis to identify key genes and pathways in gastric cancer.

METHODS
Data retrieval
Multi-dimensional data (level 3) for gastric cancer were derived from TCGA STAD cohort
at Broad GDAC Firehose data run (version: 2016_01_28, http://gdac.broadinstitute.org/).
A total of 272 patients for whom gene expression, miRNA expression, and copy number
profiles were available were included in the analysis (Table S1). Gene expression profiles
of 29 paired tumor and normal tissue samples were measured as a reads per kilobase
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Table 1 Multi-dimensional data for gastric cancer used in this study.

Type Platform/category Numbera Paired sample

Gene Illumina Hiseq 2000 + GA 272 29
MiRNA Illumina Hiseq 2000 + GA 272 34
Methylation Illumina Infinium HumanMethylation27 43 22
Copy number Affymetrix SNP 6.0 272

Notes.
aNumber of patients.

per million mapped reads value, and miRNA expression profiles of 34 paired tumor and
normal tissue samples were measured as a reads per million value. DNA copy number
profiles for 272 patients were obtained from the Affymetrix SNP6.0 platform and processed
using the circular binary segmentation method. DNA methylation profiles for 22 paired
tumor and normal tissue samples were also included in the study, which were obtained
from the Infinium HumanMethylation27 platform (Illumina, San Diego, CA, USA) and
shown as a beta value. The Infinium HumanMethylation27 array covered 27,578 CpG sites
in 14,495 human genes. The methylation value for a specific gene site was measured by
calculating the mean value of all related probes. Detailed information regarding the data is
shown in Table 1.

Identification of alterations at multiple levels
The Limma package in R software was used to detect differentially expressed genes or
miRNAs or differential methylation between paired gastric adenocarcinoma and normal
tissue samples. Those that met the criteria of fold change ≥2 and Benjamini–Hochberg
correlated P value<0.01 were considered significant. The unsupervised hierarchical cluster
analysis was performed using R gplots package. For somatic copy number data, we used
genomic regions with statistically significant focal copy number changes 2.0 (GISTIC2.0)
module of the GenePattern public server to identify chromosome regions and genes that
were amplified or deleted (Mermel et al., 2011). GISTIC2.0 uses ratios of segmented tumor
copy number data relative to normal samples as input, and segmented level 3 data were
aligned to Hg19 for analysis runs. A cutoff q value of 0.01 was applied to significant loci
and genes. Five types of copy number calls (homozygous deletion, heterozygous deletion,
diploid, gain, and amplification) were determined for each gene in all cancer samples; only
amplification and homozygous deletions were regarded as significant changes in a sample.

MiRNA-target gene interaction
MiRNA-gene interactions were predicted using Starbase 2.0, which included the
TargetScan, PicTar, RNA22, PITA, andmiRanda algorithms (Yang et al., 2011). Among the
miRNA-target gene pairs, only those predicted by at least three algorithms were selected.
To identify functional pairs, we also calculated Pearson’s correlation coefficient between
miRNA and target gene expression for all 272 patients using the cor function in R software
(R Core Team, 2015).
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Bimodal filtering of differentially expressed genes
To clarify the cross-talks between gene expression and regulatory changes, we filtered out
their regulatory interactions. For miRNAs, genes identified as differentially expressed were
compared to miRNA targets, with up- and down-regulated miRNAs corresponding to
down- and up-regulated genes, respectively. A similar analytical approach was used to
assess regulatory interactions between differentially expressed and methylated genes as well
as those with CNAs. These DEGs whose expression may be affected by regulatory changes
were identified as candidate genes. The correlation between gene expression and copy
number was also calculated with the cor function in R software.

Functional enrichment analysis
Gene function annotation was performed using the Database for Annotation, Visualization,
and IntegratedDiscovery v.6.8 (DAVID v.6.8) to complement Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway and gene ontology (GO) analyses. Significant terms were
filtered out with a corrected P value <0.05 (Benjamini–Hochberg method). The GO
analysis was limited to biological process terms; organization and visualization were
carried out using the Enrichment Map plugin on the Cytoscape platform. GO terms were
connected based on their overlap of shared genes and grouped by functional similarity.

Network construction and analysis
Candidate genes were used to generate interaction networks under regulatory mechanisms.
Information on protein-protein interactions (PPIs) was derived from Search Tool for
the Retrieval of Interacting Genes/Proteins v.10 (STRING v.10). Only experimentally
validated interactions with a score≥0.4 were used. Networks were generated on Cytoscape
software as follows: (i) interaction networks were constructed for DEGs based on protein
interconnection information; and (ii) candidate (seed) genes were extracted along with
their first interacting neighbors from the DEG network to reconstruct a new subnetwork,
respectively. The Network Analyzer plugin on Cytoscape was used for topological analysis.
The parameters of degree, betweenness, and closeness—the most important topological
parameters were analyzed. The top 10 ranked nodes for each parameter were kept. And
genes that ranked top 10 under at least two parameters were considered as hubs.

A disease-associated gene interaction network for gastric cancer was constructed using
the Agilent literature search plugin on Cytoscape, which provided interactions reported
in the literature. Gene names were used as input, and the disease name was used as the
context in the literature search to generate the network.

RESULTS
Transcriptome alterations and functional enrichment analysis
We identified 3,602 genes (861 down-regulated and 2,741 up-regulated) that were
differently expressed between paired gastric cancer and normal tissue samples (Table
S2). Unsupervised clustering divided samples into tumor and normal subgroups according
to expression of these genes (Fig. 1A). The GO analysis revealed that these genes were
enriched in 62 significant terms which were mainly grouped in clusters of cell cycle,
chromatin organization, catabolic process and DNA biogenesis. Specifically, these genes
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Figure 1 Differential gene expression and functional enrichment analysis. (A) Heat map generated by
unsupervised clustering, which divided samples into tumor and normal groups according to DEGs. (B)
Enrichment map of GO terms. Nodes represent GO terms, which were clustered and annotated by their
similarity. (C) KEGG pathway analysis of DEGs.

were linked to cell cycle, DNA replication, ECM-receptor interaction, p53 signaling
pathways (Figs. 1B, 1C).

Identification of alterations at regulatory levels
A total of 251 miRNAs were differentially expressed (20 down-regulated and 231 up-
regulated) between 34 paired tumor and normal tissue samples. Additionally, 604 genes
were found to be differentially methylated (206 and 398 that were hyper- and hypo-
methylated, respectively), and 52 chromosomal regions were altered (21 amplifications
and 31 deletions) in 272 gastric cancer patients, as determined by the GISTIC2.0 algorithm
(Fig. 2). A total of 331 and 1,806 target genes were located within these amplified and
deleted regions, respectively. These alterations were considered as multi-dimensional
signatures for gastric cancer (Table S2).

Regulatory interactions and candidate genes under regulatory
control
We then examined the occurrence of regulatory interactions between gene expression and
regulatory changes. The cross-talk between differentially expressed genes and miRNAs
was detected on the basis of miRNA-target genes. A total of 82 altered miRNAs were
found to regulate 514 DEGs (Fig. 3A); of these, 11 down-regulated miRNAs targeting 100
up-regulated genes and 65 up-regulated miRNAs targeting 112 down-regulated genes were
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Figure 2 Somatic CNA data of focal amplifications and deletions.GISTIC2.0 identified 21 amplified
and 31 deleted focal regions in segmented single nucleotide polymorphism array data of 272 STAD pa-
tients. Normalized amplifications and deletions are shown in red and blue, respectively.

screened. The same analytical process was applied to methylation and CNA; there were 74
genes that were overexpressed and hypomethylated and 13 that were underexpressed and
hypermethylated; and 47 and 66 genes that were over- and under-expressed, respectively,
and had CNAs. These DEGs were regarded as genes under different regulatory controls and
taken as candidate genes (Fig. 3B, Table S3). When these candidate genes were categorized
into three groups according to regulatory mechanisms, some overlap between the groups
was noted. A total of nine and 16 up- and down-regulated genes, respectively, were common
to at least two groups. Only one gene, MYEF2, belonged to all three groups, and was found
to be down-regulated and hypermethylated with reduced copy number.

The correlation between gene expression and regulatory controls was also determined
for candidate genes in the miRNA and CNA groups. Inversely correlated miRNA-gene
pairs were kept, leaving 467 functional pairs including 67 miRNAs and 151 genes with a
criteria of r <−0.1 and P < 0.05.MiR-92a-3p, miR-19a-3p, andmiR-19b-3p—all of which
belong to the miR-17-92 oncomiR cluster—had the highest number of significant targets
(Fig. 3C). These miRNAs are known to promote cell proliferation, metastasis, and drug
resistance in gastric cancer (Wang et al., 2013;Wu et al., 2013;Wu et al., 2014). To evaluate
the contribution of CNAs to transcriptomic changes, we performed a correlation analysis
between copy number and candidate gene expression. The remaining 11 genes were with
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Figure 3 Identification of candidate genes controlled by multiple mechanisms. (A) MiRNA-target gene
network. Triangles and circles represent differentially expressed miRNAs and genes, respectively; red and
blue represent up- and down-regulation, respectively. (B) Venn diagrams illustrating the three groups of
candidate genes controlled by different regulatory mechanisms. Small and large circles represent altered
regulatory controls and genes, respectively. (C) MiR-19a-3p, miR-19b-3p, and miR-92a-3p and their in-
versely correlated targets. Red and blue represent up- and down-regulation, respectively. (D) CNA dis-
tribution of significant genes (r > 0.5) in 272 STAD patients. Amplifications and homozygous deletions
are labeled with red and blue, respectively. Copy number and gene expression correlation coefficients are
shown in the gray bar.

r > 0.05 and P < 0.05 (Fig. 3D). NEIL2 and CCNE1 were identified as having the highest
correlation (>0.7), indicating that the expression of these two genes was strongly influenced
by CNA. NEIL2 is located at 8p23.1, a region that has been linked to tumorigenesis and
patient prognosis (Goh et al., 2011; Frankel et al., 2014); CCNE1 is located at 19q12, and
its amplification has been shown to promote tumor cell proliferation (Leung et al., 2006).
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Figure 4 Gene interaction networks according to regulatory mechanisms. (A–C) Gene interaction net-
works under control of miRNAs (A), methylation (B), and CNA (C). Red and blue represent up- and
down-regulation, respectively. (D) KEGG pathway analysis of genes in the three networks. The X and Y
axes show the−log10 (corrected P value) and name of each pathway, respectively. MiRNA-, methylation-,
and CNA-regulated groups are labeled in blue, green, and red, respectively.

Gene network construction according to regulatory mechanisms
DEGs are not independent from each other but form regulatory networks under the
control of different factors. Also, only a small group of DEGs are directly regulated by
regulatory changes; most are indirectly controlled, in some cases regulated by those directly
affected genes (Mine et al., 2013). Based on this information, we generated networks
under different regulatory mechanisms consisting of candidate genes that were directly
regulated and their differentially expressed first neighbors. A total of 415, 228, and 233
genes constituted three networks which were under control of miRNA, methylation, and
CNA, respectively (Figs. 4A–4C). Functional enrichment analysis revealed that genes in the
miRNA regulatory network were mainly associated with the cell cycle, P53 signaling, DNA
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Table 2 Information on nine key genes.

Gene Expression miRNAa Methylation CNA Pathway

SRC Up 1 Focal adhesion
KAT2B Down 9 Notch signaling
NR3C1 Down 11
CDK6 UP 2 Amplified Cell cycle
MCM2 Up Hypo Cell cycle
PRKDC Up Hypo Cell cycle
BLM Up Amplified Homologous recombination
CCNE1 Up Amplified Cell cycle
PARK2 Down Deleted

Notes.
aNumber of regulatory miRNAs.
CNA, copy number alteration; Down, down-regulated; Hypo, hypomethylation; Up, up-regulated.

replication, HTLV-1 infection, and cancer-related signaling pathways, whereas those in the
methylation regulatory network were mainly involved in the cell cycle, P53 signaling, and
DNA replication. Genes in the CNA regulatory network were also associated with the cell
cycle- and cancer-related signaling pathways (Fig. 4D). Cell cycle-related pathways (i.e.,
cell cycle, P53 signaling, and DNA replication), viral carcinogenesis, HTLV-1 infection,
and the progesterone-mediated oocyte maturation pathway were common to the three
groups. The identification of cell cycle associated pathways indicates that aberrant cell cycle
control is a critical feature of gastric cancer, as it is for most tumors (Sherr, 1996).

Topological analysis and key gene identification
To identify hub genes in each network, we calculated the parameters of degree, betweenness,
and closeness for each node (Table S4). For the miRNA regulatory network, the candidate
genes SRC, KAT2B, and NR3C1 were identified as hubs, as they ranked top 10 under
at least two parameters. In the methylation regulatory network, candidate genes MCM2
and PRKDC were identified as hubs. In the CNA regulatory network, the candidate genes
BLM, CCNE1, and PARK2 were hubs. These eight genes were regulated by upstream
regulatory controls and in turn acted on downstream effectors, and could therefore be
taken as key genes (Table 2). Furthermore, as the candidate gene CDK6 ranked top 10 in two
networks (miRNA and CNA controlled networks) for its degree, we also took it as key gene.
CDK6 encodes a cell cycle regulatory protein and is frequently amplified in gastric cancer
(Ooi et al., 2017). We found here that CDK6 was regulated by miR-137 and miR-145-
5p, consistent with previous reports (Shao et al., 2013; Zheng et al., 2015). Interestingly,
four of the identified key genes (CDK6, MCM2, PRKDC, and CCNE1) are on the cell
cycle pathway, underscoring the importance of this process in gastric cancer (Table 2).

Genes in the disease-associated network
To assess the biological significance of the identified genes in gastric cancer, we searched the
literature and constructed a gastric cancer associated network using the nine key genes as
input (Fig. 5). There were 76 nodes with 235 interactions in the network; nearly one-third
of the nodes were DEGs identified in this study, while seven of the nine identified key genes
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Figure 5 Disease-associated gene network constructed with key genes. Red and blue represent DEGs
and non-DEGs, respectively. Key genes are highlighted.

were highlighted in the network as being important in gastric cancer. However, NR3C1 and
PARK2 were not included in the network, and therefore their function in gastric cancer
requires further investigation.

DISCUSSION
Gastric cancer is one of the most common and deadly malignancies; understanding the
underlying molecular mechanisms is critical for developing more effective treatments. In
this study, we used gene expression,miRNA expression,methylation, and copy number data
to clarify the molecular etiology of gastric cancer, and identified critical pathways as well
as nine key genes that are potential biomarkers and therapeutic targets for gastric cancer.

Altered regulation of gene expression programs leads to the expression of different
cancer hallmarks (Tan & Yeoh, 2015). However, studying DEGs does not provide the
mechanism basis for their dysregulation. In contrast, an integrated analysis that combines
transcriptome and other data can help to identify regulatory cascades and provide a
more detailed understanding of cancer etiology (Chari et al., 2010). Several studies have
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examined carcinogenesis by combining genomic, epigenetic, transcriptomic, and post-
transcriptomic data (Sun et al., 2011; Setty et al., 2012; Wang et al., 2014). Here, we used a
bimodal strategy to evaluate the interaction of gene expression alteration with regulatory
changes (miRNA expression, DNA methylation, and copy number). Three groups of
candidate genes were identified whose expression were altered along with that of regulatory
controls. Our correlation analysis also revealed up-regulation of miR-92a-3p, miR-19a-3p,
and miR-19b-3p and amplification of NEIL2 and CCNE1; these are known to be associated
with carcinogenesis and thus validated our analytical approach.

While detecting alterations in gene expression resulting from the perturbation of
multiple regulatory mechanisms is useful for comprehensive refinement of DEGs, the
most challenging task is identifying genes that cause key changes. However, traditional
experimentation to identify significant pathways and genes and their cause-effect
relationships is labor-intensive. In contrast, a network-based approach provides a data-
reduction scheme that limits the analysis to several related genes. Interaction networks
are useful for studying the molecular pathology of diseases, with hub genes serving as
key regulators (Lefebvre et al., 2010). Moreover, highly reliable results can be obtained by
incorporating regulatory mechanisms into the network (Dutta et al., 2012). In the present
study, interaction networks were generated based on differential gene expression and
regulatory alterations. The functional enrichment analysis highlighted the importance
of cycle-related pathways (i.e., cell cycle, P53 signaling, and DNA replication), viral
carcinogenesis, HTLV-1 infection, and the progesterone-mediated oocyte maturation
pathway in gastric cancer, while topological analysis identified nine candidate genes that
modulated downstream genes and pathways and can therefore be considered as key
regulators.

The identification of cell cycle pathway is not surprising, as its dysregulation leads to
uncontrolled proliferation which is an important feature of cancer (Sherr, 1996). Activated
P53 signaling pathway results in cell apoptosis or growth arrest, while dysregulation of
P53 signaling has considerable impact on the process of carcinogenesis, as it increases the
chances of tumor cell surviving progressively adverse conditions (Evan & Vousden, 2001).
DNA replication is a highly regulated process that guarantees the faithful duplication of the
genome during cell cycle. As genomic instability is an important hallmark of cancer, DNA
replication is the most vulnerable cellular process that can lead to it (Gaillard, García-Muse
& Aguilera, 2015). Viral carcinogenesis refers to cancer induced by a given virus, which
can lead to malignant transformation of cells (Volinia et al., 2006). Recent studies on
Epstein–Barr virus and gastric cancer have provided evidences to support this hypothesis
on the progression of gastric cancer (Camargo et al., 2016; Zhang et al., 2017). HTLV-1
is a retrovirus which has been implicated in the occurrence of adult T-cell leukaemia
and tropical spastic paraparesis. Zhang et al. (2016b) also identified HTLV-1 signaling
pathway in gastric cancer, but the role of HTLV-1 in gastric cancer still needs further study.
Progesterone-mediated oocyte maturation is a nongenomic signaling mediated by steroids.
Nevertheless its role in gastric carcinogenesis remains unclear.

The identified key genes were divided into two groups that are either associated with cell
cycle regulation or not. Among the former group, CDK6 and CCNE1 regulate the G1/S
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phase of cell cycle; MCM2 is involved in DNA synthesis; and PRKDC plays a critical role in
the DNA damage response and maintenance of genomic stability. All of these genes have
been previously implicated in gastric cancer as biomarker or therapeutic target (Liu et al.,
2013; Li et al., 2013; Zheng et al., 2015; Zhang et al., 2016a).

Among genes not involved in cell cycle pathway, SRC is a known oncogene that links
signaling pathways controlling cell proliferation, invasion and angiogenesis. Inhibitors
of SRC kinase activity have been used to treat gastric cancer (Nam et al., 2013). KAT2B
is a histone lysine acetyltransferase that regulates gene transcription via interaction with
p300/CREB-binding protein (Zhu et al., 2009); down-regulation of KAT2B promotes
intestinal-type gastric cancer progression and is correlated with a poor clinical outcome
(Ying et al., 2010). NR3C1 encodes glucocorticoid receptor which is associated with several
biological process including inflammation and differentiation. While NR3C1 is reported
to be down-regulated in primary gastric cancer, its function in gastric cancer needs more
exploration (Chang et al., 2009). BLM is a RecQ family helicase that plays a critical role
in homologous recombination repair (Chu & Hickson, 2009). PARK2 is frequently deleted
in human tumors and is a tumor suppressor gene, although the precise role of PARK2 in
gastric cancer requires more detailed investigation (Gong et al., 2014; Hu et al., 2016).

There were some limitations in this study. Firstly, the incomplete paired data for tumor
and normal tissues may affect the reliability of the final results. Secondly, our study was
based on omics data analysis and PPI network analysis; therefore, biological experiments
are required to validate the findings.

In conclusion, this study identified key genes and pathways for gastric cancer through a
network-based approach that combinedmulti-dimensional data. Despite some limitations,
our findings nonetheless provide a set of potential biomarkers and drug targets for gastric
cancer.
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