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Abstract

Although the role of an internal model of gravity for the predictive control of the upper limbs

is quite well established, evidence is lacking regarding an internal model of friction. In this

study, 33 male and female human participants performed a striking movement (with the

index finger) to slide a plastic cube-like object to a given target distance. The surface mate-

rial (aluminum or balsa wood) on which the object slides, the surface slope (-10˚, 0, or +10˚)

and the target distance (25 cm or 50 cm) varied across conditions, with ten successive trials

in each condition. Analysis of the object speed at impact and spatial error suggests that: 1)

the participants chose to impart a similar speed to the object in the first trial regardless of the

surface material to facilitate the estimation of the coefficient of friction; 2) the movement is

parameterized across repetitions to reduce spatial error; 3) an internal model of friction can

be generalized when the slope changes. Biomechanical analysis showed interindividual var-

iability in the recruitment of the upper limb segments and in the adjustment of finger speed

at impact in order to transmit the kinetic energy required to slide the object to the target dis-

tance. In short, we provide evidence that the brain builds an internal model of friction that

makes it possible to parametrically control a striking movement in order to regulate the

amount of kinetic energy required to impart the appropriate initial speed to the object.

Introduction

When the bartender slides a shot glass across the bar to a customer, anticipating the effect of

friction is crucial for controlling his/her movement. Although dealing with friction for sliding

objects is not as common as when walking or driving on more or less slippery surfaces, unless

one plays curling or hockey, friction is a force that the brain must consider for movement reg-

ulation in motor control. In this study, we provide some evidence that the brain builds an

internal model of friction in order to control parametrically the upper limb’s kinetic energy

when sliding an object on a surface toward a target distance.

The role of an internal model of gravity in motor control is quite well established in neuro-

science [1], using pointing [2,3] or interceptive tasks [4,5], allowing predictive control of

movement by anticipating the effect of gravity on the body and/or falling objects. Some
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Copyright: © 2022 Famié et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

available on Zenodo (doi: 10.5281/zenodo.

5705206).

https://orcid.org/0000-0003-2064-4033
https://orcid.org/0000-0002-8455-1437
https://doi.org/10.1371/journal.pone.0264370
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0264370&domain=pdf&date_stamp=2022-02-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0264370&domain=pdf&date_stamp=2022-02-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0264370&domain=pdf&date_stamp=2022-02-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0264370&domain=pdf&date_stamp=2022-02-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0264370&domain=pdf&date_stamp=2022-02-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0264370&domain=pdf&date_stamp=2022-02-24
https://doi.org/10.1371/journal.pone.0264370
https://doi.org/10.1371/journal.pone.0264370
https://doi.org/10.1371/journal.pone.0264370
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.5705206
https://doi.org/10.5281/zenodo.5705206


neuroimaging evidence points to the role of the vestibular cortex when activating this internal

model in perceptual judgments [6]. Similarly, the cerebellum appears to build an internal

model of the sensory consequences of gravity during passive self-motion, and of load force act-

ing on the skin for the predictive control of grip force when lifting objects [7–9]. In the latter

case, it has been shown that friction between the fingers and objects contributes to the feedfor-

ward control of both the grip force and upper limb acceleration when adjusting load force dur-

ing object transport in order to prevent slipping [10]. Moreover, it has been shown that vision

influences the adjustment of grip-load force coupling by estimating force based on visual

motion signals [11], and that the brain relies on visual input more than tactile input to estimate

friction to prevent falls when standing on inclined surfaces [12]. Finally, the literature on dex-

terous manipulation suggests that the appropriate control of grip force may be informed ini-

tially by adapting internal models built from previous experience in various contexts, and

adjusted flexibly on the basis of sensory feedback [13,14].

Additional literature suggesting an internal model of friction comes from perceptual studies

showing that the last memorized position of a moving object is influenced by the implied grav-

ity or friction in the visual scene [15,16]. Likewise, Amorim et al. [17] used a perception of cau-

sality paradigm [18] in which an object A (launcher) moves toward a stationary object B

(target), then when the launcher reaches the target, the latter is set into motion and the

launcher becomes stationary. Participants indicated where the target object (sliding on more

or less inclined surfaces) should have stopped after colliding with the launcher. The authors

applied classical mechanics equations on the responses to compute the subjective value of the

friction coefficient for the target, assuming that friction would cause it to decelerate post-colli-

sion. Their results suggest that our internal model of the coefficient of friction is consistent for

horizontal and upward slopes, but overestimated for downward slopes. One might wonder if

these results could be generalized to the parameterization of a ballistic gesture intended to

slide an object along a given surface to a target distance.

Literature on the predictive control of hand grip shows that the brain predicts the sensory

consequences of various forces (friction, reaction force, load, etc.) not only to prevent the

objects we hold from falling [19–21] but also to regulate the amount of kinetic energy in tasks

such as golf putting [22] or stone knapping [23]. Assuming that striking movements corre-

spond to a specific generalized motor program [24,25] inherited from evolution [26,27], we

used several experimental manipulations (surface slope, surface material and target distance)

in this study to investigate the role of the internal model of friction in the parameterization of

a ballistic gesture to slide an object to a target distance. Here, we hypothesized that for each

surface material, the participants would initially calibrate this internal model on the basis of

online feedback error learning [28,29] involving well-established brain networks for move-

ment adaptation, such as the cerebellum and the parietal cortex. Then, they would internalize

this “pretty good” (i.e., functionally relevant, although not perfect) internal model [30] of the

coefficient of friction across task constraints (surface slope, target distance) with the same sur-

face material. Finally, we tested the hypothesis that the brain regulates parametrically the

kinetic energy of the upper limb segments as well as of the launched object, based on visual

control variables such as object initial speed and spatial error. Moreover, we tested the assump-

tion that motor redundancies [31,32] would allow for variability in motor coordination to

reach the required kinetic energy at impact.

Materials and methods

Thirty-three people (22 men and 11 women) with a mean age of 25 years (SD = 4.99) partici-

pated in this experiment. All of the subjects were right handed (Edinburgh test, [33]), had
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normal or corrected-to-normal vision, and reported no physical injury or pathology that could

affect hand movement. The experiment was approved by the local “Comité d’éthique de la

recherche de l’Université Paris-Saclay” ethics committee (CER-Paris-Saclay-2018-021-R).

After reading the instructions, the participants signed a consent form and filled in the Edin-

burgh questionnaire.

Experimental setup

During the experiment, the participants were asked to strike an object with their index finger

to cause it to slide to a target distance. The object was a rectangular parallelepiped (length = 60

mm, width and height = 50 mm), printed in PLA (polylactide), weighing 46 g. A circle target

was drawn on the center of the object face to be struck by the index finger (see Fig 1). For the

sake of simplicity, we will call this object the “cube” from now on.

At the start of each trial, the cube was positioned at one entrance of a gutter setup with a

square section allowing the cube to slide along a single axis of translation while preventing

rotations (Fig 1). The gutter’s inner dimensions were: length = 800 mm, width = 55 mm and

height = 25 mm. The lateral sides of the gutter were made of aluminum. However, the bottom

sliding surface material was either balsa wood or aluminum, depending on the condition.

The participants were instructed to strike the cube in order to cause it to reach one of two

target distances: 25 cm or 50 cm, indicated by a sticker positioned on the upper right side of

the gutter. The gutter setup was fixed on a motorized table allowing the experimenter to vary

surface inclinations (-10˚, 0˚, +10˚) and to adjust the setup height to ensure the index finger

start position was on the cube’s target face (see Fig 1).

Data acquisition

During the experiment, a nine-camera OptiTrack motion capture system (Model S250e)

recorded the arm and cube movements at 250 Hz. Reflective markers were placed on the

setup, cube and right upper limb. As illustrated in Fig 1, 4 mm markers were positioned on the

head of the phalanx of the index finger and on the metacarpals on the second and third fingers

Fig 1. Experimental setup and task. Participants were instructed to strike a cube to slide it to one of two target

distances indicated by a triangular sticker (together with a reflective marker) positioned on the upper right side of a

gutter). Here, we illustrate the initial standard position of the hand with respect to the experimental setup in the 0˚

slope condition with an aluminum surface material. Reflective markers were placed on the setup, cube and right upper

limb of the participant, for the purpose of motion analysis.

https://doi.org/10.1371/journal.pone.0264370.g001
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in accordance with Zhang et al. [34]. Markers of different sizes were placed on the back of the

hand, wrist and elbow following International Society for Biomechanics (ISB) recommenda-

tions for reporting human joint motion [35]. For the wrist, 11 mm reflective markers were

placed on the most caudal points on the styloid process of the radius and the ulna. For the

elbow, 14 mm reflective markers were placed on the most caudal points on the lateral and

medial epicondyle. Finally, a cluster of three 4 mm reflective markers was placed on the cube,

and 7 mm reflective markers were arranged along the edges of the setup to indicate the initial

and target (25 cm and 50 cm) distances.

Experimental task

Before the start of the experiment, the participants stretched out their arm for measurement of

forearm length (LForearm) and hand length (LHand). The height and weight of each participant

were also collected. Then, before each trial, the participants placed their elbow at a standard

position (determined with the participant to ensure it was comfortable) indicated by a sticker

on the table to allow them to pivot their forearm while keeping their elbow on the table. The

participants were also told to keep their forearm more or less perpendicular with respect to the

setup, with the distal phalanx of their index finger in front of the cube target face (see Fig 1).

Their seating position was adjusted to allow their elbow to rest on the table with the arm and

the forearm roughly perpendicular to each other. During the striking movement, the partici-

pants were free to adopt any motor coordination they wished as long as the elbow remained in

the same position on the table. The required task was to strike the cube, causing it to slide

along the gutter until the front edge of the cube stopped at the target distance indicated by a

triangular sticker and a reflective marker positioned on the gutter (see Fig 1). After each shot,

the experimenter returned the cube to its standard initial position, with 5 cm of the cube rest-

ing on the surface and 1 cm protruding from the gutter to avoid collision between the hand

and the setup.

There were 12 conditions resulting from the combination of two target distances (25 cm

and 50 cm), two surface materials (balsa wood and aluminum), and three surface slopes (-10˚,

0˚ and +10˚). In total, the participants performed 120 trials with ten repetitions per condition.

The surface slope trials were organized in blocks, with each experimental session starting with

the 0˚ condition, followed by either the -10˚ slope then the +10˚ slope (“0˚, -10˚, +10” block

order group), or by the +10˚ slope then the -10˚ slope (“0˚, +10˚, -10” block order group).

These three blocks of trials were with either the balsa wood surface, followed by three blocks of

trials on the aluminum surface, or vice versa, with the order being counterbalanced across par-

ticipants. Finally, all of these conditions (60 trials) were run in one block of trials for the 25 cm

target distance, followed by a block for the 50 cm target distance (60 trials). These different

block orders resulted in four groups as illustrated in Table 1.

Data analysis

Motion capture was recorded using AMASS software, and data was processed with MATLAB

homemade routines to generate the files necessary for running statistics using STATISTICA

and SPSS. No low-pass filter was applied to the 3D marker position signals because, if the filter

parameters commonly used in the human movement literature were applied (e.g., 10–15 Hz

cutoff, second or third order Butterworth), the collision phenomenon (lasting about 15 ms)

would have been considered noise and filtered out.

We segmented the arm movement in three phases on the basis of both the index fingertip

and cube kinematics as illustrated in Fig 2, with speed measured along the y-axis (aligned with

the gutter main axis). The speed was positive for motion towards the cube, and negative for
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motion away from the cube. The initial arming phase started when the participants moved

their index fingertip back away from the cube, and ended when the arm stopped at its maximal

extension with speed equal to zero. During the striking movement, the hand moved towards

the cube with increasing speed until impact. The start of the cube sliding phase (see Fig 2) cor-

responded to the index-cube initial contact time point (tcontact). It was determined using the

Multiple Sources of Information method (MSI-method, see [36,37]) using the fingertip decel-

eration peak (due to the collision) and time interval between max fingertip speed (tmaxFS) and

minimum cube speed (tminCS) just before the cube started moving. The cube’s movement

onset was defined as cube speed greater than 0.04 m/s. Accordingly, the contact time point

(tcontact) was determined for the [tmaxFS; tminCS] interval as:

tcontact ¼ min t
Acceleration

Min Acceleration

� �

> 0:4

� �

� dt ð1Þ

Each fingertip acceleration value during the time interval (delimited by the curly brackets in

the formula) was normalized by dividing each value by the minimum acceleration value

observed within the interval. When fingertip deceleration was greater than 40% (cf. the 0.4 value

in the formula), the immediately preceding time point (i.e., dt in the formula) was considered to

be the initial time of contact. We used this criterion in order to avoid false detection of finger-

cube contact, because after maximum finger speed (beginning of the time interval of interest)

there was sometimes a slight deceleration (less than 40%) in finger movement before contact.

At the start of the cube sliding phase, the initial brief finger-object contact duration con-

comitant with a mutual speed change reflected energy transfer from the finger to the cube

which started to slide. This brief duration is delimited by the dashed and dotted vertical lines

in the cube sliding phase panel of Fig 2. From there, cube kinematics were used to determine

the coefficient of kinetic friction (μK) and optimal cube speed in order to reach the target dis-

tance in each condition. μk was computed from:

mK ¼

dec
� g

� �
� sin að Þ

cos að Þ
ð2Þ

Table 1. Description of the block order used in the Experiment in each group, whether A) the “0˚, -10˚, +10˚” block order group, or B) the “0˚, +10˚, -10˚” block

order group. Each block order group was subdivided in two subgroups: One beginning with aluminum (alu) followed by balsa wood (balsa), and the other in the opposite

order.

A 0˚, -10˚, +10˚ block order group

Target distance 25 cm 50 cm

Slope 0˚ -10˚ +10˚ 0˚ -10˚ +10˚ 0˚ -10˚ +10˚ 0˚ -10˚ +10˚

Block number 1 2 3 4 5 6 7 8 9 10 11 12

Group 1 Alu Alu Alu Balsa Balsa Balsa Alu Alu Alu Balsa Balsa Balsa

Group 2 Balsa Balsa Balsa Alu Alu Alu Balsa Balsa Balsa Alu Alu Alu

B 0˚, +10˚, -10˚ block order group

Target distance 25 cm 50 cm

Slope 0˚ +10˚ -10˚ 0˚ +10˚ -10˚ 0˚ +10˚ -10˚ 0˚ +10˚ -10˚

Block number 1 2 3 4 5 6 7 8 9 10 11 12

Group 3 Alu Alu Alu Balsa Balsa Balsa Alu Alu Alu Balsa Balsa Balsa

Group 4 Balsa Balsa Balsa Alu Alu Alu Balsa Balsa Balsa Alu Alu Alu

https://doi.org/10.1371/journal.pone.0264370.t001
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To estimate μk, we needed to estimate cube deceleration as a function of gravity (g) and sur-

face slope (α). This was done by fitting a second-order polynomial function to the cube posi-

tion across time (i.e., from the cube’s initial maximum speed until it stopped), with y = Ax2

+ Bx + C. Then, cube deceleration dec was computed from the second derivative, dec = y00 =

2A. This μk value was determined for each experimental trial. In this study, μK takes into

account both of the forces that decelerate the cube: surface material and the aluminum sides of

the gutter. In order to validate the fact that the two surface materials (aluminum and balsa

wood) have different coefficients of kinetic friction that would modulate behavior, we com-

puted mean μK for each surface material for each participant. A paired t test revealed a signifi-

cantly greater μK for the balsa wood surface (M = 0.47, SE = 0.01) compared to the aluminum

surface (M = 0.37, SE = 0.01), t(32) = 16.99, p< 0.05.

Then, we estimated the optimal cube speed (Cube Speedoptimal) to send the object to the tar-

get distance d for each experimental condition, using:

Cube Speedoptimal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 g d sin að Þ þ mK cos að Þ½ �

p
ð3Þ

These Cube Speedoptimal values are summarized in Table 2 for each experimental condition

under increasing task constraints.

Performance variables

Spatial error and initial cube speed (m/s) were used as performance variables. Spatial error was

defined as the difference in distance between the target distance and the final position of the

Fig 2. Segmentation of the ballistic gesture and cube movement. Three phases were taken into consideration on the

basis of both index fingertip and cube speed along the main axis of the experimental setup (the gutter). The initial

arming phase started when the participants moved their index fingertip back away from the cube, and ended when the

arm stopped at its maximal extension with speed equal to zero. During the striking movement, the hand moved

towards the cube with increasing speed until impact. The start of the cube sliding phase corresponded to the index-

cube initial contact duration concomitant with a mutual speed change reflecting energy transfer from the finger to the

cube which started to slide.

https://doi.org/10.1371/journal.pone.0264370.g002
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cube’s front edge as a percentage of target distance, with positive values for overshoots and

negative values for undershoots. Motor adaptation was investigated by fitting an exponential

curve to the trial factor data for both performance variables with the following equation:

Performance ¼ offset þ constant � expð� ðtrial � 1Þ=tauÞ ð4Þ

Offset quantifies final performance after the adaptation process. Constant quantifies the

magnitude and direction of performance variation. Tau quantifies the half-life of exponential

decay, in terms of trial number. Only exponential fits with a R2 > 0.75 were considered as

reflecting meaningful adaptation and were displayed in the figure for mean performance and

motor adaptation.

In order to test whether there were systematic spatial errors in the first trial of each condi-

tion that would be reduced across trials, we first performed an ANOVA on spatial error in trial

1 for significant interactions involving the Trial and Surface material factors. Then, we com-

pared mean spatial error to 0%, for the first and last trials in order to test if motor adaptation

led to an optimal performance. Accordingly, we used Bonferroni corrected t tests with α =

0.05/6 = 0.008 (see Fig 3) or α = 0.05/4 = 0.0125 (see Fig 4), depending on the number of initial

and final trials for a given surface material, illustrated by an asterisk when significant.

As mentioned in the Experimental task section, the order of the surface slope blocks differed

depending on the group. For one group, the 0˚ condition was followed by the -10˚ condition

(“0˚, -10˚, +10˚” block order group) whereas it was followed by the +10˚ condition for the

other group (“0˚, +10˚, -10˚” block order group). Therefore, we conducted additional analyses

in order to test more deeply the generalization of subjective μ from one block to another for a

given surface material. Evidence in favor of this generalization of subjective μ is tagged with

thumb-up symbols in the figures of the Performance and motor adaptation as a function of
block transition section. This was the case when the spatial error for the last trial of a block and

the first trial of the following block did not differ from zero. Accordingly, we expected no sign

of motor adaptation (as measured by the exponential fits) in neither spatial error nor the initial

cube speed for the new block. Note that by displaying our data in separate plots depending on

group and distance, the data points across trials became noisier. As a consequence, in order to

increase our sensitivity in detecting motor adaptation, we decreased the R2 threshold to 0.50

(instead of 0.75). Similarly, to avoid false alarms when stating that spatial error was signifi-

cantly different from zero for initial and final trials, we used Bonferroni corrected t tests with α
= 0.05/12 = 0.004 as the significance criterion (12 being the number of comparisons per sur-

face material). Finally, in order to assert statistical evidence in favor of the generalization of

subjective μ from one block to the next, we compared performance between the last trial of a

block and the initial trial of the next block using Bonferroni corrected t tests (with α = 0.05/

4 = 0.0125 as a criterion, the four comparisons corresponding to the transition between the

first and second block, and between the second and third block, for each level of Target dis-

tance). Such significant changes in performance between blocks are illustrated by an arrow in

Figs 5 and 6.

Table 2. Mean optimal cube speed (m/s) for each experimental condition with ascending task constraint.

Target distance 25 cm 25 cm 25 cm 50 cm 25 cm 25 cm 50 cm 25 cm 50 cm 50 cm 50 cm 50 cm

Surface slope -10˚ -10˚ 0˚ -10˚ 0˚ +10˚ -10˚ +10˚ 0˚ 0˚ +10˚ +10˚

Surface material Alu Balsa Alu Alu Balsa Alu Balsa Balsa Alu Balsa Alu Balsa

Optimal cube speed 0.967 1.191 1.347 1.368 1.518 1.625 1.684 1.767 1.905 2.147 2.297 2.499

https://doi.org/10.1371/journal.pone.0264370.t002
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The rationale is that if participants reached optimal performance (spatial error not signifi-

cantly different from 0) at the end of a block, this would reflect the fact that they had converged

to the correct value of friction within a block. Accordingly, we theorized that participants

should be able to parameterize their movement despite a change in block condition, such as a

change of surface slope and/or target distance, in order to reach optimal performance right

from the first trial of the new block condition. If not, we expected signs of motor adaptation in

the new block of trials suggesting that a recalibration of subjective μ across trials was needed.

Fig 3. Performance and motor adaptation as a function of surface material and inclination. The upper panels show motor

adaptation only in the 0˚ and +10˚ condition in the spatial error data (as a percentage of target distance), as a consequence of

variation in initial cube speed illustrated in the lower panels. Exponential fits with R2 > 0.75 illustrate motor adaptation across trials.

Asterisks for spatial error (mean ± SE) indicate initial and final means differing significantly (Bonferroni correction with α = 0.05/

6 = 0.008 for each surface material) from zero.

https://doi.org/10.1371/journal.pone.0264370.g003
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However, traces of a generalization of the internal model of physics (including subjective μ)

from one block to the next could also manifest in a greater learning speed in the new block.

Motor coordination was first examined geometrically on the basis of joint angular ampli-

tude between the beginning and end of the striking movement as projected onto the xy (hori-

zontal) plane, corresponding to the table on which the elbow rested. The angular amplitudes

of interest were: forearm angle θForearm, wrist angle θWrist and index finger angle θIndex, at the

last (10th trial of each condition). The forearm angle θForearm is formed by the y axis (aligned

Fig 4. Performance and motor adaptation as a function of surface material and target distance. Motor adaptation

across trials is observed mainly for the balsa wood surface material (right panels) corresponding to more demanding

conditions in order to counteract the effect of friction on cube displacement. Exponential fits with R2 > 0.75 are

illustrated, together with asterisks when initial and final mean spatial error differed significantly (Bonferroni correction

with α = 0.05/4 = 0.008 for each surface material) from zero.

https://doi.org/10.1371/journal.pone.0264370.g004
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with the gutter) and the forearm axis (joining the elbow and the wrist central joint). The wrist

central joint was estimated as the projection of the radius styloid marker onto the xy plane.

The wrist angle θWrist is formed by the intersection between the forearm axis and the hand axis

(joining the wrist central joint and the third metacarpophalangeal head). The index finger

angle θIndex is formed by the hand axis and the index finger axis (joining the second metacar-

pophalangeal head and the fingertip marker).

Last, we computed the kinetic energy (KE) at impact for the upper limb and the cube. We

estimated total upper limb KE (Total KE) as the sum of Forearm KE and Hand KE using the

Fig 5. Performance and motor adaptation as a function of surface material, surface slope and target distance, is illustrated

for the “0˚, -10˚, +10˚” block order groups. Evidence in favor of generalization of subjective μ between blocks with a given

surface material is tagged with thumb-up symbols in the upper panel. This generalization occurred when the spatial error for both

the last trial of a block and the first trial of the following block did not differ from zero (Bonferroni correction with α = 0.05/12);

asterisks illustrate evidence against the generalization hypothesis. Exponential fits with R2 > 0.75 (continuous lines) and R2 > 0.50

(dashed lines) indicate strong and moderate evidence of motor adaptation, respectively. Arrows illustrate significant (Bonferroni

correction with α = 0.05/4) change in behavior between blocks. The results show motor adaptation at the initial block of trials

corresponding to a 0˚ slope and a 25cm target distance, whether on an aluminum or balsa wood surface depending on group (see

Table 1). This calibration of subjective μ for a given surface material in the 0˚ condition led to an appropriate re-parameterization

of the movement in the following -10˚ condition (see the thumb-up symbols for the 0˚ to -10˚ transitions), also illustrated in an

adequate change in initial cube speed. In contrast, motor adaptation was needed for the -10˚ to +10˚ block transition.

https://doi.org/10.1371/journal.pone.0264370.g005
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following equations adapted from Winter [38]:

KEForearm ¼
1=2mForearm ½� LForearm sinðyForearmÞ

2 þ LForearm cosðyForearmÞ�
2

� �
þ

1=2 IForearm yForearm
2 ð5Þ

KEHand ¼
1=2mForearm ½� LElbow sin yElbowð Þ � LWrist sinðyWristÞ

2 þ LElbow cos ðyElbowÞ þ LWrist cos ðyWristÞ�
2

� �

þ
1=2 IWrist yWrist

2 ð6Þ

Total KE ¼ KEForearm þ KEHand ð7Þ

In Eqs 5 and 6, the segment lengths (L) were reported following the ISB recommendation

[35], whereas the anthropometric parameters (limb segment mass m and inertia I) were

derived from de Leva [39] anthropometric tables. Last, we computed cube KE after impact as:

KECube ¼
1=2mCube SpeedCube

2 ð8Þ

Since the cube is blocked laterally in a gutter, only the translational part of KE was taken

into account.

Fig 6. Same as Fig 5, for the “0˚, +10˚, -10˚” block order groups. Again, the results show motor adaptation at the

initial block of trials leading to a subjective μ calibration that allowed for adequate movement re-parameterization in

the following +10˚ conditions (see 0˚ to +10˚ transition), except for 50 cm with aluminum. Then, movement re-

parameterization for the -10˚ to +10˚ transition was successful (see the thumb-up symbols) only in the shorter target

distance condition (25 cm).

https://doi.org/10.1371/journal.pone.0264370.g006
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Results

Mean performance and motor adaptation

In this study, we assume that participants have an accurate internal model of gravity (as a phys-

ical invariant) and an accurate perception of surface slope. Therefore, if participants have a

“pretty good” internal model of physics that links the initial cube speed to the final spatial

error, spatial error should directly reflect participants’ internal model of μ (subjective μ). A

subjective μ consistent with the physical μ would lead to no spatial error if participants are able

to regulate their movement to impart the appropriate cube speed. Moreover, we investigated

motor adaptation by examining how the effect of trial on performance varied with the other

experimental factors. As a consequence, although these factors showed main effects on perfor-

mance, ps< 0.001, we focused our analysis on interactions involving the trial factor. Repeated

measures ANOVAs on the performance variables were performed with the following within-

subjects factors: two target distances (25 cm and 50 cm) x two surface materials (balsa wood

and aluminum) x three surface slopes (-10˚, 0˚ and +10˚) x ten trials. Although ANOVA is

robust with respect to violations of normality in terms of Type I error [40], Q-Q plots showed

that our performance variables data appear to be normally distributed.

The fourth-factor interaction between Surface material, Slope, Target distance, and Trial

was not significant, for neither spatial error, F(18, 576) = 0.44, p = 0.98, nor initial cube speed,

F(18, 576) = 0.48, p = 0.97. However, we found a significant three-factor interaction between

Surface material, Slope and Trial on spatial error, F(18, 576) = 2.36, p = 0.0013, and on initial

cube speed, F(18, 576) = 2.19, p = 0.003, as illustrated in Fig 3. We first wanted to test whether

there were systematic spatial errors in the first trial of each condition. For this, we performed

an ANOVA on spatial error in trial 1 with Surface material and Slope as within-subject factors.

It showed that spatial error varied significantly as a function of Surface material (Malu =

-7.92%, Mbalsa = -15.16%), F(1, 32) = 6.14, p = 0.019, and of Slope (M-10˚ = 0.23%, M0˚ =

-21.11%, M+10˚ = -13.73%), F(2, 64) = 15.23, p< 0.001. Finally, there was a significant interac-

tion between Surface material and Slope, F(2, 64) = 12.60, p< 0.001. Bonferroni corrected t
tests (with α = 0.05/6) showed that this initial spatial error differed significantly from 0% for

both surface materials in the 0˚ condition (Alu: t(32) = 3.66, p = 0.0009; Balsa: t(32) = 7.18,

p< 0.001) and for aluminum in the +10˚ condition (t(32) = 6.92, p< 0.001), as highlighted by

the asterisks in Fig 3. Interestingly, spatial error was significantly greater for Balsa wood (M =

-29.57%) compared to Aluminum (M = -12.66%), t(32) = 3.40, p = 0.002, in the 0˚ slope condi-

tion. This initial difference was due to a similar initial cube speed, t(32) = 0.26, p = 0.80, that

induced a different error due to the different coefficients of friction. Given that participants

always started a surface material and target distance blocks with the 0˚ condition, keeping

cube speed constant may have facilitated the estimation of μ (from the visual consequences of

the cube kinematics), and the subsequent parameterization of the movement in order to

reduce spatial error across subsequent trials.

The parameterization of the movement is illustrated in the significant exponential curves

(R2 > 0.75, see Methods), for spatial error or initial cube speed illustrated in Fig 3 for the afore-

mentioned three sub-conditions where spatial error in trial 1 differed significantly from 0%.

On the other hand, the lack of an exponential fit may reflect an exploratory strategy, during

which subjects try out different ways of hitting the object until they find the one that works

‘best’, as in the -10 condition for both surface materials, and in the +10˚ condition for balsa.

Finally, we wanted to test whether performance was optimal in the last trial of each condition

of the interaction between Surface material and Slope on spatial error. Bonferroni corrected t
tests (with α = 0.05/6) showed that spatial error in trial 10 differed significantly from 0% only

for aluminum in the +10˚ slope condition (M = -7.08%), t(32) = 3.82, p = 0.0006. As we will
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show in subsequent analyses taking into account block order groups, this suboptimal final per-

formance was due to the 50 cm target distance in the “0˚, +10˚, -10” block order group.

The repeated measures ANOVA also showed a significant interaction between Surface

material, Target distance and Trial, F(9, 288) = 1.93, p = 0.048, for spatial error (see Fig 4). An

initial ANOVA on spatial error in trial 1, with Surface material and Target distance as within-

subject factors, showed that, although spatial error did not vary with Target distance (M25cm =

-11.91%, M50cm = -11.17%), F(1, 32) = 0.07, p = 0.789, it did vary as a function of Surface mate-

rial (Malu = -7.92%, Mbalsa = -15.16%), F(1, 32) = 6.14, p = 0.019. Moreover, both factors did

not interact on spatial error, F(1, 32) = 1.68, p = 0.20. Bonferroni corrected t tests (with α =

0.05/4) showed that spatial error in trial 1 differed significantly from 0% only for balsa wood

(25 cm condition: t(32) = 3.78, p< 0.001; 50 cm condition: t(32) = 6.17, p< 0.001), as

highlighted by the asterisks in Fig 4.

The signature of adaptation in the exponential modulation of motor behavior (with R2 >

0.75), whether spatial error or initial cube speed, was observed in each condition except for spa-

tial error in the 25 cm Target distance condition for aluminum (see Fig 4). However, in this sub-

condition the lack of an exponential fit might reflect an exploratory strategy to find the best way

of hitting the object. Finally, Bonferroni corrected t tests (with α = 0.05/4) showed that spatial

error in trial 10 differed significantly from 0% only for balsa wood in the 50 cm target distance

condition, t(32) = 4.03, p< 0.001. Although we could not evidence a fourth-factor interaction

between Surface material, Slope, Target distance, and Trial, for neither spatial error nor initial

cube speed, the next analyses will examine the effect of these factors in relation to block order

group in order to investigate the generalization of subjective μ from one block to another.

Performance and motor adaptation as a function of block transition

As explained in the Performance variables section of Materials and Methods, we conducted

additional analyses as a function of block order groups in order to test the generalization of

subjective μ from one block to another for a given surface material. The spatial error panels of

Figs 5 and 6 show numerous instances of generalization suggesting that participants were able

to re-parameterize their movement from one block to another on the basis of the internal

model of μ for a given surface. On the other hand, in other cases (no thumb up in block transi-

tion), they required additional motor adaptation to better tune the subjective μ value with

respect to the physical invariants of the task and thereby improve movement parameterization.

A brief summary of these results is provided in the captions of Figs 5 and 6. Overall, the results

for both groups (see Figs 5 and 6) show that it is easier to generalize the subjective μ value

tuned in the 0˚ condition when the next block is a -10˚ or a +10˚ slope. In contrast, the -10˚ to

+10˚ block transition (“0˚, -10˚, +10˚” block order group) requires motor adaptation and a

recalibration of subjective μ, although participants increased initial cube speed (but not

enough) in order to cope with the increased task constraint. For example, optimal cube speed

values (see Table 2) show that, when changing from -10˚ to +10˚ for the 50 cm target distance,

one needs to increase cube speed by about 50% in the balsa wood condition (i.e., from 1.68 m/

s to 2.50 m/s) and by about 70% in the aluminum condition (i.e., from 1.37 m/s to 2.30 m/s).

Still, as previously mentioned (see Performance variables section), greater learning speed (for

motor adaptation) in the +10˚ block compared to the 0˚ block for aluminum (see Fig 5) sug-

gests partial generalization of the internal model of μ between blocks of the same surface mate-

rial. Finally, the +10˚ to -10˚ block transition (“0˚, +10˚, -10˚” block order group) shows good

re-parameterization of the movement for the 25 cm target distance based on the subjective μ
tuned in the initial block, whereas additional tuning (through motor adaptation) was needed

in the 50 cm condition (see Fig 6).
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Some blocks were especially challenging in terms of movement re-parameterization.

Indeed, as described in Table 1, once participants performed the six blocks in the 25 cm target

distance condition, the surface material was changed in the next six blocks in the 50 cm target

distance condition. So, the transition between block 6 and block 7 involved a change in three

physical properties of the stimulus, i.e., surface slope, surface material and target distance. Fig

7 illustrates the change in performance between the last trial of block 6 (last trial of the 25 cm

blocks) and the first trial of block 7 (first trial of the 50 cm blocks). We used Bonferroni cor-

rected (α = 0.05/4) t tests to examine if there was a significant performance change between

those two trials (illustrated by arrows in Fig 7), and a significant spatial error with respect to

zero (illustrated by asterisks in Fig 7). We theorized that performance not differing signifi-

cantly from zero after a change in three physical properties of the stimulus would reflect ade-

quate movement re-parameterization (in order to impart optimal initial cube speed). The

results show appropriate movement re-parameterization despite the dramatic change in the

stimuli, except for the more demanding transition (see the triangle data points in Fig 7) requir-

ing an increase of about 120% of initial cube speed (see Table 2 optimal initial cube speed:

0.967 m/s for a 25 cm target distance on a -10˚ aluminum surface, to 2.147 m/s for a 50 cm tar-

get distance on a 0˚ balsa wood surface).

Motor coordination parameterization

The participants performed the task with their elbow resting on the table. Therefore, the move-

ment involved primarily rotations of the forearm, wrist and index finger. The increase in task

constraints (due to the surface slope, target distance and surface material) corresponded to a

continuum of optimal initial cube speed (see Table 2). Therefore, we assumed that the striking

movement parameterization would reflect this continuum. However, in order to perform the

task under increasing constraints, the main limb segment masses contributing to the task were

clearly the forearm and the hand (see section Motor coordination efficiency). Therefore, we

analyzed the angular amplitude of the forearm, wrist and index finger during the striking

movement in order to characterize interindividual variability in motor coordination. For a

first approximation, we looked for two motor strategies recruiting joints able to generate

enough cube speed at impact, namely, via wrist and/or forearm rotation. It is important to

note, here, that “motor strategy” is not intended to reflect a qualitative change in motor coordi-

nation in terms of generalized motor program or motor primitive, but rather a substantial

quantitative difference in movement parameters.

We used a non-hierarchical K-mean clustering (K = 2) [41] on the joint angular amplitude

values during the striking movement (for the elbow, wrist and index finger rotations) in the

last trial of each condition, which we assumed reflected relative stability of the motion. Four-

teen participants were identified in a “Wrist strategy” cluster, and nineteen in a “Forearm strat-

egy” cluster. Fig 8 illustrates a typical trial for one participant in each cluster, for the 50 cm

target distance on a Balsa wood surface with a 0˚ surface slope. This condition corresponds to

one of the most demanding conditions in terms of optimal cube speed (see Table 2). The Wrist

strategy shows greater angular amplitude and greater angular speed for the wrist rotation, as

compared to the other segments. By contrast, the Forearm strategy shows recruitment of both

the forearm and the wrist. This different involvement of the upper limb segments of interest in

each strategy is also illustrated in Fig 9 where the angular amplitudes are plotted as a function

of the optimal cube speed required to reach the target.

Under the hypothesis of linear recruitment of a given joint as a function of the increase in

task demand, we retained linear fits with R2 > 0.75 as significant. Similar to Figs 8 and 9 shows

an equivalent recruitment of the wrist and forearm in the Forearm strategy and a much greater
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Fig 7. Illustration of performance after a change in three physical properties of the stimulus, i.e., surface slope,

surface material and target distance. This change corresponded to the transition between the last trial of block 6 and

the first trial of block 7 for the four different groups in this study (see Table 1 for details about block order). Each group

is illustrated with a different data point symbol. Gray and black symbols indicate aluminum and balsa wood surface

material, respectively. For example, diamonds correspond to a “0˚, -10˚, +10˚” group where the last trial of block 6 was

a +10˚ slope with a balsa wood surface material and 25 cm target distance, followed by a 0˚ slope with an aluminum

surface material and 50 cm target distance. Asterisks illustrate significant differences in spatial error with respect to

zero (Bonferroni correction with α = 0.05/4), and arrows illustrate a significant change in performance between the

trials of interest (Bonferroni correction with α = 0.05/4). The results show appropriate movement re-parameterization

after a change in three physical properties of the stimulus, except for the more difficult transition indicated by the

triangle data points corresponding to a transition from a 25 cm target distance on a -10˚ aluminum surface (optimal

initial cube speed is 0.967 m/s, see Table 1) to 50 cm target distance on a 0˚ balsa wood surface (optimal initial cube

speed is 2.147 m/s, see Table 1).

https://doi.org/10.1371/journal.pone.0264370.g007
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recruitment of the wrist in the Wrist strategy. In order to further investigate the contribution

of each limb segment, we conducted separate repeated measures ANOVA for each segment on

the individual slope and intercept values, using Motor strategy as a between-subjects factor,

and Surface material as a within-subject factor.

Regarding forearm rotation, each R2 was greater than 0.75 (see Fig 9), and the ANOVAs

showed significantly greater intercepts only for the Forearm strategy (M = 5.02˚, CI = [1.21;

8.83]) compared to the Wrist strategy (M = -1.21˚, CI = [-4.56; 2.13]), F(1, 31) = 6.22,

p = 0.018, with a significant intercept (with respect to zero) only in the former group, t(18) =

2.77, p = 0.013. There was no other main effect or interaction on intercepts. Moreover, the

ANOVA on slopes showed no main effect or interaction, although each of them differed from

zero, all ps < 0.02. Overall, these results suggest a greater initial recruitment of forearm rota-

tion for the Forearm strategy, and similar modulation of forearm amplitude in both groups

with increasing task demand. The absence of Surface material effect within each group simply

reflects the fact that parameterization of joint angular amplitude is based on optimal cube

speed which varies as a function of the combination of the three physical properties (target dis-

tance, surface slope, and surface material).

For wrist rotation, given the R2 > 0.75 criterion, we limited our analysis to the effect of

Motor strategy in the Aluminum condition (see Fig 9). The intercept was significantly greater

Fig 8. Individual difference in motor coordination. Kinogram representation of one striking movement, together with corresponding kinematic data,

in the 0˚ slope condition, 50 cm target distance and balsa wood, for one participant in each group cluster. The “Wrist strategy” participant (upper

panels) shows greater angular amplitude and greater angular speed for the wrist rotation, as compared to the other segments. By contrast, the “Forearm

strategy” participant (lower panels) shows recruitment of both the forearm and the wrist.

https://doi.org/10.1371/journal.pone.0264370.g008
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for the Wrist strategy (M = 13.15˚, CI = [8.01; 24.77]) compared to the Forearm strategy

(M = 1.30˚, CI = [1.32; 6.89]), t(31) = 2.37, p = 0.024, with a significant intercept only in the

former group, t(13) = 4.22, p = 0.001. By contrast, the slope for the Wrist strategy group

(M = 8.00˚/m.s-1, CI = [3.32; 12.68]) and the Forearm strategy group (M = 7.73˚/m.s-1, CI =

[3.34; 12.12]) did not differ significantly, t(31) = 0.09, p = 0.93, but they both differed from

zero, all ps < 0.003. These results are consistent with a greater initial recruitment of wrist rota-

tion for the Wrist strategy. The nonlinear recruitment of the wrist in the Balsa wood condition

is possibly due to a trade-off between the recruitment of wrist and finger joints for the more

demanding conditions. Indeed, wrist angle caps after 2 m/s optimal cube speed, while finger

angle increases more than for the less demanding conditions.

Although we found no linear trend (each R2 < 0.75) for finger angular amplitude as a func-

tion of optimal cube speed, we further investigated the motor control of the striking movement

by examining how the index fingertip speed at impact was regulated as a function of optimal

cube speed. The results showed that both variables were linearly related, as illustrated in Fig

10. The ANOVA on intercept values evidenced a significantly greater intercept for the Wrist

strategy (M = 1.16 m/s, CI = [0.80; 1.52]) than for the Forearm strategy (M = 0.61 m/s, CI =

[0.38; 0.85]), F(1,31) = 8.06, p = 0.008. In addition, the intercept for Balsa wood (M = 1.43 m/s,

CI = [0.94; 1.91]) was significantly greater than for Aluminum (M = 0.90 m/s, CI = [0.52;

1.28]), F(1, 31) = 8.19, p = 0.007, reflecting the fact that, with balsa wood, greater finger speed

Fig 9. Motor coordination parameterization as a function of the optimal cube speed reflecting the task physical constraints. In the last (10th) trial,

participants show a linear regulation (only R2 > 0.75 are illustrated) of forearm angular amplitude for each surface material, and of the wrist angular

amplitude only for the aluminum surface. Participants adopting a Wrist strategy show a greater intercept in wrist angle regulation.

https://doi.org/10.1371/journal.pone.0264370.g009
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is needed at impact to counteract the effect of greater friction on cube displacement. Neither

factor interacts on finger speed at impact intercepts, F(1, 31) = 0.84, p = 0.37, n.s. The ANOVA

on slopes showed a significant effect only of Surface material, F(1,31) = 8.67, p = 0.006, with a

greater slope for Aluminum (M = 1.02 m/s, CI = [0.76; 1.29]) compared to Balsa wood

(M = 0.75 m/s, CI = [0.49; 1.01]). These results suggest that the greater friction with Balsa

wood impedes more fine-grained movement regulation (smaller slope corresponds to smaller

variation in finger speed).

Motor coordination efficiency

In order to investigate differences in behavior related to motor coordination, we first examined

if mean spatial error and cube speed at impact varied with Motor coordination (wrist vs. Fore-

arm strategy). The groups did not differ, either in terms of mean spatial error (Wrist strategy

M = -4.45%, SE = 2.47; Forearm strategy M = -0.02%, SE = 2.18, t(31) = 1.33, p = 0.19), or in

terms of initial cube speed after impact (Wrist strategy M = 1.68 m/s, SE = 0.03; Forearm strat-

egy M = 1.74 m/s, SE = 0.02, t(31) = 1.66, p = 0.11). However, the index fingertip speed at

Fig 10. Individual variability in movement parameterization. The two motor strategies are also reflected (in the last

trial) at the distal level through the linear regulation of index fingertip speed at impact as a function of optimal cube

speed. In order to reach the required amount of KE at impact, participants adopting a Forearm strategy reduced

overall finger speed as compared to the other strategy, due to greater limb mass put into motion.

https://doi.org/10.1371/journal.pone.0264370.g010
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impact was significantly greater in the Wrist strategy group (M = 2.62 m/s, SE = 0.11) than in

the Forearm strategy group (M = 2.25 m/s, SE = 0.07), t(31) = 3.20, p = 0.003.

In order to account for similar (spatial error) performance in spite of different index finger-

tip speed at impact, we investigated upper limb total kinetic energy at impact (Total KE). This

is the sum of the forearm and hand KE (see Materials and Methods section for details on com-

putation). We assumed that Total KE is the physical parameter that must be controlled by the

brain during the striking movement in order to send the cube to the target distance corre-

sponding to a given optimal cube speed after impact. In turn, the latter is the kinematic conse-

quence of the cube KE transmitted by fingertip-cube impact.

Fig 11 illustrates the relationship between the kinetic variables (of the upper limb and the

cube) and the kinematic cube speed variable at impact corresponding to the optimal cube

speed values of all the experimental conditions. To reach a specific target distance, a particular

amount of Total KE is needed, whatever the motor strategy. The quality of the linear fits sug-

gests that the Forearm strategy participants (0.96� R2� 0.99) better regulated upper limb KE

for striking movements at the tenth trial than the Wrist strategy group did (0.79� R2� 0.92).

However, regarding the upper limb KE values, the ANOVAs on slopes and intercepts showed

no main effect of group or Surface material, nor any interaction between the two factors (all

ps> 0.16). By contrast, the cube KE showed marginally greater slope values for the Forearm

Fig 11. Motor coordination efficiency is determined by kinetic energy at impact. This figure illustrates (for the last trial) that movement regulation is

linearly determined by the amount of kinetic energy at impact needed to impart on the cube the optimal speed corresponding to the different task

constraints.

https://doi.org/10.1371/journal.pone.0264370.g011
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strategy (M = 0.064 J, CI = [0.058; 0.071]) compared to the Wrist strategy (M = 0.055 J, CI =

[0.047; 0.062]), F(1,31) = 4.08, p = 0.052, with no effect of Surface material, nor any interaction

between the factors. In addition, the intercepts did not vary (all ps> 0.12). The greater cube

KE slope for the Forearm strategy as compared to the Wrist strategy (together with similar

intercept) reflects the fact that more KE is provided by the greater limb mass in motion, espe-

cially with increasing optimal cube speed. Moreover, this result echoes the descriptively closer-

to-optimal spatial error performance of the Forearm strategy (M = -0.02%) compared to the

Wrist strategy (M = -4.45%); see above. Finally, mean Forearm KE was significantly greater for

the Forearm strategy (M = 0.15 J) than for the Wrist strategy (M = 0.08 J), t(31) = 2.64,

p = 0.013, although the groups did not differ in terms of Hand KE and Total KE (both

ps> 0.11). This finding suggests that due to the greater Forearm KE in the Forearm strategy

group, participants reduced index fingertip speed at impact (as compared to the Wrist strat-

egy) in order to reach equivalent Total KE in both groups. However, although Total KE line-

arly predicts Cube KE (Wrist strategy R2 = 0.92; Forearm strategy R2 = 0.96), the slope of Cube

KE as a function of Total KE is far from 1 (SlopeWrist strategy = 0.075; SlopeForearm strategy =

0.097), reflecting the fact that KE efficiency (Cube KE/Total KE) is only about 10%. The other

90% is conserved in the arm movement after contact and in the deformation of the finger(tip)

during contact.

Discussion

When sliding an object along a surface toward a target distance, initial object speed after

impact is the crucial physical parameter. This optimal speed depends on the distance to be

reached, the coefficient of friction μ (which depends on the material of both the object and the

surface on which it moves), as well as the inclination of the surface (see Eq 3). Here, we wanted

to determine whether the brain uses initial cube speed as a kinematic control variable in order

to control arm movement parametrically to transmit the appropriate KE to the object. We also

examined how upper limb segment motor coordination is regulated depending on interindi-

vidual variability.

The literature shows that we tend to underestimate μ when judging a surface material visu-

ally [42]. Likewise, our data suggest that underestimation of μ corresponds to a default estimate

for horizontal surfaces, as illustrated by the initial spatial error showing systematic under-

shoots in our study. Indeed, spatial error somehow directly reflects participants’ internal

model of μ (subjective μ). To demonstrate that, let’s change Eq 3 in order to find μ as a func-

tion of cube speed at impact (Cube Speedimpact):

m ¼

Cube Speedimpact2
2 d g

� �
� sin að Þ

cos að Þ
ð9Þ

If we were to retrieve the subjective μ from the data, at a given trial, we would use the target

distance d together with the observed Cube Speedimpact because the participant imparts a given

cube speed at impact thinking that the target distance will be reached. By contrast, the objec-
tive μ value would be computed using the actual distance traveled by the cube for the given

trial. As a consequence, subjective μ would be a ratio between the actual d value (traveled by

the cube) and the target distance. This ratio is actually reflected in the spatial error. Of course,

our reasoning builds on the assumption that we have a “pretty good” internal model of gravity

[30]. If participants’ internal model of gravity is wrong, then the brain would need to solve Eq

9 with two unknown factors, namely μ and g. However, motor control would still be possible

provided the subjective g value is a constant. If the subjective g value is greater than 9.81 m/s2
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then the subjective μ would be smaller than the actual μ value. The brain would only need to

apply a scale value to the subjective μ in order to parameterize the movement so that it pro-

vides the required initial cube speed.

Moreover, we found that, at the first trial in the initial 0˚ slope condition, the participants

imparted a similar initial speed to the cube regardless of the Surface material, which in turn led

to greater undershoots for the 0˚ surface material with greater μ (see Fig 3), namely, balsa

wood. We hypothesize that keeping cube speed constant facilitated the estimation of μ (from

the visual consequences of the cube kinematics), and the subsequent parameterization of the

movement in order to reduce spatial error across subsequent trials. This parameterization is

reflected in the adaptation curves aiming at increasing initial cube speed to reduce under-

shooting (see Fig 3 for the 0˚ condition). As a consequence, after ten trials, the brain may have

converged toward a first approximation of μ. Data for the -10˚ condition follow these lines,

showing pretty good performance with no signs of adaptation (see Fig 3). Moreover, further

evidence of the calibration of subjective μ (internal model of friction coefficient) is provided by

the significant decrease of mean cube speed at the initial -10˚ trial compared to the final 0˚

trial.

Although we agree with Hadjiosif et al. (2021) [43] that motor adaptation within block does

not require updating of an internal model, our results provide some evidence that when a

physical property, such as surface slope, is changed between blocks, participants can appropri-

ately re-parameterize their movement to directly reach optimal performance. This adapted

behavior cannot be explained without invoking an internal model of physics, or luck. On the

one hand, the fact that performance is sometimes not optimal after block change suggests that

updating a predictive forward model for movement control is done in parallel with, and inde-

pendently of, the mechanisms underlying error-based movement adjustment across trials of a

given block (see the so-called “direct policy learning” of Hadjiosif et al., 2021[43]). On the

other hand, participants sometimes showed directly optimal performance at the first trial of a

block despite a dramatic change in physical properties such as surface slope, surface material,

and target distance simultaneously (see Fig 7). This suggests that the adequate change in cube

initial speed at the initial trial of this new block resulted from a predictive forward model-

based movement re-parameterization. This was possible because participants tuned their sub-

jective μ of the surface material during previous blocks with a different target distance (see

Table 1, the first three blocks with the same surface).

The only case for unsuccessful movement re-parameterization when three physical proper-

ties changed between blocks corresponded to the more demanding transition (see Fig 7) that

required an increase of about 120% of initial cube speed (see Table 2, from 0.967 m/s for a 25

cm target distance on a -10˚ aluminum surface, to 2.147 m/s for a 50 cm target distance on a 0˚

balsa wood surface). In this case, participants undershot the target distance. If one considers

that predictive forward models are encapsulated knowledge of the physical properties of the

environment and of the motor system [44], underestimation may reflect the influence of

explicit/conscious knowledge on motor control. This explicit influence may correspond to

adaptive prior knowledge [45] according to which underestimation is relevant for survival.

Along the same lines, Joh et al. (2007) [12] showed that underestimating high friction slopes

permitted participants to attempt standing on steep slopes without risk of slipping.

The main challenge for the brain was movement control under greater task demands. The

participants used a linear regulation of cube KE as a function of optimal cube speed that would

lead to optimal performance (see Fig 11). This regulation of cube KE somehow reflected the

linear regulation of forearm and wrist (to a lesser extent) angular amplitudes as a function of

optimal cube speed (see Fig 9). This control of limb segment angular amplitude fits well with

the literature on postural arm control [46]. Following feedback error learning models [28,29],
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we propose that spatial error provides a sensory error signal that is used to regulate arm pos-

ture and KE in a predictive way (in order to impart the required cube speed) via feedforward

motor commands [47]. The parietal cortex and cerebellum would be the core brain structures

for this perception-action regulation [48] and the motor adaptation that we evidenced across

trials. Spatial error (measured by parietal regions) would provide a control variable to the

brain in order to converge towards the actual objective μ value needed to parameterize the

striking movement. However, at the distal level, fingertip kinematics also reflected interindi-

vidual variability in the limb mass put into motion (see Fig 10).

In this study, we examined interindividual variability in striking movement parameteriza-

tion by analyzing the angular amplitude centered on the forearm, wrist and index joints. The

idea is that the brain takes advantage of available motor redundancy [31,32] to cope with the

increasing task demand characterized by a continuum of optimal cube speed just after impact

depending on the combination of surface slope, target distance and surface material, in order

to reach a given target distance. The linear trends regressing motor behavior (in terms of angu-

lar amplitude, fingertip speed and KE) on optimal cube speed provided evidence in favor of

such a continuum in movement parameterization. However, in order to characterize interindi-

vidual variability in motor coordination, we chose a cluster analysis on angular amplitude at

the joints of interest for the different conditions. Analysis of these angular amplitudes showed

a major contribution of the forearm and hand segments to the striking movement, which

makes sense given that, unlike the finger, those limb segments provide sufficient mass to reach

the required KE values that would lead to optimal cube speed in our experiment. Therefore,

we limited our analysis to two clusters of participants that would show a substantial quantita-

tive difference in movement parameters.

To strike an object which then slides toward a target distance, a specific amount of kinetic

energy must be transmitted during impact. Although both clusters of participants showed a

linear increase in the KE variables (of the upper limb and the cube) with optimal cube speed,

they differed at the behavioral kinematic level. The Forearm strategy group was characterized

by a similar variation of angular amplitude of the forearm and wrist with optimal cube speed.

On the other hand, the Wrist strategy group showed much higher values for the wrist and

lower values for the forearm than the other group. This group variability in limb segment

angular amplitudes was paralleled by a difference in fingertip speed at impact. In order to

reach similar levels of cube KE as a function of optimal cube speed, participants using a Wrist

strategy increased the rotational KE of the hand to compensate for their lower Forearm KE

(forearm mass in motion) compared to the Forearm strategy. This increased rotational KE of

the hand in the Wrist strategy was reflected in greater wrist angular amplitude and led to

greater finger speed at impact (see Figs 8 and 10) compared to the other group. However,

because forearm mass translation enters in the Hand KE formula (see Eq 6), the groups did

not differ in terms of Hand KE. In line with studies showing that the motor cortex may repre-

sent arm movement through intrinsic parameter spaces of joint kinematics and joint torques

[49], our results suggest that the KE of upper limb segments may constitute a controlled

parameter in the parameterization of the striking movement. Moreover, our group differences

suggest that motor redundancy allows for individual variability in movement parameterization

through underlying muscle synergies. KE would provide an optimality criterion for the brain

in the compositional construction of the movement supported by force-field/muscle synergy

motor primitives, along the lines of Giszter [50].

Our findings on upper limb KE control by the brain echo the literature on stone knapping

with a hammer. It has been shown that when hammers with different mass to fractionate stone

are used to obtain a similar sized flaking stone, participants control the specific amount of

kinetic energy to obtain the same performance [23]. Together with our findings, this literature
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suggests that the brain takes kinetic variables into account to parameterize movement, whether

from the body limb or from the environment with which we interact. Our study complements

others showing that the brain has a “pretty good” (i.e., functionally relevant, although not per-

fect) internal model of gravity [30] by providing evidence of an internal model of friction for the

motor control of striking movement for the purpose of sliding an object towards a target dis-

tance. However, further research is needed to address certain limits of our work. Among others,

the spatio-temporal regulation of the striking movement should be examined in greater detail to

determine which variable is regulated (movement duration while keeping angular amplitude

constant or movement amplitude together with an invariant movement duration) to transmit

KE to the object. Likewise, along the lines of Sternad (2018) [31], we suggest that variability in

spatial error across trials, and of KE as a function of optimal cube speed, may reflect random

exploration of motor strategies in order to achieve the task. The source of this “motor noise” is

intentional (for the purpose of reducing spatial error), contrary to physiological noise in neural

control signals (Harris & Wolpert, 1998) [51] that may also add variance in performance. Partici-

pants intentionally learn to control various sources of noise in performance such as KE efficiency

(the loss of KE between Total KE and Cube KE), the orientation of cube trajectory after impact

(to avoid or exploit collisions between the cube and the gutter), etc. These different sources of

noise may also account for the partial generalization of subjective μ between trial blocks.

Similarly, further investigation of the role of visual perception of initial object cube speed

for the control of movement in our task may require experimental manipulation of both visual

input and object mass. As illustrated in Eq 10, object mass has no impact on optimal object

speed to reach a given target distance (see the left part of the equation). What is important is

the initial object cube speed irrespectively of its mass. Let’s take an example with a cube sliding

on a horizontal surface where the participant performs a block of trials on an aluminum sur-

face, and then another block on a balsa wood surface. If the subjective μ value of each surface

has been correctly tuned at the end of each block, then if the participant is given a cube of dif-

ferent mass (a preliminary psychophysical experiment may be needed to estimate the partici-

pant’s differential threshold for object mass), we expect that he/she will send the new cube to

the target distance accurately, imparting the appropriate cube KE to reach the same initial

cube speed as before for each surface material. By contrast, if the first half of the target distance

was occluded in the initial two blocks, so the initial cube speed was never available visually, we

expect substantial spatial error after the change in cube mass.

d ¼
1

2
�

v2
0

g sin að Þ þ m cos að Þ½ �
¼

1

2
�

v2
0
�mass

g sin að Þ þ m cos að Þ½ � �massð Þ
¼

KE
resistive forceð Þ

ð10Þ

Finally, neurophysiological variables, already used to establish the internal model of gravity,

such as EMG on upper limb muscles [1], could also be applied to determine how the internal

model of friction modulates movement parameterization by modeling time-varying muscular

synergies [52].
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