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Abstract

Background: The accurate identification of protein complexes is important for the understanding of cellular
organization. Up to now, computational methods for protein complex detection are mostly focus on mining clusters
from protein-protein interaction (PPI) networks. However, PPI data collected by high-throughput experimental
techniques are known to be quite noisy. It is hard to achieve reliable prediction results by simply applying
computational methods on PPI data. Behind protein interactions, there are protein domains that interact with each
other. Therefore, based on domain-protein associations, the joint analysis of PPIs and domain-domain interactions
(DDI) has the potential to obtain better performance in protein complex detection. As traditional computational
methods are designed to detect protein complexes from a single PPI network, it is necessary to design a new
algorithm that could effectively utilize the information inherent in multiple heterogeneous networks.

Results: In this paper, we introduce a novel multi-network clustering algorithm to detect protein complexes from
multiple heterogeneous networks. Unlike existing protein complex identification algorithms that focus on the analysis
of a single PPI network, our model can jointly exploit the information inherent in PPI and DDI data to achieve more
reliable prediction results. Extensive experiment results on real-world data sets demonstrate that our method can
predict protein complexes more accurately than other state-of-the-art protein complex identification algorithms.

Conclusions: In this work, we demonstrate that the joint analysis of PPI network and DDI network can help to
improve the accuracy of protein complex detection.
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Background
Proteins seldom act alone, they tend to interact with each
other and form protein complexes to perform their func-
tions [1, 2]. The identification of protein complexes is
essential for the understanding of cellular organization
and function [3–5]. Although some biological experiment
methods, such as TandemAffinity Purification (TAP) with
mass spectrometry [6, 7] and Protein-fragment Comple-
mentation Assay (PCA) [8], have been developed to detect
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protein complexes, these methods have some inevitable
limitations such as low-throughput outcome [3, 9]. Due to
these limitations, the number of known protein complexes
is still limited. Therefore, computational detection of pro-
tein complexes, which can be acted as useful complements
to the experiment methods, is quite necessary [10–15].
In recent years, high-throughput experimental tech-

niques have been developed to identify protein-protein
interactions (PPI). The accumulation of PPI data facil-
itates the development of computational approaches
for protein complex identification [9, 16]. A PPI net-
work is usually modelled as an undirected graph, where
nodes represent proteins and edges represent protein-
protein interactions. Since proteins within same protein
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complexes tend to interact with each other, dense regions
in PPI networks may be potential protein complexes.
Based on this assumption, various graph clustering algo-
rithms have been developed to identify protein complexes
from PPI networks, such as MCODE [17], CFinder [18],
MCL [19], RNSC [20], COACH [21], ClusterONE [22].
However, PPI data collected by high-throughput method-
ologies are known to be quite noisy. It is hard to achieve
reliable prediction results by simply apply graph clustering
algorithms on PPI data.
Protein domains are structural (or functional) subunits

that make up proteins [23]. The interaction between
two proteins typically involves the physical interaction
between specific protein domains [24]. Understanding
protein interactions at the domain level can give us a
global view of protein functions and the PPI network
[25–27]. In recent years, several databases, such as the
Protein families (Pfam) [28], have compiled comprehen-
sive information about protein domains. The availabil-
ity of protein domain information makes it possible for
us to utilize domain-protein associations and domain-
domain interactions (DDI) to evaluate the propensities
of proteins pairs to interact. Therefore, the joint anal-
ysis of PPIs, domain-protein associations and DDIs has
the potential to improve the accuracy of protein com-
plex detection [29]. However, existing protein complex
identification methods are primary designed for detecting
protein complexes from a single PPI network. Although
some multi-view graph clustering algorithms have been
developed for clustering multiple networks, most of the
existing methods are based on the assumption that infor-
mation collected from different data sources consist of
the same set of instances, which means different net-
works denote different representations of a same set of
instances [30–33]. Given that most proteins are multi-
domain proteins, we need to design an algorithm that
can generalized multi-view graph clustering to allow
many-to-many relationships between the nodes in dif-
ferent networks, and jointly analyze multiple networks
consist of different sets of instances and have different
sizes [34, 35].
To address the above challenges, in this study, we intro-

duce a novel multi-network clustering (MNC) model to
exploit the shared clustering structure in PPI and DDI
networks to improve the accuracy of protein complex
detection. The overall framework of our algorithm is
shown in Fig. 1. Unlike previous multi-view clustering
algorithms that assume all views consist of the same set
of instances, our method is a flexible approach that allows
different networks to have different instances and differ-
ent sizes. In particular, we consider the case when the
networks are collected from different but related fields
(i.e., PPI network and DDI network), and the cross-field
instance relationship is many-to-many (i.e., a protein may

contain multiple domains). Given a PPI network and
a DDI network, we first introduce a generative model
to describe the generation processes of these two net-
works. Secondly, based on the domain-protein associa-
tions, the generation processes of PPI and DDI networks
are assumed to be dominated by a shared clustering struc-
ture, which describes the degree of proteins belonging to
complexes. Finally, the protein complex detection prob-
lem is transformed into a parameter estimation problem.
We have conducted comprehensive experiments to evalu-
ate the performance of various protein complex detection
algorithms. The experiment results demonstrate that by
incorporating domain interactions and domain-protein
associations, our multi-network clustering algorithm
could generate more reliable prediction results than other
state-of-the-art protein complex detection algorithms.

Methods
In this section, we describe our multi-network clustering
(MNC) model as shown in Fig. 1 in details.

Model formulation
Given a PPI network G1 with N1 proteins and a DDI
network G2 with N2 domains, two nonnegative score
matrices A(1) ∈ R

N1×N1+ and A(2) ∈ R
N2×N2+ are used

to represent the affinity/adjacency matrix of G1 and G2
respectively. Note that G1 represents a PPI network and
G2 represents a DDI network, the two adjacency matrices
A(1) and A(2) may have different dimensions, i.e.N1 �= N2,
and the relationships between nodes in G1 and nodes in
G2 may be many-to-many. The domain-protein associ-
ations can be described by a N2 × N1 matrix F, where
Fxi = 1 if protein i in G1 contains domain x in G2, and
Fxi = 0 otherwise. Our goal is to jointly exploit the clus-
tering structures in PPI network G1 and DDI network G2,
and infer H(m)

ik which describes the weight of node i in the
predicted k-th cluster ofm-th network from each network
A(m) (a higher value ofH(m)

ik represents that node i is more
likely to belong to cluster k, and vice versa).
Suppose there are Km clusters in network Gm. Accord-

ing to the definition of A(m) and H(m), W (m)
ij =

1 − exp
(
− ∑Km

k=1H
(m)

ik H(m)

jk

)
represents the underlying

co-cluster affinity between nodes i and j and each element
A(m)
ij of A(m) represents the observed interaction between

nodes i and j, where A(m)
ij = 1 if there is an edge between

nodes i and j and A(m)
ij = 0 otherwise. Thus, based on

the assumption that if two nodes are connected in a net-
work, they are more likely to belong to same clusters,
we could infer the underlying clusters H(m) based on the
observed dataA(m). In particular, givenH(m), we can write
down the following probability of generating a particular
network A(m):
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Fig. 1 Schematic overview of the algorithm. The flowchart of our multi-network clustering procedure for detecting protein complexes
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In this study, we focus on exploiting the underlying
common clustering patterns of different heterogeneous

networks. As an interaction between two proteins typ-
ically involves physically interacting between specific
protein domains, there may be some matching relation-
ships between the clusters in PPI networks and the
clusters DDI networks. Therefore, in this study, based
on the domain-protein association matrix F, H(2) is
defined as FH(1), where H(2)

xk = ∑N1
i=1 FxiH

(1)
ik . With

this definition, the predicted memberships of a domain
are consistent with the predicted memberships of the
proteins that contain this domain. To describe the
relationship between H(1) and H(2), we introduce a non-
negative matrix H ∈ R

N1×K
+ and set H(1) = H and

H(2) = FH(1) = FH .
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Similar to [36], nonnegative priors for H are chosen to
make sure that all elements of H are nonnegative. Specif-
ically, independent Half-Normal priors with zero mean
and variance λ =[ λk] are assigned on each column of H :

P(Hik|λk) = HN (Hik|λk), for i = 1, . . . ,N1,
k = 1, . . . ,K .

(2)

where for u ≥ 0, HN (u|σ) = ( 2
πσ

)1/2 exp
(
− u2

2σ

)
, and

HN (u|σ) = 0 when u < 0. We can find from Eq. (2)
that all elements of the k-th column of H are associated
with a same variance parameter λk which controls the rel-
evance of the corresponding cluster in accounting for the
observed interactions. When the value of λk is small, all
elements of the k-th column of H are close to zero, which
means the k-th column of H is not relevant and can be
removed from the factorization. Through this filter, we
could obtain a more parsimonious model which indicates
the optimal number of clusters.
Finally, an inverse-Gamma prior, which is a conjugate

prior for the Half-Normal distribution, is assigned to each
relevance weight λk :

P(λk ; a, b) = ba

�(a)
λ

−(a+1)
k exp

(
− b

λk

)
. (3)

where a > 0 and b > 0 are the shape and scale param-
eters respectively. In this study, the values of a and b are
fixed for all λk . Based on the independence assumption of
H and λ, we consider the following generation process of
networks G1 and G2:

P
(
A(1),A(2),H , λ|F

)
= P

(
A(1)|H

)
P(A(2)|F ,H)

P(H|λ)P(λ).
(4)

where P(A(1)|H) and P(A(2)|F ,H) are defined in Eq. (1)
and

P(H|λ) =
∏
i,k

(
2

πλk

)1/2
exp

(
−H2

ik
2λk

)
, (5)

P(λ) =
K∏

k=1
P(λk ; a, b) =

K∏
k=1

ba
�(a)λ

−(a+1)
k exp

(
− b

λk

)
.

(6)

With the observed networks A(1) and A(2), the values of
the model parameters H and λ can be estimated by max-
imizing the joint probability (4). By substituting Eqs. (1),
(5) and (6) into Eq. (4), and taking the negative loga-
rithm and dropping constants, the objective function of
our proposed multi-network clustering (MNC) model is
formulated as follows:

min
H ,λ

− logP
(
A(1),A(2),H , λ|F)

= − logP
(
A(1)|H) − logP

(
A(2)|F ,H) − logP(H|λ)

− logP(λ)

= − ∑N1
i,j=1 A

(1)
ij log

[
1 − exp
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)]

+ ∑N1
i,j=1
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xy

]
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) (
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xy
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1
2λk (Hik)

2 + N1
2

∑K
k=1 log λk

+ ∑K
k=1

b
λk

+ (a + 1)
∑K

k=1 log λk ,

s.t. H ≥ 0,
(7)

where H ≥ 0 means each element Hik ≥ 0.

Parameter estimation
An alternating optimization scheme is adopted to solve
the objective function in Eq. (7). Specifically, we opti-
mize the objective function in Eq. (7) with respect to one
variable while fixing others. According to the multiplica-
tive update rule [37, 38], we can obtain the following two
updating rules for Hik and λk :

λk ← 2b + ∑N1
i=1H

2
ik

N1 + 2a + 2
. (8)

and

Hik ← Hik
2

+ Hik
2

N1∑
j=1

A(1)
ij Hjk

1−exp(−HHT )ij
+

N2∑
x,y=1

A(2)
xy Fxi

N1∑
j=1

HjkFyj

1−exp(−FHHTFT )xy

N1∑
j=1

Hjk +
N2∑

x,y=1
Fxi

N1∑
j=1

HjkFyj + 1
2λk Hik

,

(9)

Once H is initialized, we update λ and H according
to Eqs. (8) and (9) alternately until a stopping criterion
has been satisfied. Note that the objective function is not
jointly convex with respect to all variables. Thus, the final
estimators of H and λ depend on the initial value of H.
Proper initialization is therefore needed to achieve satis-
factory performance. In this study, a heuristic method is
utilized to initialize H. That is, we utilize the clustering
result of a chosen algorithm (i.e., MCL) on PPI network
G1 to generate the initial value of H. We first utilize the
chosen algorithm to detect K̂ clusters from network G1,
which involve N̂ nodes, then we set each of the remaining
N1−N̂ unclustered nodes to be a singleton cluster. Finally,
this initialization clustering result is converted into an
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N1 × (K̂ +N1 − N̂) binary indicator matrixHinitial, where:

Hinitial
ik =

{
1, if node i is assigned to cluster k,
0, otherwise. (10)

Similar to [39], a small positive perturbation is added to
all entries of Hinitial and the resulting perturbed matrix is
used to feed our optimization algorithm. In practice, we
stop the iteration process when the relative change of the
objective function (7) is less than 10−3.

Protein complex detection
After obtaining the final estimator Ĥ , as all elements of Ĥ
are nonnegative real values, we need to transform Ĥ into
a final protein-complex assignment matrix H�. Similar to
[40, 41], we transform Ĥ into H� by taking a threshold τ .
In particular, we assign protein i to complex k if Ĥik
exceeds τ . That is, we set H�

ik = 1 if Hik ≥ τ and set
H�
ik = 0 if Hik < τ . Here, H�

ik = 1 indicates that pro-
tein i is assigned to predicted complex k. In practice, we
have found that τ = 0.3 always leads to reasonable results
[41, 42], so we set τ = 0.3 in this study. The proce-
dure of our multi-network clustering (MNC) algorithm is
summarized in Algorithm 1.

Results
Experimental Datasets
In this study, we employ two heterogeneous networks
for yeast, i.e., a PPI network and a DDI network, to
evaluate the performance of various protein complex
detection algorithms. The PPI data is downloaded from

Algorithm 1 Pseudocode for identifying protein com-
plexes using multi-network clustering algorithm

• Input:
adjacency matrices A(1) and A(2), domain-protein
association matrix F, parameters a, b.

• Output:
H�. // The final protein-complex assignment matrix.

1: begin:
2: Initialize matrix H via initial matrix Hinitial;
3: while (Stop Condition);
4: Fix the value of H, and update the value of λ

according to updating rule (8);
6: Fix the value of λ, and update the value of H

according to updating rule (9);
7: Update the value of objective function (7) with new

values of H and λ.
8: end while
9: Transform the estimator of H into a final

protein-complex assignment matrix H�.
10: Output: H�, the final protein-complex assignment

matrix.

the DIP database [43], which involves with 17,201 pro-
tein interactions among 4930 proteins. The DDI data
and domain-protein association data are downloaded
from the following three databases, namely 3DID [44],
iPfam [45] and DOMINE [23], which involves with 4781
domain interactions among 1256 domains and 2613
domain-protein associations between 1256 domains and
1948 proteins. We employ 3 benchmark complex sets,
namely CYC2008 [46], MIPS [47] and SGD [48], as gold-
standards. For each benchmark complex set, proteins that
are not involved in the PPI data are filtered out. Fur-
thermore, as suggested by Nepusz et al. [22], only com-
plexes with at least three proteins are considered. As a
consequence, CYC2008 contains 226 complexes cover-
ing 1190 proteins, MIPS contains 200 complexes covering
1059 proteins and SGD contains 230 complexes covering
1103 proteins. We also utilize the Gene Ontology (GO)
functional annotations of yeast to evaluate the functional
homogeneity of our predicted novel complexes. The GO
file contains three types of annotations, i.e., molecular
function, biological process and cellular component [49].

Evaluation metrics
In this study, we use two independent evaluation met-
rics to assess the performance of various protein complex
identification algorithms. The first evaluation metric is
the geometric accuracy (Acc) as introduced by Xie et al.
[50], which is the geometric mean of sensitivity (Sn) and
positive predictive value (PPV). Given a known complex bi
and a predicted complex qj, let Ti,j denote the number of
proteins shared by bi and qj. Sn, PPV and Acc are defined
as follows:

Sn =
∑

imaxj Ti,j∑
i |bi|

,PPV =
∑

j maxi Ti,j∑
j | ∪i (bi ∩ qj)| ,

Acc = √
Sn × PPV (11)

where | · | counts the elements within a given set. The
second evaluation metric is the fraction of matched com-
plexes (FRAC) [22], which calculates the percentage of
benchmark complexes that are identified. Given bi and qj,
their overlapping score (OS) is defined as follows:

OS(bi, qj) = |bi ∩ qj|2
|bi||qj| . (12)

We consider bi and qj to be matching if OS(bi, qj) ≥ ω.
Similar to other researches [41, 42], we set the value of ω

to be 0.25. The definition of FRAC is shown in Eq. (13),
where B is the set of benchmark complexes and Q is the
set of predicted complexes.

FRAC = |{bi|bi ∈ B ∧ ∃qj ∈ Q, qj matches bi}|
|B| . (13)

Besides Acc and FRAC, other quality metrics, such as
Precision, Recall and F-measure, are also widely used to
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evaluate the performance of a clustering algorithm. Let
TP (true positive) denote the number of predicted com-
plexes that are matched by the benchmark complexes,
and FN (false negative) denote the number of benchmark
complexes that are not matched by any of the predicted
complexes, and FP (false positive) denote the number
of predicted complexes minus TP. Precision, Recall and
F-measure are defined as follows:

Recall = TP
TP + FN

,Precision = TP
TP + FP

,

F − measure = 2 × Precision × Recall
Precision + Recall

. (14)

Note that the reference data sets are far from complete.
In particular, the PPI data used in our study covers 4930
proteins, whereas the three benchmark complex sets,
namely, CYC2008, MIPS and SGD, only cover 1190, 1059
and 1103 proteins respectively. Thus, predicted protein
complexes that do not match with any known complexes
are not necessarily undesired results. On the contrary,
they may be potential protein complexes [22]. As opti-
mizing Precision and F-measure will somehow prevent
us from detecting novel complexes, we do not use these
evaluation metrics in this study.
As the reference data sets are incomplete, following the

method of Nepusz et al. [22], we also evaluate the func-
tional homogeneity of our predicted complexes. We use
the hypergeometric distribution to calculate the P-value
of biological relevance for a predicted complex and a given
functional term. Suppose the background set covers N
proteins. Given a predicted complex which includes C
proteins and a functional group which contains S pro-
teins. Suppose that z proteins in the functional group are
included in the predicted complex, then P-value focus on
calculating the probability of observing z or more proteins
in the functional group that are included the predicted
complex by chance:

P − value = 1 −
z−1∑
l=1

(
S
l

) (
N − S
C − l

)

(
N
C

) (15)

Parameter settings
Our model has two parameters a and b that need to be
predefined. The effect of parameter a is implied in the
updating rule (8). As shown in Eq. (8), the influence of a
can be moderated by the number of proteins N1. There-
fore, following [42], we fix the value of a to be 2 and vary
the value of b to evaluate the effect of this parameter.
Although the reference data sets are far from complete, we
can still use some of the known complexes to do parame-
ter selection. In this study, the MIPS benchmark complex
set is used to test the effect of parameters. Since most

of the existing protein complex identification algorithms
need to do parameter selection, we also utilize MIPS
benchmark complex set to select the optimal parameters
for these algorithms.
In particular, we vary the value of b (b ∈ {N1 ×

2−6,N1 × 2−5, . . . ,N1 × 2−1}), and assess how well the
predicted complexes match with MIPS benchmark com-
plex set. We use the geometric mean of Acc and FRAC
the measure the performance of our method. We can
find from Fig. 2 that as the value of b increases, the geo-
metric mean scores increase initially and decrease after
reaching the maximum. Overall, with respect to MIPS
benchmark complex set, b = N1 × 2−2 would be the opti-
mal setting for b. In the following experiments, we keep
a = 2 and b = N1 × 2−2 as the default values of our
method.

Comparisons with state-of-the-art protein complex
detection algorithms
To demonstrate the effectiveness of our model in detect-
ing protein complexes, we compare our MNC with
seven existing state-of-the-art protein complex identifi-
cation algorithms, including CFinder [18], ClusterONE
[22], CMC [51], MCL [19], RNSC [20], RRW [52] and
SPICi [53]. As traditional protein complex identifica-
tion algorithms are designed for mining clusters in a
single PPI network, we apply the above algorithms on
PPI network and apply our method on PPI and DDI
networks. For a fair comparison, following the strategy
used in [22, 33], for each compared algorithm, optimal
parameters with respect to the MIPS benchmark com-
plex set are set to generate its best results. Note that
in this study, we initialize the model parameter H of
MNC based on the clustering result of MCL on PPI

Fig. 2 The effect of b. Performance of MNC on protein complex
identification with different values of bmeasured by geometric mean
of Acc and FRAC with respect to MIPS benchmark complex set. The
x-axis denotes the value of log b

N1
and the y-axis denotes the

geometric mean of Acc and FRAC
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network. Moreover, for all the compared algorithm, the
predicted complexes with less than three proteins are
discarded.
The performances of different protein complex identi-

fication algorithms are shown in Fig. 3. We can find that
our MNC achieves better performance than other seven
compared algorithms in terms of all evaluation metrics,
with respect to CYC2008 and SGD. For example, with
respect to CYC2008, MNC achieves Acc 0.697 and FRAC
0.726, which is 2.2% and 23% higher than the second best
Acc and FRAC achieved by CMC. As shown in Fig. 3, the
obvious performance difference between MNC and MCL
(which is used to generate the initial value for the model
parameter of MNC) indicates that the performance supe-
riority of MNC is owing to the nature of our proposed
model but not to the initialization conditions. In Table 1,
we present the results of our model with random initial
conditions (initialize matrix H randomly with K = 1500).
As shown in Table 1, there is no significant performance
difference between MNC and MNCrand , which means
that the performance of MNC does not heavily rely on
the initialization of H. However, when using the cluster-
ing results of MCL to initialize H, the complexes pre-
dicted by MNC can cover more proteins, which means
MNC is able to predict many novel complexes. More-
over, with random initialization, we usually need to repeat

Fig. 3 Comparison with existing protein complex identification
algorithms. Performance of existing algorithms and our method in
terms of (a) Acc and (b) FRAC, with respect to CYC2008 and SGD

Table 1 Performance of MNC with different initialize method

Methods # complexes # proteins

Reference sets

CYC2008 SGD

Evaluation metrics

Acc FRAC Acc FRAC

MNC 1048 3038 0.697 0.726 0.651 0.648

MNCrand 597 1952 0.695 0.685 0.652 0.609

Here “# complexes”denotes the number of complexes predicted by each algorithm,
and “# proteins”denotes the number of proteins covered by the complexes
predicted by each algorithm. MNCrand corresponds to the results of MNC with
random initial conditions

the entire calculation multiple times to mitigate the risk
of local minimization. Therefore, we suggest devising
an effective initialization method rather than initializing
H randomly.
In addition, for each algorithm, we also calculate the

number of known complexes in CYC2008 and SGD
reference sets that are recognized by various algo-
rithms under varying OS threshold ω, and show the
corresponding results in Fig. 4. The number of matched
known protein complexes of our MNC algorithm is
dramatically higher than that of the other algorithms
when ω ranges from 0.1 to 0.6. In particular, with

Fig. 4 Performance of existing algorithms and MNC in protein
complex detection. Amounts of known protein complexes in
reference sets (a) CYC2008 and (b) SGD that are recognized by
various algorithms under varying OS threshold ω
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respect to SGD reference set, when ω = 0.2, MNC
obtains 159 matched known protein complexes, which is
127%, 18.7%, 51.4%, 40.7%, 33.6%, 50% and 34.7% greater
than that achieved by Cfinder, CMC, ClusterONE, MCL,
RNSC, RRW and SPICi, respectively. Overall, MNC can
predicted more true complexes than other seven classic
algorithms.

Function enrichment analysis
Since the reference complexes sets are incomplete, to
further validate the effectiveness of our model, we inves-
tigate the biological significance of our predicted protein
complexes. Each predicted complex is associated with a P-
value (as formulated in Eq. (15)) for Gene Ontology (GO)
annotation. Note that for each predicted complex, we use
the smallest P-value over all possible functional groups
(i.e., the total GO functions of all the three subontolo-
gies, including Biological Process, Cellular Component
and Molecular Function are used) to measure its func-
tional homogeneity. The lower the P-value is, the stronger
biological significance the predicted complex possesses.
In this study, we consider a predicted complex to be bio-
logically significant if its P-value is less than 1e-2. The
web service of GO Term Finder (http://go.princeton.edu/
cgi-bin/GOTermFinder) is used to calculate the P-value
with Bonferroni correction for each predicted complex.
The number and percentage of the predicted complexes
whose P-value falls within [0, 1E-15], [1E-15, 1E-10],
[1E-10, 1E-5], [1E-5, 1E-2], [1E-2, 1] are listed in Table 2.
We also list the results of CMC since it can achieve
the second best performance among all the compared
methods. We can find from Table 2 that more than 70%
of our predicted complexes are biologically significant,
which indicates the effectiveness of our model in detect-
ing functional significant clusters. The results shown in
Table 2 also demonstrate that compared to CMC, our
MNC can predict more complexes that have P-value less
than 1E-15, 1E-10, 1E-5 or 1E-2. Table 3 provides 10
protein complexes predicted by MNC that have strong
biological significance. The fifth column in Table 3 refers
to the number and percentage of proteins in the pre-
dicted complex that annotated with the main annotation
of GO terms out of the total number of proteins in that
complex.

Table 2 The number and percentage of the complexes predicted
by MNC and CMC that have P-value falls within different intervals

Methods
P-value

< 1E(-15) 1E(-15) to
1E(-10)

1E(-10) to
1E(-5)

1E(-5) to
1E(-2)

1E(-2) to 1

MNC 50 (4.8%) 56 (5.3%) 199 (19%) 476 (45.4%) 267 (25.5%)

CMC 30 (7.3%) 26 (6.3%) 79 (19.2%) 173 (42%) 104 (25.2%)

A case study: the GINS complex
In order to illustrate the benefits of integrating multiple
heterogeneous networks, we introduce an example of
protein complex that can be more accurately identified
by MNC. GINS complex in CYC2008 involves 4 proteins,
namely, YDR489W, YDR013W, YJL072C and YOL146W.
Figure 5 shows how this complex is discovered by the
clustering algorithms we have studied. Proteins (or pro-
tein domains) that have interactions are connected by
solid lines, while the associations between proteins and
protein domains are represented by dash lines. Shaded
areas represent the clusters detected by various algo-
rithms. Among all the compared algorithms, MNC is the
only algorithm that can correctly cover all the proteins
in this complex. We can find from Fig. 5 that there are
only two interactions among the four protein subunits
of GINS complex. Thus, for computational methods
that are designed to detect protein complexes from PPI
data, it is hard to identify this complex accurately. For
instance, MCL can only detect three protein subunits of
GINS complex (i.e., YDR489W, YDR013W and YJL072C)
and misclassify four proteins into this complex. SPICi is
only able to detect one protein subunit of GINS complex,
i.e., YDR489W. Since none of the clusters predicted by
CFinder, CMC, ClusterONE, RNSC and RRW matched
with this complex, their results are not shown here. As
shown in Fig. 5, three protein domains, which form a
3-clique in the DDI network, are associated with the
protein subunits of GINS complex (i.e., PF06425 is
associated with YOL146W, PF04128 is associated with
YJL072C and PF03651 is associated with YDR013W).
By taking into account domain-protein associations and
domain-domain interactions, MNC can accurately
identify GINS complex.

Discussions and conclusions
The joint analysis of multiple heterogeneous network
data has the potential to increase the accuracy of pro-
tein complex detection. In this study, a novel multi-
network clustering (MNC) model is developed to
integrate multiple heterogeneous networks for protein
complex detection. Our MNC model could make use
of the cross-field relationships between proteins and
protein domains to guide the search of protein com-
plexes. Experiment comparisons on two real-world data
sets show that our MNC outperforms other state-of-
the-art protein complex detection methods in terms of
two evaluation metrics with respect to three bench-
mark complex sets. These results show the effect of
domain-domain interactions on protein complex iden-
tification, which suggests that the domain informa-
tion should be used if it is available. Our model is a
flexible framework, which can also be used to solve
some multi-view learning problems. Regarding the future

http://go.princeton.edu/cgi-bin/GOTermFinder
http://go.princeton.edu/cgi-bin/GOTermFinder
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Table 3 Ten predicted protein complexes with smallest P-values

Index P-value Predicted protein complexes Gene ontology term Cluster frequency

2 1.21e-31 YCR035C, YDL111C, YDR280W, YGR095C polyadenylation-dependent 12 out of 14

YHR069C, YHR081W, YNL189W, YNL232W snoRNA 3’-end processing genes, 85.7%

YOR001W, YOR076C, YGR158C, YGR195W

YOL021C, YOL142W

5 8.98e-31 YAL043C, YDR195W, YDR228C, YDR301W mRNA polyadenylation 13 out of 17

YJL033W, YJR093C, YKL018W, YKL059C genes, 76.5%

YLR277C, YMR061W, YNL317W, YOR179C

YKR002W, YLR115W, YER133W, YGR156W

YPR107C

7 5.85e-32 YBR146W, YBR251W, YDR036C, YDR041W organellar small ribosomal 14 out of 15

YGL129C, YGR084C, YHL004W, YIL093C subunit genes, 93.3%

YNL137C, YNL306W, YPL118W, YDR347W

YJR113C, YKL155C, YDR337W

10 3.70-43 YBR217W, YBR272C, YDL007W, YDL097C proteasome complex 20 out of 21

YDR427W, YEL037C, YER012W, YER021W genes, 95.2%

YFR052W, YGL004C, YGL048C, YHL030W

YOR259C, YOR261C, YPR108W, YHR200W

YFR004W, YFR010W, YDL147W, YDR394W

YKL145W

13 1.65e-35 YBR119W, YDL087C, YDR235W, YDR240C U1 snRNP 14 out of 16

YHR086W, YIL061C, YKL012W, YLR147C genes, 87.5%

YML046W, YMR125W, YPL178W, YPR182W

YLR275W, YLR298C, YFL017W-A, YGR013W

18 4.7e-29 YBR254C, YDR108W, YDR246W, YDR407C TRAPP complex 10 out of 11

YGR166W, YJL044C, YKR068C, YML077W genes, 90.9%

YMR218C, YOR115C, YDR472W

27 7.34e-36 YBR055C, YBR152W, YDL098C, YDR473C U4/U6 x U5 tri-snRNP 15 out of 15

YJR022W, YKL173W, YLR147C, YLR275W complex genes, 100%

YPR082C, YPR178W, YPR182W, YFL017W-A

YGR091W, YOR159C, YOR308C

35 2.05e-30 YBL084C, YDL008W, YDR118W, YFR036W anaphase-promoting 11 out of 11

YHR166C, YKL022C, YLR102C, YLR127C complex genes, 100%

YNL172W, YOR249C, YGL240W

46 9.34e-32 YBL093C, YBR193C, YBR253W, YCR081W transcription factor activity, 16 out of 17

YDR443C, YER022W, YGL025C, YGR104C RNA polymerase II genes, 94.1%

YNL236W, YNR010W, YOL051W, YOL135C transcription factor

YHR041C, YHR058C, YDL005C, YDR308C binding

YOR174W

399 2.77e-28 YBR127C, YDL185W, YEL051W, YGR020C proton-transporting ATPase 11 out of 11

YKL080W, YLR447C, YMR054W, YOR270C activity, rotational mechanism genes, 100%

YOR332W, YPR036W, YHR039C-A
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Fig. 5 The GINS complex as detected by different computational methods. The shadow area shows the complex predicted by each method
(a) MNC, (b) MCL and (c) SPICi. Red rectangle nodes represent subunits of the GINS complex in CYC2008, blue circle nodes represent proteins with
other functions and green diamond nodes represent protein domains. The solid lines between nodes represent the interactions between proteins
(or protein domains). The dash lines between nodes represent the interactions between proteins and protein domains

works, we would like to design an algorithm which can
incorporate more types of data, including homogeneous
and heterogeneous network data for protein complex
detection.
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