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INTRODUCTION

Determining effective countermeasures to the physical issues of microgravity, radiation, and
isolation (i.e., decreased aerobic capacity and cardiovascular dysfunction, along with muscle
atrophy, bone and muscle loss, and hypocapnia) is crucial for human space flights (Demontis et al.,
2017). Since the initial Apollo Program (1961–1972), there is still a great challenge in determining
and replicating the most efficient exercise countermeasures mainly due to restricted time, habitable
volume, and maintenance of the life support systems (Scott et al., 2019). Additionally, risks
of pressure loss in the space habitat and thus compression sickness together with a hypoxic
environment must be considered and should be combated through acclimatization and sufficient
training/preparation (Lewis, 2018; Millet, in press). When considering time restrictions for
spaceflight preparation, in-flight exercise time, and access for exercise, combining exercise methods
for rapid adaptation appears paramount.

The hypoxic stimulus is an important consideration for spaceflight (Bodkin et al., 2006) and
requires an effective pre-acclimatization. A balance is needed between the barometric conditions
of the habitat and the safety threshold of oxygen concentrations due to flammability. In this
context, it is applicable to incorporate hypoxic training methods for acclimation with preference of
hypobaric hypoxia (decreased barometric pressure and oxygen fraction) over normobaric hypoxia
due to the risks associated with excessive oxygen in the atmosphere of the space habitat (Millet,
in press). It has been shown that passive hypoxic exposure leads to negligible adaptations in
skeletal muscle tissue (Lundby et al., 2009), while the combination of prolonged passive exposure to
hypoxia with exercise, specifically high-intensity exercise (Live High-Train Low andHigh, LHTLH)
induces beneficial transcriptional responses, which are not present with passive exposure only (i.e.,
traditional “Live High-Train Low” training method) (Brocherie et al., 2018). Among the specific
responses associated to LHTLH, there are increased mRNA levels in the vastus lateralis involved
in oxygen signaling, oxygen carrier, mitochondrial biogenesis, and metabolism (Brocherie et al.,
2018), as well as positive functional adaptations as shown by the improved oxidative capacity in
type I and type II fibers, while maintaining fiber size (van der Zwaard et al., 2018). During acute
hypoxic exposure, the lowered oxygen delivery induces a lower aerobic performance (Lundby
et al., 2009; Slivka, 2017). Though exercise helps to protect skeletal muscle from these declines,
there is an upregulation of the VEGF and glycolytic genes (amongst hundreds of others) through
the HIF-1 oxygen-sensing pathway. Moreover, chronic exposure to hypoxia leads to improved
mitochondrial and capillary density and enhanced oxidative capacity (Lundby et al., 2009; Slivka,
2017). Altogether, the combinations of passive hypoxic exposure as experienced during space flights
and high-intensity exercise in hypoxia appear as adequate strategies for improving peak power
production and maximal oxygen consumption.
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HIGH-INTENSITY EXERCISE WITH

SYSTEMIC HYPOXIA

The effect of combining high-intensity exercise with systemic
hypoxia elicits greater muscle perfusion and oxygenation
(Brocherie et al., 2017) along with enhanced muscle
transcriptional responses of the vastus lateralis when compared
to normoxia (Faiss et al., 2013; Brocherie et al., 2018). Specifically,
these researchers identified molecular adaptations which
improve oxygen signaling (HIF-1α), oxygen carrying (Mb),
and pH regulation (CA3) via upregulation of genes, along with
downregulation of genes involved in mitochondrial biogenesis
(TFAM and PGC-1α). These alterations suggest improved
anaerobic glycolytic activity of the muscle (Faiss et al., 2013)
and improved fast-twitch fiber recruitment in the vastus
lateralis after repeated sprint training in hypoxia (McDonough
et al., 2005), particularly by compensatory vasodilation and
increased rate of phosphocreatine resynthesis (Hoppeler and
Vogt, 2001; Zoll et al., 2006) which are linked to performance
enhancement. It is important to consider that not all muscles
react in similar ways regarding growth, atrophy, and their
response to hypoxic conditions, as they are highly influenced
by changes in perfusion pressure (Fitzpatrick et al., 1996). As
such, any decrease in perfusion pressure across a physiological
range to the contracting muscles results in an increase in muscle
activation to maintain a constant force output (Fitzpatrick et al.,
1996). Furthermore, vascular adaptations occur after maximal
intensity training in hypoxia through increased changes in blood
perfusion (via changes in total hemoglobin) and contribute
to the delay of fatigue in both the lower (Faiss et al., 2013)
and upper body (Faiss et al., 2014) (vastus lateralis and triceps
brachii, respectively). During high-intensity exercise in hypoxia,
there are great stresses placed on oxygen transport and the
vascular system. Due to the reduced oxygen availability in the
environment, vasodilation occurs to increase blood flow to the
muscle tissue and maintain oxygen delivery. Additionally, the
increased changes in blood perfusion due to the combination of
high-intensity and hypoxic stress may be a stimulus for altering
vascular blood flow regulation due to neural, metabolic, and
mechanical influences. Of interest is that short blocks (i.e., as
little as 4–8 repeated sprint training sessions in hypoxia), led
to improved performance for elite athletes in different sports
as cycling (Faiss et al., 2013), cross-country skiing (Faiss et al.,
2014), rugby (Beard et al., 2018, 2019), and tennis (Brechbuhl
et al., 2018). To our knowledge, there is no data available on
the effects of such exercises in astronauts and other participants
during spaceflights but one may speculate that performing
high-intensity exercise training in hypoxia may be a valuable
and practical method for exercise countermeasure during
spaceflight missions.

BLOOD FLOW RESTRICTION

Other methods exist for inducing a hypoxic stimulus to muscles:
The compression of the vasculature proximal to the skeletal
muscle results in inadequate oxygen supply (hypoxia) within

the muscle tissue (Patterson et al., 2019). Rather than reducing
the oxygen in the atmospheric environment on a systemic level,
hypoxia can occur on a local level when an external pressure
is applied to the limbs to create partial restriction of blood
flow (blood flow restriction, BFR). In this manner, the vascular
occlusion (or ischemia) diminishes blood flow by vascular
resistance and venous return is substantially limited (Kaijser
et al., 1990). BFR has been shown to upregulate the mRNA
expression in the vastus lateralis of the vascular endothelial
growth factor (VEGF and VEGFR-2) along with HIF-1α and
eNOS, suggesting angiogenesis due to the increased stimuli of
ischemic and shear stress during low-load resistance exercise
(Scott et al., 2014; Taylor et al., 2016; Ferguson et al., 2018). The
AMPK pathway is responsible for regulating energy metabolism
where kinases are activated in response to stresses that deplete
ATP including those of hypoxia and ischemia. This pathway
activates catabolism while suppressing synthesis, leading to
imbalanced energy metabolism. Further, reactive oxygen species
(ROS) production is increased in these conditions due to high
levels of metabolic stress and leads to an unbalanced oxidative
status. Furthermore, the lower partial pressure of oxygen during
BFR exercise limits the amount of ROS production at least
acutely, lowering the mitochondrial H2O2 emission rates and
electron leak to ROS (Petrick et al., 2019). The knowledge of
the mechanisms and adaptations are limited during continuous
exercise training with BFR. With low-intensity exercise of
about 40% VO2max, BFR has shown to increase strength and
hypertrophy (Slysz et al., 2016; Conceicao et al., 2019), in both
walking (Abe et al., 2006) and leg-cycling exercise (Abe et al.,
2010; Conceicao et al., 2019) in as early as 3 weeks (Abe et al.,
2006) and with greatest effectiveness after ≥6 weeks of training
(Slysz et al., 2016). Furthermore, BFR training during low-
intensity walking and leg-cycling has been shown to increase
strength as well as aerobic capacity in young (Slysz et al., 2016),
old (Abe et al., 2010), and trained participants (Park et al., 2010).
Moreover, the use of BFR techniques are important to consider
as a method to counteract muscle degeneration and sarcopenia
over a range of passive, resistance training, and continuous
exercise protocols (Patterson et al., 2019). BFR provides a potent,
gravitational-like stimulus on the cardiovascular system and may
counteract the orthostatic intolerance upon return to Earth (Iida
et al., 2007; Nakajima et al., 2008). Research has demonstrated
that BFR was similar regarding physiological and hemodynamic
responses to lower body negative pressure (LBNP) eliciting
blood pooling in the lower limbs, reduced venous return, and
hemodynamic responses of decreased stroke volume, increased
cardiac output, and increased total peripheral resistance as
similar to LBNP (Stevens and Lamb, 1965; Tomaselli et al., 1987;
Lathers and Charles, 1993). Researchers suggested that the use of
bilateral thigh BFR likely partially simulates the hemodynamic,
systemic cardiovascular, autonomic nervous, and hormonal
effects of orthostasis as seen during simulated weightlessness
(Nakajima et al., 2008). Additionally suggesting that BFR training
may provide an appropriate countermeasure to combat the
associated declines in atrophy associated with weightlessness
(Nakajima et al., 2008). Further, the altered hemodynamic
and chemical/metabolic signals during BFR exercise (Ferguson
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et al., 2018) likely effect the improvement in vascular function
through remodeling of the arterial lumen, which contributes to
the cardio-protective effects of exercise (Thijssen et al., 2012).
Additionally, the magnitude and location (conduit, resistance,
capillary vessel) of the vascular adaptations depend on the
intensity, volume of exposure, and mode of training (Green
et al., 2011). Indeed, when combining BFR and/or systemic
hypoxia with high-intensity exercise, a robust stimulus is placed
on the vascular mechanisms (Willis et al., 2018, 2019a,b). These
different methods of systemic and local hypoxia along with the
differing underlying mechanisms (metabolic vasodilation and
vascular resistance, respectively) can provide a great stimulus
alone or in combination to alter vascular conductance and blood
flow regulation.

HIGH-INTENSITY EXERCISE WITH BLOOD

FLOW RESTRICTION

In general, high-intensity exercise reduces tissue oxygen
availability and therefore increases the oxygen extraction in
order to maintain oxygen delivery (Granger and Shepherd,
1973). This is further challenged when high-intensity exercise is
combined with hypoxia (Casey and Joyner, 2012). When high-
intensity exercise is performed with BFR, in addition to a strong
deoxygenation due to the localized hypoxia, there is a larger
increase in the changes in blood perfusion in both legs and arms
(vastus lateralis and biceps brachii, respectively) (Willis et al.,
2018, 2019b). High-intensity exercise with BFR is able to create
a potent stimulus via vascular resistance and altered vasodilatory
responses, and was shown to be more robust than with systemic
hypoxia in both legs and arms (Peyrard et al., 2019; Willis et al.,
2019a,b). In fact, during high-intensity exercise with a certain
level of BFR, an additional stimulus of systemic hypoxia is likely
blunted (Willis et al., 2019a). At this moment, the mechanisms
of the interaction between hypertrophic, hypoxic, and vascular
adaptations remain elusive. Though studies have not yet been
conducted in a microgravity environment, incorporating these
methods of hypoxia and BFR during high-intensity exercise
elicits responses that are likely beneficial to improve the physical
capacities, since deconditioning and muscle atrophy, are present
during spaceflight missions.

PRACTICAL APPLICATIONS TO

SPACEFLIGHT PARTICIPANTS

Incorporating high-intensity exercise training in hypoxia with
legs or arms is beneficial for improving performance and delaying
fatigue by way of adaptations to improve muscle oxygenation,

specifically of the vastus lateralis and triceps brachii (Faiss et al.,
2013, 2014). Furthermore, acutely performing high-intensity
exercise with BFR elicits greater reactivity regarding changes in
blood volume and oxygenation than with systemic hypoxia alone
in both the legs and arms (vastus lateralis and biceps brachii,
respectively) (Willis et al., 2018, 2019b), with a greater effect in
the arms (Willis et al., 2019a). Altogether, utilizing these training
methods is beneficial for increasing the efficiency of blood
and oxygen transport allowing increased vascular proficiency.
The implementation of short training blocks can be valuable
to induce a rapid and robust stimulus in a short time frame,
thus providing a time-saving strategy and effective method for
adaptations to occur. While the optimal stimulus depends on
the population of interest, suggested training recommendations
are as follows. The high-intensity exercise protocol should last
∼60min including the warm-up and cool-down periods and
be performed 2–3 times a week during blocks of training (2–5
weeks duration) as part of a periodized training program. During
each session, the athlete performs a series of 3–4 sets of 4–
7 maximal to supra-maximal “all-out” sprints (4–15s duration)
in hypoxia (3,000–3,800m and 14.2–12.8% FiO2) and/or with
BFR of about 45% of total occlusion pressure. It is important
to achieve a specific sprint-to-rest ratio of 1:2–1:4 with inter-
set recovery about 3–5min without occlusion. This training has
been successful in inducing adaptations in hypoxic conditions
as shown by many researchers (Brocherie et al., 2017). This
specific training should be performed in alteration with low-
intensity exercise tomaintain and develop basic fitness along with
aerobic metabolism.

CONCLUSION

Performing high-intensity exercise with BFR or hypoxia are
promising training methods for both legs and arms in order to
increase physical conditions prior to, during, and after returning
from spaceflight missions. This training may rapidly induce
vascular adaptations and allow for combined metabolic and
hypertrophic effects to counteract the decreased aerobic capacity
and muscle atrophy occurring with microgravity, and allow
adaptations to occur which may enhance endothelial function
and lead to improved tissue oxygenation. Altogether, high-
intensity exercise with BFR or in the hypoxic condition of the
space vehicle should be considered as a practical, efficient, time
effective, and influential countermeasure for space travelers.
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