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Objective: Earlier research has determined that amblyopia or strabismus may cause
remarkable brain anatomical and functional variations. Nonetheless, thus far, the
spontaneous changes in brain activity in children with strabismus amblyopia (SA) remain
unclear. The purpose of this study was to determine the association between abnormal
brain activity in children with SA and its behavioral manifestations.

Patients and Methods: A total of 24 children with SA (10 male and 14 female children)
as well as 24 healthy controls (HCs), including 10 male and 14 female children were
closely matched in sex and age, and examined using resting-state functional magnetic
resonance imaging (fMRI). The regional homogeneity (ReHo) technique was applied to
evaluate spontaneous cerebral activity variations in children with SA and HCs. Moreover,
associations between altered ReHo values in distinct cerebral areas and the degree of
strabismus were assessed using Pearson correlation analysis.

Results: Remarkably increased ReHo values were observed in the right lingual, right
superior frontal medial, bilateral superior parietal, and right inferior parietal gyri of
children with SA compared with HCs. In contrast, mean ReHo values in children with
SA were lower in the right cerebellum, left superior frontal gyrus, and left putamen
nucleus. Furthermore, esotropia showed a positive correlation with ReHo values of
the left putamen.

Conclusion: The anomalous spontaneous activity changes in several brain areas that
are caused by SA may indicate neuropathologic mechanisms of visual deficits and
oculomotor disorders in children with SA.
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INTRODUCTION

Strabismus and amblyopia are two common ocular diseases.
Strabismus is an ophthalmic disease owing to the disorder
of extraocular muscles, which is considered relevant to
the dysplasia of cerebral visual pathways that regulate eye
movements. Both the eyes of the strabismus patients cannot
focus on the target at the same time, and the optical axes
of both eyes are separated. In addition, amblyopia is a
visual disorder caused by ocular maldevelopment, which
can be detected by decreased visual acuity and sensitivity.
Still, there were no organic lesions in the eye examination.
Strabismus amblyopia (SA) is one form of amblyopia
caused by strabismus. During the early phase of visual
development, strabismus can cause the production of two
separate images by the eyes that do not coincide, leading to
abnormal vision, including double vision or visual confusion
(Figure 1). In such cases, nerve impulses relayed by squinting
would be suppressed by the brain. Over time, long-term
suppression would lead to the development of amblyopia
(Korah et al., 2014).

In pediatric populations, strabismus reportedly has a marked
influence on the development of amblyopia. The combined
condition, SA, leads to functional deficiency, including defective
motor, visual, and sensory cognition as well as impaired
stereoscopic depth perception (Levi et al., 2015). These
inadequacies are evidenced by imprecision or incompetence in
reading, grasping, or driving, which will affect the quality of the
patient’s daily life.

Functional magnetic resonance imaging (fMRI) is a
common method that can precisely detect brain function.
Its main advantage compared with traditional MRI is its
ability to display subtle microscopic structural differences
and satisfactory spatial resolution. When a person looks
at an object, light passes through the retina, and nerve
impulses are relayed along the visual pathway to the cerebral
cortex, which produces the corresponding cortical activity
to generate vision. This cortical activity can be observed
and recorded by fMRI. Patients with SA differ from persons
with normal vision in terms of the location, range, and
degree of activation in cortical areas, which can also be
detected by fMRI technology. Previously, fMRI techniques have
been applied to detect cerebral activity alternations in either
amblyopia or strabismus patients, separately (Lee et al., 2001;
Chen and Tarczy-Hornoch, 2011).

The regional homogeneity (ReHo) is an extensively applied
method that belongs to the resting-state fMRI (rs-fMRI), which
is deemed dependable and accurate. Previous studies have
shown that it has a high neurobiological relevance and test-
retest reliability. A decline in ReHo values represents reduced
synchrony and disordered activity. However, an increased ReHo
value suggests increased synchrony of spontaneous neuronal
activity. The ReHo technique has been successfully used in
many researches on eye disorders (Cui et al., 2014; Song
et al., 2014, 2017; Shao et al., 2015; Guo et al., 2016;
Huang et al., 2016, 2017; Tang et al., 2018; Shi et al.,
2019; Xu et al., 2019; Zhang et al., 2020; Tong et al., 2021;

Yu et al., 2021; Table 1), along with many neurogenic diseases,
like Parkinson’s disease (Dai et al., 2012) and sleep disorders
(Li et al., 2016).

Here, the ReHo technique was applied to analyze the
alternations of spontaneous cerebral activity between children
with SA and healthy controls (HCs) and to determine the
relevance between the altered ReHo values and abnormal vision.

PATIENTS AND METHODS

Patients
Twenty-four children with SA, including 10 male patients and 14
female patients, from the Ophthalmology Department of the First
Affiliated Hospital of Nanchang University, were recruited to
participate in this study. The following are the inclusion criteria:
(i) children under 12 years old; (ii) diagnosed with SA; (iii)
with a best-corrected visual acuity (VA) ≥0.20 logMAR units,
and central fixation of both eyes with greater than one line
difference; and (iv) no other eye diseases (such as optic neuritis,
cataract, or glaucoma, etc.). Patients meeting the following
criteria were excluded: (i) had eye operation record (intraocular
and extraocular were both included); (ii) had other disorders
besides eye disease (such as ischemic disease, inflammation, or
infection); (iii) had a mental disease or cerebral infarction; (iv)
was either addicted to illicit drugs or was an alcoholic.

Twenty-four HCs matched to those basic clinical
characteristics of the SA group, like sex and age were also
incorporated in this research, including 10 boys as well as
14 girls. All HCs conformed to the following standards: (i) an
absence of abnormal MRI in the brain; (ii) no ophthalmic surgery
history and best-corrected VA not greater than 0 logMAR units;
(iii) a state of sanity; (iv) no MRI examination contraindications
(like a cardiac pacemaker or implanted metal devices). Our study
has gained the approval of the Medical Ethics Committee of
the First Affiliated Hospital of Nanchang University, and the
protocol adhered to the principles of the Declaration of Helsinki.
All participants (including the child and their parents) gave
informed consent and details of the objectives of the research,
and the latent danger to patients were explained in detail.

Magnetic Resonance Imaging
Parameters
We used a 3-T magnetic resonance scanner (Trio, Siemens,
Munich, Germany) to undergo the MRI scanning. During the
entire scanning process, we asked all participants to breathe
smoothly and remain their eyes closed, but keep awake. A three-
dimensional spoiled gradient recalled echo sequence was applied
to collect the data. Relevant details about the apparatus are as
follows: 176 structural images (gap: 0.5 mm; repetition time
(TR): 1,900 ms; echo time (TE): 2.26 ms; thickness: 1.0 mm;
field of view: 250 × 250 mm; flip angle: 9◦; acquisition matrix:
256 × 256). In addition, 240 functional images (TR: 2,000 ms;
TE: 30 ms; thickness: 4.0 mm; gap: 1.2 mm; field of view:
220 × 220 mm; flip angle: 90◦; acquisition matrix: 64 × 64; 29
axial) were likewise acquired. The duration time of the whole
scanning process is 15 min.
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FIGURE 1 | Eyes of children with strabismus amblyopia (A) and healthy children (B).

TABLE 1 | ReHo method applied in ophthalmological diseases (partially).

Author Year Disease Brain areas

UDS > HCs UDS < HCs

Song et al., 2014 2014 Glaucoma RDACC, MFG, RCAL Calcarine, PG, LIPL, LCPL
Cui et al., 2014 2014 Diabetic retinopathy PLC, ACC, FL OL, PG
Shao et al., 2015 2015 Optic neuritis LFG, RIPL LCPL, LMTG, RI, RSTG, LMFG, ACC, MFG, SFG, RPG
Huang et al., 2016 2016 Comitant strabismus RITC/FG/CAL, RLG, CG
Song et al., 2017 2017 Pituitary adenoma LSOG, MOG LIFG, RMTG
Huang et al., 2017 2017 Retinal detachment ROL, RSTG, cuneus, LMFG
Tang et al., 2018 2018 Acute eye pain LSFG, RIPL, LP PG, LMFG
Shi et al., 2019 2019 Exotropia V2 BA47
Xu et al., 2019 2019 Corneal ulcer CPL, LITG, RLG, LMFG, LAG, LCG, RAG, SFG RAC, LPG
Zhang et al., 2020 2020 Diabetic vitreous hemorrhage CPL, RS/MOG, SFG RI, MFG
Tong et al., 2021 2021 Iridocyclitis RIOG, calcarine, RMTG, RPG, LSOG, LP
Guo et al., 2016 2021 Diabetic optic neuropathy RMFG, LAC, SFG/LFSO
Yu et al., 2021 2021 Dry eye MFG, IFG, SFG

HCs, healthy controls; RDACC, right dorsal anterior cingulated cortex; MFG, medial frontal gyrus; RCAL, right cerebellar anterior lobe; PG, precuneus gyrus; LIPL, left
inferior parietal lobule; LCPL, left cerebellum posterior lobe; PLC, posterior lobe of cerebellum; ACC, anterior cingulate cortex; FL, frontal lobe; OL, occipital lobe; LFG,
left fusiform gyrus; RIPL, right inferior parietal lobule; LMTG, left middle temporal gyrus; RI, right insula; RSTG, right superior temporal gyrus; LMFG, left middle frontal
gyrus; SFG, superior frontal gyrus; RPG, right precuneus gyrus; RITC/FG/CAL, right inferior temporal cortex/fusiform gyrus/cerebellum anterior lobe; RLG, right lingual
gyrus; CG, cingulate gyrus; LSOG, left superior occipital gyrus; MOG, middle occipital gyrus; LIFG, left inferior frontal gyrus; RMTG, right middle temporal gyrus; ROL,
right occipital lobe; LSFG, left superior frontal gyrus; RIPL, right inferior parietal lobule; LP, left precuneus; V2, the right secondary visual cortex; BA47, Brodmann area
47; CPL, cerebellum posterior lobe; LITG, left inferior temporal gyrus; LAG, left angular gyrus; LCG, left cingulate gyrus; RAG, right angular gyrus; RAC, right anterior
cingulate; LPG, left precentral gyrus; CPL, cerebellar posterior lobes; RS, right superior; RI, right insula; RIOG, right inferior occipital gyrus; LP, left precuneus; RMFG, right
middle frontal gyrus; LAC, left anterior cingulate; LFSO, left frontal superior orbital gyrus; IFG, inferior frontal gyrus.

Functional Magnetic Resonance Imaging
Data Processing
Firstly, the MRIcro software1 was applied to analyze the collected
data. Then, we used the Data Processing Assistant for rs-fMRI
software (DPARSF)2 and the Statistical Parametric Mapping 8
(SPM8) to preprocess the received information. We removed the
data of the first 10 time points to eliminate interference which
may be caused by an unsteady magnetic field. Furthermore, slice
timing was carried out to correct time differences.

Owing to the differences in brain volume and structure
between subjects, spatial standardization was used to process
the available images. During this process, we unified the images
according to the Montreal Neuroscience Institute standard
(MNI152_T1_3mm. nii), and the voxels were immediately re-
sampled with a resolution of 3 mm × 3 mm × 3 mm. To dislodge
the linear chemotactic effect produced while the subject adapts
to the scanning environment, the linear drift was eliminated.
Eventually, to reduce high-frequency physiological noise, such
as the heartbeat or respiration, only data between 0.01 and
0.08 Hz were collected.

1http://www.MRIcro.com
2http://rfMRI.org/

Statistical Analysis
We used the SPSS 20.0 software (IBM Corporation, Armonk, NY,
United States) to compare the ReHo values of certain brain areas
in the SA and HC groups, and used the two-sample t-test and
the Representational state transfer (REST) software to analyze
distinctions between this two groups. When the p-value < 0.05,

TABLE 2 | Participant characteristics.

Condition SA HCs t P-value*

Male/female 14/10 14/10 N/A >0.999

Age (years) 8.21 ± 2.24 8.43 ± 1.97 0.256 0.902

Weight (kg) 20.76 ± 2.54 21.17 ± 3.64 0.365 0.891

Handedness 24R 24R N/A N/A

Duration of ON (years) 8.21 ± 2.24 N/A N/A N/A

BCVA-left eye 0.15 ± 0.05 0.95 ± 0.20 –3.654 0.003

BCVA-right eye 0.20 ± 0.05 1.10 ± 0.15 –3.217 0.004

IOP-L 15.54 ± 4.67 15.47 ± 4.19 0.586 0.932

IOP-R 15.85 ± 5.43 16.11 ± 5.12 0.612 0.901

Independent t-tests comparing the two groups (*p < 0.05, represented statistically
significant differences). Data shown as mean standard deviation or n.
BCVA, best-corrected visual acuity; HCs, healthy controls; IOP, intraocular
pressure; L, left; N/A, not applicable; R, right; SA, strabismus amblyopia.
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FIGURE 2 | Spontaneous brain activity in SA group. Blue regions (right cerebellum, left frontal superior gyrus, and left putamen nucleus) indicate lower reHo values,
whereas red regions (right parietal superior gyrus, left parietal superior gyrus, right lingual gyrus, right frontal superior medial gyrus, and right parietal inferior) show
higher ReHo values (AlphaSim-corrected, P < 0.05,cluster size > 40).
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TABLE 3 | Brain areas with significantly different ReHo values
between two groups.

Brain
area

MNI coordinates BA Peak
voxels*

T-
value

P-values

X Y Z

SA > HC

RLG 21 –75 –12 18 275 –4.16 0.004

RFSMG 12 66 9 8 749 –5.22 < 0.001

RPIG 54 –45 54 40 451 –4.66 0.003

LPSG –18 –54 69 7 714 –5.47 < 0.001

RPSG 18 –48 72 7 388 –5.05 < 0.001

SA < HC

RC 12 –45 –21 1600 4.5 0.003

LFSG 30 45 –6 13 1548 4.95 < 0.001

LPN –30 –18 6 13 749 5.08 < 0.001

The statistical threshold was set at voxel with P < 0.05 for multiple comparisons
using false discovery rate.
*Peak voxels: number of voxels in each cluster.
SA, strabismus amblyopia; HC, healthy control; MNI, Montreal Neurological
Institute; BA, Brodmann’s area; RLG, right lingual gyrus; RFSMG, right frontal
superior medial gyrus; RPIG, right parietal inferior gyrus; LPSG, left parietal superior
gyrus; RPSG, right parietal superior gyrus; RC, right cerebellum; LFSG, left frontal
superior gyrus; LPN, left putamen nucleus.

it was deemed as statistically significant. The collected data were
compared and analyzed by AlphaSim. Corrected thresholds were
set at P < 0.01, and the cluster size at > 40 voxels. Then, the
REST software is used to identify brain regions with significantly
changed ReHo values as regions of interest (ROI). The mean
ReHo of all voxels in each brain area was taken as the ReHo
value of this ROI. In addition, the Pearson correlation analysis
was applied to distinguish between the ReHo value and the degree
of strabismus in SA individuals.

RESULTS

Demographics and Visual Measurements
There are no significant differences were observed in gender
(p> 0.999) and age (p = 0.902) between the two groups. However,

significant differences appeared in the best-corrected VA of both
eyes (p = 0.003 and p = 0.004, respectively) (Table 2).

Regional Homogeneity Differences
Compared with the HC group, the mean ReHo values of the
following brain areas in the SA group were remarkably increased:
right lingual (RL), right superior frontal medial (RSFM), bilateral
superior parietal (SP), and right inferior parietal (RIP) [Figure 2
(red areas), Table 3]. However, the ReHo values of the right
cerebellum (RC), left putamen (LP), and left superior frontal
(LSF) gyrus were remarkably decreased in the SA group [Figure 2
(blue areas), Table 3]. The comparison of the ReHo values in two
groups are presented in Figure 3. Through analysis, there was a
positive correlation between esotropia degree and ReHo values of
the left putamen (r = 0.8975, p < 0.0001) (Figure 4).

DISCUSSION

Children with SA showed increased ReHo values in the RL,
RSFM, RIP, and SP areas compared with the HCs, while the mean
ReHo values for the RC, LSF, and LP regions were significantly
lower (Figure 5).

The lingual gyrus is located in the occipital lobe and has
connections with the parahippocampal and the fusiform gyrus.
It is a crucial part of the ventral visual stream, which processes
visual details, like color, form, and size, processes complex
visual stimuli by identifying essential characteristics. Therefore,
this area is vital for visual attention and judgment. Earlier
research reported an increased ReHo value of the lingual gyrus
in patients with concomitant strabismus (CS) (Huang et al.,
2016). In our study, an increased ReHo value of the RL was
also detected in children with SA, which could be explained by
visual compensation.

The frontal lobes are the largest cortical region in the
human brain. It is also regarded as a very vital and the most
complex area because it has extraordinary rich connections
(including afferent and efferent connections) with almost all
other parts of the central nervous system (Nauta, 1972).
Especially, it is involved smooth pursuit eye movement (Heide
et al., 1996). The early abnormal visual conditions experienced

FIGURE 3 | The mean ReHo values in different brain regions in SA and HC groups. RC, right cerebellum; LFS, left frontal superior; LP, left putamen; RL, right lingual;
RFSM, right frontal superior medial; RPI, right parietal inferior; LPS, left parietal superior; RPS, right parietal superior.
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FIGURE 4 | The ReHo value of brain activity in SA group. (A) The esotropia deviation is in proportion to ReHo value in left putamen (r = 0.8975, P < 0.0001). (B) The
esotropia deviation is disproportionate to left putamen. SA, strabismus amblyopia; HC, healthy control.

FIGURE 5 | The ReHo values of the altered brain regions. Variable degree of the ReHo values in SA group of the following regions were decreased: 1- Left putamen;
(t = 5.08), 2- Left frontal sup (BA 13, t = 4.95), 3- Right cerebellum (t = 4.5). The ReHo values of the following brain regions were higher than HCs: 1- Left parietal sup
(BA 7, t = –5.47), 2- Right frontal sup medial (BA 8, t = –5.22), 3- Right parietal sup (BA 7, t = –5.05), 4- Right parietal inf (BA 40, t = –4.66), 5- Right lingual (BA 18,
t = –4.16). The degree of quantitative change was indicated by the size of spots. ReHo, regional homogeneity; HCs, healthy controls; BA, Brodmann’s area.

by the SA children may disturb the neurodevelopmental
processes as well as brain maturation, these changes may
lead to a more terrible binocular vision and visual acuity.
Therefore, the abnormal changes of ReHo values in frontal lobes
may be one reason which causes declined visual function in
children with SA.

Parietal lobules are somatosensory areas, which integrate
information about feeling, touch, and vision, and facilitate
the recognition and recall of size, shape, texture, and
the weight of objects. A previous study has confirmed
that the parietal lobe has a strong relationship with the
visual cortex (Hishida et al., 2019). Ouyang et al. (2017)

investigate the parietal lobes in patients with CS using
voxel-based morphometry and recognized that compared
with the HCs, the volume of the gray matter was reduced
in the parietal occipital lobes. The increased ReHo value
in this study may be the expression of compensatory
brain development.

The cerebellum is involved in motor and balance control,
including precise eye movements (Herzfeld et al., 2015). The
V1 lobule of the cerebellum is related to spatial vision tasks
and has extensive fiber crossing with other areas of the brain.
Similarly, the cerebellum is considered as a vital area that controls
the movement of the eyes and hands (Nitschke et al., 2005). In
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TABLE 4 | Brain regions alternation and its potential impact.

Brain regions Experimental
result

Brain function Anticipated
results

Lingual gyrus SAs > HCs component of the
ventral visual stream,
process information

Visual hallucination

Frontal superior
medial gyrus

SAs > HCs Associated with ocular
diseases

forced grasping
reflex, groping
reflex

Parietal inferior
gyrus

SAs > HCs production, expression
and reception of
language

Body schema
disorder,
Gerstmann
syndrome

Parietal superior
gyrus

SAs > HCs Cortical sensation like
stereognosis and two
point discrimination

Cortical sensation
deprivation

Cerebellum SAs < HCs balance and motor
control, execution of
accurate eye
movements

Cerebellar ataxia

Frontal superior
gyrus

SAs < HCs Control autocinesis,
language, affection

paralysis

Putamen nucleus SAs < HCs Regulate muscle tone,
coordination of fine
activities

Hyperexplexia,
movement disorder

HCs, healthy controls; SA, strabismus amblyopia.

another study, a relationship between activation of the cerebellar
vermis and visually guided saccades was reported (Hayakawa
et al., 2002). A previous research demonstrated that the posterior
interposed nucleus located in the cerebellum is an essential brain
area in the process of conjugate eye movement in monkeys
with strabismus (Joshi and Das, 2013). The observed declined
ReHo value of this area may due to visual dysfunction caused
by SA, which leads to significant functional brain activity
alternations.

The putamen plays an integral role in the learning and
memory system, as well as in the processing of visual information
(Romero et al., 2008). Lee et al. (2006) used a visuomotor task
to detect neuronal activity changes, they found significantly
activated signals in the putamen with or without motor-related
stimuli. In this study, dropped ReHo value was found in the left
putamen in children with SA (Table 4), which could be the result
of the visual defect in SA patients.

In addition, we also found some statistically significant voxels
in MRI images in white matter. In previous MRI studies, activated
signals are often found in the white matter of the brain. However,
whether this signal has the significance for some potential
neural activities has been controversial. White matter contains
connecting fibers specialized in processing signals between
different brain regions, accounting for about half of the brain
(Harris and Attwell, 2012). Most of the reports on MRI activation
of brain white matter involve the corpus callosum. The corpus
callosum contains the largest white matter tract in the brain,
which is involved in the transmission of information between
the two cerebral hemispheres (Aboitiz et al., 1992), including
cognitive, motor, auditory and visual information (Goldstein
et al., 2022). Some studies reported that pathways related to
visual-motor interhemispheric transfer tasks were observed in

the knee of the corpus callosum (Tettamanti et al., 2002; Omura
et al., 2004; Weber et al., 2005; Gawryluk et al., 2009). Fabri et al.
(2011) found that the posterior part of the corpus callosum can
be activated by visual stimulation by performing different tasks
on healthy subjects, which is consistent with the previous results
of the interhemispheric transfer task (Gawryluk et al., 2011a). In
addition, fMRI activation has also been reported in the internal
capsule. Studies have shown that activation can be detected in
the inner capsule when performing motor tasks (Gawryluk et al.,
2011b; Mazerolle et al., 2013). Moreover, the activation signal
of fMRI can also be detected in the white matter of the healthy
control group and Alzheimer’s disease group during a memory
task (Weis et al., 2011).

In this study, we speculate that the activated white matter
signal may be a compensatory development of the brain
of children with SA to compensate for the abnormal visual
experience. In addition, it has been reported that in childhood
and early adolescence, the development of the whole brain’s
white matter tract will increase, which contributed to improving
cognitive ability (Barnea-Goraly et al., 2005). Therefore, the
increased white matter signal found in this paper may also be
the physiological result of brain development. Among the rapidly
growing published MRI articles (Bandettini, 2012), the articles
related to the activation of white matter MRI imaging are still
relatively rare. We hope to have more research on the white
matter function and its abnormalities.

CONCLUSION

In summary, the abnormal spontaneous brain activity in children
with SA demonstrated in the present study could be attributed to
both the development of SA and resultant visual compensation.

From the second trimester of pregnancy, the volume of gray
matter brain cells increased rapidly and peaked before the age
of six. Similarly, the volume of subcortical gray matter peaked
at 14.5 years old. From the second trimester of pregnancy to
early childhood, the volume of white matter also increased
rapidly (Bethlehem et al., 2022). Therefore, in early childhood,
the brain can continuously, quickly and completely compensate
for some abnormalities (Benton and Tranel, 2000), resulting in
compensatory structural abnormalities of the brain. In addition,
if the dominant eye is wounded, or if the other eye is subsequently
affected by a disease or disorder, permanent monocular visual
impairment observed in amblyopia can become a risk factor
for blindness (Harrad and Williams, 2002). Therefore, early
treatment of this disease is vital (Fu et al., 2014). The findings of
this study lay a foundation for further research into the discovery
and diagnosis of SA. Furthermore, this study offers important
information to gain a better understanding of SA and provides
new insights for treatment.
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