
metabolites

H

OH

OH

Review

Comprehensive Literature Review of Hyperpolarized
Carbon-13 MRI: The Road to Clinical Application

Michael Vaeggemose 1,2 , Rolf F. Schulte 3 and Christoffer Laustsen 2,*

����������
�������

Citation: Vaeggemose, M.; F. Schulte,

R.; Laustsen, C. Comprehensive

Literature Review of Hyperpolarized

Carbon-13 MRI: The Road to Clinical

Application. Metabolites 2021, 11, 219.

https://doi.org/10.3390/

metabo11040219

Academic Editors: Andre F. Martins

and Myriam M. Chaumeil

Received: 26 February 2021

Accepted: 1 April 2021

Published: 3 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 GE Healthcare, 2605 Brondby, Denmark; Michael.vaeggemose@ge.com
2 MR Research Centre, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
3 GE Healthcare, 80807 Munich, Germany; schulte@ge.com
* Correspondence: cl@clin.au.dk

Abstract: This review provides a comprehensive assessment of the development of hyperpolarized
(HP) carbon-13 metabolic MRI from the early days to the present with a focus on clinical applications.
The status and upcoming challenges of translating HP carbon-13 into clinical application are reviewed,
along with the complexity, technical advancements, and future directions. The road to clinical
application is discussed regarding clinical needs and technological advancements, highlighting
the most recent successes of metabolic imaging with hyperpolarized carbon-13 MRI. Given the
current state of hyperpolarized carbon-13 MRI, the conclusion of this review is that the workflow for
hyperpolarized carbon-13 MRI is the limiting factor.

Keywords: hyperpolarized carbon-13 MRI; review; clinical application

1. Introduction

MR spectroscopy (MRS) and spectroscopic imaging (MRSI) obtain metabolic infor-
mation noninvasively from nuclei spins. For in vivo applications, common MR-active
nuclei are protons (1H), phosphorus (31P), carbon (13C), sodium (23Na), and xenon (129Xe).
The most common are protons due to their high gyromagnetic ratio and natural abundance
in the human body. Since most metabolic processes involve carbon, 13C spectroscopy is
a valuable method to measure in vivo metabolism noninvasively [1–3]. 13C spectra are
characterized by a large spectral range (162–185 ppm), narrow line widths, and low sensi-
tivity due to the low gyromagnetic ratio (a quarter as compared to protons) and natural
abundance of 1.1% in vivo. However, the sensitivity can be increased with the use of
13C-enriched agents and by hyperpolarization.

Hyperpolarized (HP) 13C MRI is a method that magnetizes 13C probes to dramatically
increase signal as compared to conventional MRI [3]. Metabolic and functional HP 13C
MRI is a promising diagnostic tool for detecting disorders linked to altered metabolism
such as cancer, diabetes, and heart diseases [4], increasing sensitivity sufficiently to map
metabolic pathways in vivo without the use of ionizing radiation, as in positron emission
tomography (PET) imaging. Metabolic imaging using HP 13C compounds has been trans-
lated successfully into single-organ examinations in healthy controls and various patient
populations [5–10].

This review aims to address the current status of HP 13C MRI, based on the literature
from the last two decades, and provide a comparison across multiple anatomical applica-
tions, highlighting the future directions needed to elevate the method for more widespread
adoption in clinical practice.

2. Literature Search and Review Strategy

The papers in this review include HP 13C MR studies from the initial publications
in 2003 up to December 2020. Furthermore, the papers are PubMed (www.pubmed.gov,
access on 31 December 2020) indexed, accessible online, and written in English. Selected
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authors in the field were searched, and forward and backward citations of retrieved studies
were checked to investigate further relevant studies. Highlighted areas had to include at
least 25 papers to be considered as a major topic in this review. Topics with fewer papers
are included in the Technical Advances or Other sections.

An illustration of the selection process can be observed in the PRISMA 2009 Flow
Diagram (Figure 1). Records with no or only limited HP 13C contents were excluded
(Table A1). This resulted in the exclusion of 280 papers in the initial screening process.
To evaluate the eligibility of the studies, current review papers were rated higher for
inclusion. From a total of 1094 identified studies, 145 (13%) met the inclusion criteria for
this review paper; furthermore, 12 studies not covering hyperpolarized carbon-13 MR were
included.
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This review does not have a predefined protocol and was conducted by invitation
from editors in the Metabolites Special Issue entitled: “Applications of Magnetic Resonance
(MR)-Based Metabolic Imaging in Medicine”.
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3. Hyperpolarized Carbon-13 MRI
13C-enriched compounds for metabolic imaging studies are most commonly hy-

perpolarized via dynamic nuclear polarization with subsequent dissolution (d-DNP)
(Figure 2) [11]. A sample of the probe (typically (1-13C) pyruvate) and a radical with
an unpaired electron is placed in a 0.8 K cold environment at 5 T within the hyperpolarizer
(e.g., SPINlab (GE Research Circle Technology Inc., GE Healthcare, Chicago, IL, USA)).
These unpaired electron spins are polarized to nearly 100% at this temperature and mag-
netic field strength. The sample is then irradiated at the electron spin resonance frequency
(e.g., 140 GHz at B0 = 5 T) to transfer the high polarization from the electron spins to the less
polarized 13C-enriched molecules of the sample, which typically takes 30–180 min [8,12,13].
Following this procedure, the sample is then rapidly dissolved in a hot water solution to
obtain an injectable solution matching the body pH, temperature, and osmolarity before
injection. After a final quality assessment, the hyperpolarized solution can be injected
into the subject, preferably via an injector. Following the injection of the probe, optimized
fast MR sequences for the targeted organs image the uptake and subsequent metabolic
conversion of the hyperpolarized 13C probe. The hyperpolarized probes are diluted heavily
in the body and relax due to the spin-lattice (T1) decay. Radio-frequency (RF) excitation
and metabolic conversion lead to further signal depletion. A hyperpolarized experiment is
typically completely relaxed within minutes (1–2 min). Due to low concentrations, multiple
hyperpolarized scans could be performed in the same scan session. Nevertheless, the
polarization process requires up to 180 min, and the polarizer, e.g., the SPINlab, has a
maximum capacity of four units. In combination with the cost of the hyperpolarized probes
and ethical considerations, experiments are often limited to injecting a single dose.
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Figure 2. Illustration of the hyperpolarizing experiment in a SPINlab dissolution dynamic nuclear
polarizer (d-DNP). First, the dissolution of 13C-pyruvate is placed in a 0.8 K cold environment at 5 T
within the DPN to achieve hyperpolarization. Secondly, the dissolution achieves massively increased
magnetic properties and is ready for injection into the experiment subject. With the use of fast MR
sequences, spectra and images of the pyruvate metabolism is achieved (Courtesy of Christian Ø.
Mariager).
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The list of HP 13C probes currently includes more than 24 different metabolites.
A description of their chemical structures is given by Keshari et al. [14]. A description of
the T1, chemical shift, applications, metabolic, and physiological processes of the most
common probes has recently been published in a paper by Wang et al. and is considered
outside the scope of this paper [12].

4. Applications of Hyperpolarized Carbon-13 MRI
4.1. Hyperpolarized [1-13C]pyruvate: The Most Used Biomarker

Following injection into the bloodstream, the hyperpolarized [1-13C]pyruvate is trans-
ported to the tissue of interest, whereafter the [1-13C]pyruvate is transported into the
cells, mediated by the monocarboxyl transporters (MCTs). In the cytosol, the pyruvate
is then either enzymatically converted into lactate via lactate dehydrogenase (LDH) or
alanine via alanine aminotransferase (ALT) or further transported into the mitochondria
where it undergoes another enzymatic exchange reaction into CO2 via pyruvate dehydro-
genase (PDH). The CO2 is then rapidly converted into bicarbonate via carbonic anhydrase
(Figure 2). The glycolytic activity in the cytosol is estimated by (1) the [1-13C]pyruvate
conversion to [1-13C]lactate via the enzyme LDH and (2) mitochondrial TCA cycle activity,
determined by the irreversible conversion of [1-13C]pyruvate to bicarbonate (HCO3

-) by
the enzyme PDH [15].

4.2. Oncology

The existing publications with clinical trials of HP 13C MRI are dominated by onco-
logic applications because this technology is particularly well suited for studying cancer.
Elevated glycolysis and thus lactate production even under sufficient oxygen availability,
denoted by the Warburg effect [16], is a fundamental property of many cancers [17]. This
phenomenon is indicated by an upregulation of the pyruvate to lactate conversion [18].
Therefore, imaging of the metabolic conversion of [1-13C]pyruvate into [1-13C]lactate
holds particular promise for cancer diagnosis as well as monitoring of response to treat-
ment [19]. The first clinical 13C study targeted prostate cancer in 2013 [7]. As of today,
[1-13C]pyruvate has been applied clinically in several different cancer types ranging from
prostate [7,7,20–26], pancreas [27], breast [28–30], brain [9,31,32], to kidney [33]. However,
several studies are on the way as indicated by assessment of studies on clinical.trails.gov
(Table A2) and EudraCT (Table A3). Future clinical studies might include probes such as
urea (perfusion) and glutamine [1].

4.3. Brain

The metabolic imaging of the brain has been applied in multiple sclerosis [34],
stroke [35], traumatic brain injury [36–38], and brain tumors (mentioned in the Oncol-
ogy section). Brain metabolism must consider the blood–brain barrier (BBB), which limits
the uptake into brain tissue of hyperpolarized probes and thus ultimately the obtainable
signal in the brain. This has been an obstacle for pre-clinical studies in which the animals
are anesthetized [39–41]. Conventionally, anesthetics are not needed in brain studies in
humans; nevertheless, in some cases of intensive care patients, children (2–10 years old), or
claustrophobic patients it may be preferred to apply sedation prior to the examinations,
though this method can complicate metabolic response. Brain studies using multichannel
receiver head coils can increase cortical signal at the expense of inhomogeneous receiver
profiles and less signal-to-noise ratio (SNR) in the center of the brain [42–45]. Clinical trials
of the brain (non-cancer) are reported in three studies on healthy brain (n = 4 [46]; n = 4 [13];
n = 14 [8]).

4.4. Cardiovascular Disease

The MRI of cardiovascular diseases commonly evaluates the restriction of blood flow
and ischemic areas of the heart [47]. It is, however, well established that the metabolic
balance between the fat and sugar utilization of the heart is important in determining the
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underlying pathophysiology and best treatment for the individual patient [48]. HP 13C
MRI has been shown to measure the metabolism and perfusion of the heart [49], which
can be advantageous for evaluation of myocardial complications associated with diabetes,
ischemic heart disease, cardiac hypertrophy, and heart failure [50,51]. The ability to image
in rapid succession ensures that HP 13C MRI can be incorporated in stress test imaging
sessions without adding significant time to these protocols. Cardiac imaging protocols
need to consider cardiac cycle timing, motion correction, distortion correction, etc. [52,53].
To date, only a few clinical studies have been performed on the heart covering initially
normal hearts (n = 4) [5] and later hearts of patients with type 2 diabetes (T2MD = 5,
HC = 5) [54]. Evaluation of the pre-clinical literature supports a growing intention for the
transition of HP 13C MRI towards cardiac applications [55].

4.5. Kidney Disease

There is a lack of good biomarkers for early diagnosis, patient stratification, and treat-
ment monitoring for kidney diseases. MRI is increasingly being used to characterize im-
portant pathophysiological processes such as perfusion, fibrosis, and oxygenation [56,57].

Hypoxia is a hallmark of kidney disease, and thus metabolic imaging techniques able
to depict either pO2 directly or the indirect effect of hypoxia are warranted. Hyperpolarized
[1-13C]pyruvate studies have been demonstrated to allow differentiation of various renal
pathophysiological conditions in pre-clinical models of diabetes, acute kidney disease (AKI),
and chronic kidney disease (CKD) [58–61]. The use of gadolinium-based contrast agents is
contraindicated in patients with renal insufficiency [62]. Thus, alternative non gadolinium-
based biomarkers to noninvasively determine hemodynamic properties, perfusion, and
glomerular filtrations constitute a valuable tool for a patient group in which repeated
exposure to ionizing radiation is a concern [63–65]. Currently, only one non-cancer human
kidney study is underway.

From the pre-clinical indications, it is very likely that metabolic and functional imaging
with HP 13C MRI will be a future diagnostic tool in kidney disease. The results are
promising in the application of [1-13C]pyruvate and have shown potential with other
carbon-based probes [1,4-13C]fumarate, 13C-urea [66] and [1-13C]lactate [67]. Alternative
biomarkers with improved relaxation properties also hold great promise in perfusion
assessment [68].

4.6. Liver Disease

Currently, most of the literature regarding liver disease is related to liver cancer. How-
ever, there is an increasing interest in the application of HP 13C MRI in diagnosis and
monitoring of compilations related to liver disease in pre-clinical studies [69–72]. Examples
include the assessment of hepatic metabolism in non-alcoholic fatty liver disease (NAFLD)
induced by a high-fat diet (HFD) in rats [73] or the effect of liver metabolism in inflam-
matory liver injury [74] and ethanol consumption as an early indicator of complications
related to fatty liver disease, hepatitis, cirrhosis, and cancer [75]. Furthermore, assess-
ment of metabolism in genetically modified knockout [76–78] and insulin-deficient rodent
models [78,79] has been studied in detail. Like kidney, liver disease imaging is limited in
human studies; however, one study has been reported on clinicaltrials.gov as “active, not
recruiting” on the effect of fatty liver disease (Table A2). Recently a novel hyperpolarized
probe, [2-13C]dihydroxyacetone (DHAc), has been applied to enable estimation of liver
metabolism (gluconeogenesis, glycolysis, and the glycerol pathways), and this could very
well be an important finding for further clinical attention [80].

4.7. Technical Advances
4.7.1. Polarizer

Multiple methods to achieve hyperpolarization have been explored including brute
force polarization, parahydrogen-induced polarization (PHIP)-based methods [81–83], and



Metabolites 2021, 11, 219 6 of 22

dynamic nuclear polarization (DNP). Currently, the only polarization process approved to
be used for clinical studies of carbon-13 is DNP [11].

Brute force polarization is achieved by placing the probe in a strong magnetic field at
a temperature close to 0 K [84]. While the method is straightforward to apply, it is very
impractical and not useable for in vivo experiments given the temperature and very long
T1 times in the solid state.

PHIP utilizes the change in parahydrogen and orthohydrogen spin states at low tem-
peratures. Hydrogen molecules exists in two energy states—parahydrogen and orthohydro-
gen. At room temperature the spin states are 25% parahydrogen and 75% orthohydrogen;
however, the spin states are almost complete parahydrogen (>99%) at very low temper-
atures (<20 K). Applying a catalyst, such as alkenes, breaks the symmetry of hydrogen,
inducing a change in the spin order, known as PHIP [85]. Transfer of the polarization is
thereafter performed by field cycling or polarization methods. PHIP has the advantage
of being cheap and easy to use and allows for very rapid polarization. Several proposals
to alter the PHIP process have been suggested, such as signal amplification by reversible
exchange (SABRE [82]), synthesis amid the magnet bore allows dramatically enhanced
nuclear alignment (SAMBADENA [83]), and PHIP by means of side arm hydrogenation
(PHIP-SAH [86]). Until recently, the requirements of unsaturated precursor molecules, toxic
solutions, and catalyzers have been a significant limitation for in vivo applications. How-
ever, PHIP-SAH may have found a way to overcome these limitations by using propargyl
alcohol in the parahydrogen-induced polarization process.

DNP is based on the spin interaction of free electrons with nearby nuclear spins
at low temperatures (<4 K). At this temperature the electrons have a low energy state
and can achieve total polarization (100%). Applying irradiation with microwaves causes
polarization exchange from the electrons to nearby nuclear spins. Electrons have a short T1
relaxation time causing them to return to their thermal equilibrium state and making them
able to repeat the process on unpolarized nuclei. The process is repeated until a desired
polarization is achieved according to the nuclei T1 relaxation time (polarization decreases
in accordance with T1 relaxation time) [3].

Hyperpolarized carbon-13 using dissolution dynamic nuclear polarization was dis-
seminated in 2003 by J. H. Ardenkjær-Larsen et al., demonstrating the so-called (“alpha”
polarizer [3]). The technique was then commercialized in the form of HyperSense (Oxford
Instruments, Abingdon, UK) and as the clinical 5 T SPINLab (GE Research Circle Technol-
ogy Inc., GE Healthcare, Chicago, IL, USA) [87] in 2011. Furthermore, a new commercial
6.7 T pre-clinical polarizer has been introduced—the Spin-Aligner (Polarize IVS, Frederiks-
berg, DK) in 2018 [88]. The effectiveness of the polarizers has increased rapidly (from 20%
to 40% to 70%), and clinical systems are able to achieve polarization up to 55% [89], which
is twice the polarization used in the first clinical trial [7]. However, new technological and
methodological advances are still needed to improve the polarization method, especially
with respect to cost effectiveness and user friendliness [11,90,91].

4.7.2. Sequences

MR spectroscopic imaging is often preferred over single voxel spectroscopy to evaluate
local changes in metabolism inside the organ of interest. The dimensionality of hyper-
polarized MRSI data is higher, and one must consider possible contamination of signal
from nearby voxels (signal bleed) [92], B0 field inhomogeneities across the organ, and
increased data acquisition time. As the hyperpolarized signal is non-recoverable, rapid se-
quences are paramount to ensure collection of metabolic information. The hyperpolarized
[1-13C]pyruvate MRSI experiment is composed of data in up to five dimensions (up to
three spatial, one temporal, and one spectral) often leading to compromise in one or more
dimensions to ensure rapid acquisition [93].

In proton MRI, a successful means of reducing acquisition time is to modify or sample
fewer k-space points. These methods are, however, not directly applicable in MRSI. This
is partly due to the inherent low number of sampling points, which do not introduce the
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required level of sparsity. Therefore, the focus of fast MRSI is on more efficient k-space
sampling either as echo-planar imaging (EPI) [94] or spiral [95], radial [96], or concentric
rings [97].

Fast imaging techniques can generally be grouped into three main approaches: (1) spec-
troscopic imaging; (2) prior knowledge model-based approaches; and (3) metabolite-
specific imaging [98–100]. Acquisition time can be decreased with the combination of mul-
tiple receiver channel elements as in parallel imaging (SENSE [101], calibrationless [44]),
compressed sensing [102–105], and multiband excitation [105,106] methods. Nevertheless,
parallel imaging methods are challenging as acquisition of the needed sensitivity profiles
is limited.

(1) Spectroscopic imaging includes phase-encoded chemical shift imaging (CSI).
The CSI acquires a multivoxel MRS image, utilizing phase-encoding to achieve spatial
resolution but at the cost of a longer acquisition time.

(2) Prior knowledge model-based approaches are a faster imaging method often com-
bined with spectroscopic imaging. The speed comes from efficient acquisition of k-space
points and avoiding sampling of unnecessary signal, thereby utilizing prior knowledge of
the substrates to improve temporal resolution or to reduce the required sampling matrix
(SLIM [107], SLOOP [108], and SLAM [109,110]). There are several variations of the prior
knowledge model-based techniques; however, recent developments with spectroscopic
imaging by exploiting spatiospectral correlation (SPICE) and chemical shift encoding (CSE)
could be preferred options for hyperpolarized carbon-13 MRSI.

SPICE utilizes a combination of a two acquisitions: first a set of low-spatial and
high-temporal resolution data, followed by a set of high-spatial and low-temporal reso-
lution data [111]. From the two acquisitions, high resolution spectroscopic images with
an adequate spectral resolution are reconstructed [112]. The method has recently been
evaluated in kidney models of mice [113]; nonetheless, results of the application of this
novel technique will be interesting to follow in other organs.

CSE methods include Dixon or iterative decomposition with echo asymmetry and
least squares estimation (IDEAL), which apply prior knowledge of the substrates and
products [114]. CSE encodes the spectral dimension sparsely by acquiring only with a few
different echo times (TEs) [115].

(3) Metabolite-specific imaging is the fastest imaging method of the three approaches,
making it less sensitive to motion (shorter repetition time (TR)). However, the disad-
vantages are the requirement of a sparse spectrum and increased sensitivity to B0 field
distortions [98]. The method rapidly acquires spectral and spatial data with frequency and
slices selective RF pulses in an EPI [116] or spiral readout trajectory [5]. By exciting a single
metabolite at a time and changing RF pulse resonance frequencies, dynamic datasets of
desired metabolites are acquired.

4.7.3. Data Acquisition, Reconstruction, Processing, and Analysis

Optimized data acquisition and processing steps can be vital in the following analysis.
In this section, a pipeline for data acquisition, reconstruction, processing, and analysis is
described. The pipeline may vary between institutions given the selection of coils, anatomy,
and sequences (e.g., 2D EPI or 3D spirals). A schematic representation of the pipeline
is illustrated in Figure 3, with indication of the conventional HP 13C MRI pipeline (light
green) and suggestions for an extended pipeline (light grey).
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Data Acquisition

B0 field map: Magnetic field inhomogeneity leads to a spread in resonance frequencies,
causing difficulties preserving the spectral separation. The homogeneity requirements are
determined by the metabolites of interest, and in HP 13C MRI, good separation is achieved
when the B0 homogeneity is better than ∆0.1 ppm. Improvement of B0 field homogeneity
is performed by shimming. Shimming complexity increases with the size of the field of
view (FOV), and larger FOVs are more prone to magnetic field irregularities. Quality of the
acquired free induction decay (FID) is the basis of signal analysis accuracy. Low SNR and
frequency variations reduce the quality and result in poor spectra. Signal averages and
larger volumes may increase the SNR, but this can be at the cost of resolution.

B1 transmit field map: Metabolite-specific B1 mapping of the transmit field of the
carbon-13 tuned transmit coil should be performed. This provides a measure to correct for
possible errors in the flip angles of the sequences used in data acquisition of fast HP 13C
MRI sequences.

Fast MRS/MRSI sequence: A detailed description of HP 13C MRI sequences is given
in a previous section.

Data Reconstruction

Coil combination: Combination of multiple receiver coils may introduce phase cance-
lation. This can be avoided by combining the signal acquired from the coils at each voxel
either by weighted sum of squares, first point phasing, or singular value decomposition
methods [43].

Phase and frequency correction can be manually performed in the data processing
step to accommodate for signal loss due to phase cancellation with the use of zero- and
first-order phase correction. Nevertheless, several spectral fitting approaches have in-
cluded phase correction as part of the data processing pipeline (OXSA-AMARES [117],
JMRUI [118], and LC model [119]), alleviating this as a data processing requirement.

k-space reconstruction: MRSI trajectories (Cartesian or non-Cartesian) are applied
to reconstruct the acquired MRSI to ensure correct k-space gridding. A comprehensive
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review of HP 13C MRI sequences and reconstruction methods has recently been published
by Gordon et al. [98].

Data Processing

Apodization filter: Apodization is used to enhance the SNR at the cost of spectral
resolution (line broadening). The FID (time domain) or the spectra (frequency domain) is
multiplied by a filter function, often an exponential function.

Cramér–Rao lower bounds: Quality assurance of the spectra can be performed by
evaluation of the metabolite separation, signal-to-noise ratio, and temporal resolution. One
approach is to quantitatively evaluate the SNR, spectra line width, and spectra separation
with the Cramér–Rao lower bounds (CRLBs) [120,121]. CRLBs can be used as a measure to
determine voxels to be included or excluded before or even after metabolite spectral fitting.

Spectral line-shape correction: Spectral fitting algorithms consist of a combination of
pre-determined line shapes (Lorentzian, Gaussian, or Voigt), though acquired signal line
shapes may be distorted, e.g., due to magnetic field inhomogeneities and eddy currents.
Line-shape correction can be performed by deconvoluting the spectra with a reference
spectrum.

Spectral baseline correction: Acquired spectra may have shifts in the baseline and
thereby overestimate the metabolite resonance peaks. The spectral baseline can be corrected
by applying a low-order signal fit [122]. This leads to more robust data and improved data
quantification.

Denoising: Denoising has attracted great interest in HP 13C MRI given the low SNR,
good peak separation, and representation of metabolite peaks. Several applications of
signal denoising have been evaluated for improvement of data quality, and recent applica-
tions of multidimensional tensor value decomposition show promising results by changing
from a fixed rank [123] to an automatic cost function-based rank selection approach [43].
Nevertheless, denoising with the use of singular value decomposition (SVD)-based meth-
ods should be carried out with caution. The application could introduce oversimplification
and thereby filter out lower SNR metabolites or disease metabolism as noise. Furthermore,
if too few singular components (low rank) are used, kinetics of pyruvate could modulate
the reconstructed dynamics/kinetics of the lower SNR metabolites.

Data Analysis

Data analysis is performed subsequent to data optimization in the acquisition and
pre-processing steps. The multidimensional MRSI data consist of up to three spatial
dimensions with a spectral and a temporal dimension (Figure 4A). Determination of
spectral metabolites is performed by applying spectral fitting with the use of metabolite
prior knowledge. The change in signal amplitudes in the temporal dimension is then used
for evaluation of the metabolic flux as an estimate of the downstream metabolism from
injected pyruvate to lactate, alanine, and bicarbonate (Figure 4B). Residual pyruvate may be
detected in the spectrum as pyruvate hydrate. Analyses of the metabolic flux or exchange
rates can be determined by fitting single-compartment or multicompartmental models.
The forward rate constant of substrate conversion is calculated as an apparent conversion
from pyruvate to, for example, lactate (kpl) [124,125] (Figure 4C). The results may, however,
be prone to systemic errors if not combined with the pyruvate input function [126].
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Alternatively, a model-free formulism based on the ratio of area under the curve (AUC)
of the injected and downstream metabolite can be used. This has shown to be a robust and
clinically relevant alternative to kinetic model-based rate measurements [127], especially
in the lactate-to-pyruvate AUC ratio, which represents the full reaction as determined by
compartment kinetic modelling [128]. In addition to being a simplified approach the benefit
of evaluating the downstream signal of an AUC is to reduce bias in the later acquired time
series [129]. In both approaches, kpl consistency should be evaluated. This could be done
by only accepting kpl where the standard deviation is smaller than determined mean kpl.
Furthermore, this approach may be beneficial in low SNR measurements for determination
of pH from the 13CO2 to H13CO3

− ratio [130,131].

4.8. Other

It is crucial for the translation of basic science to clinical application that disease
models are studied meticulously to ensure high precision and diagnostic value. This
methodology is applied in pre-clinical studies with the use of cell models, hyperpolarized
probe testing, and validation of widespread pathologies in animal models. Expanding the
understanding of disease-altered metabolism and the underlaying processes involved in
interventional treatment responses is key for method validation before initiating clinical
trials.

This review focuses on the clinical transition; therefore, areas other than those listed
in the previous sections (e.g., lung [132,133], angiography [134], placenta [135,136], mus-
cle [137–139]), diseases (e.g., diabetes [63,140–142], rheumatoid arthritis [143,144], toxin-
induced neuroinflammation [145], radiation injury [146,147]), and physiology (e.g., cell
metabolism [148,149], pH [130], blood serum [150,151], bacteria metabolism [152]) are not
be covered.

4.9. Clinical Transition

Hyperpolarized MRI is on the verge of clinical translation [1]; however; to ensure
clinical adaptation, it is important to improve and validate the workflow. As of today,
50 polarizers prepared for injection into humans are installed worldwide [12], and more
than 10 sites are performing clinical trials. More than 200 human subjects have participated
in clinical trials with HP 13C MRI [1].

As of today, 17 clinical studies have been conducted (Table 1). The number of clinical
studies is not a direct measure of the translational state; however, it does indicate the activi-
ties and research focuses of the hyperpolarized carbon-13 research community. Evaluating
studies reported to clinicaltrials.gov as “active, not recruiting” or “recruiting” indicates that
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the field is pointing towards increase in clinical trials and covering a wider area of diseases.
The number of clinical trials is set to double, with 27 new studies imminent (Table A2).

Table 1. Overview of applications for which clinical trials have been performed with hyperpolarized
carbon-13 MRI and their translation state towards clinical adaption.

Area of Interest Publications Human Trials Translation State

Oncology 170

prostate: [7,20,22–24]
pancreas: [27],
breast: [28,29],

brain: [9,20,32,153],
kidney: [33]

High

Brain 37 [8,13,46] Low

Heart 87 [5,54] Medium

Kidney 31 - Low

Liver 21 - Low

Technical advances 1 349 - -

Other 2 118 - -
1 Sequence, polarization, coils, etc. 2 Other anatomical studies (e.g., lung, angiography, placenta, muscle), diseases
(e.g., diabetes, rheumatoid arthritis, toxin-induced neuroinflammation, radiation injury), and physiology (e.g.,
cell metabolism, pH, blood serum, bacteria metabolism).

The database of interventional clinical trials with medical products in the European
Union, EudraCT (European Union Drug Regulating Authorities Clinical Trials Database),
lists an additional six HP 13C MRI studies, three of which were initiated during 2020
(Table A3).

The determination of the translational state is based on subjective measures rather
than a systematic meta-analysis of the relatively low number of studies performed on a
low number of subjects. Clinical transition occurs when a novel or improved diagnostic
measure is needed. If conventional methods are superior, transition often does not occur.
With this in mind, we focus on the translational state of five selected areas, highlighted in
Table 1, and outline a qualified estimate of which will become a clinical application first.

Cardiac HP 13C MRI has been performed in clinical studies [5,54], while no kidney or
liver studies have so far been published (excluding renal cancer). Three brain studies have
been reported in the recent years on healthy brain [8,13,46]; however, none are reporting
metabolic changes due to pathology. Therefore, we consider the current translational state
of the four areas to be low to medium.

HP 13C MRI in cancer models has proven great potential, not only from the clinical
trials but also from the possibilities of targeting cancer cell models in advanced experi-
mental studies [1]. This provides a measure of going from specific cell culture analysis in
small animal models to clinical trials with accurate and reproducible results. Transition
from research to clinical implementation is plausible in prostate cancer given the large
number of studies performed since the first clinical trial in 2013. Nevertheless, it has
recently been proposed that there could be an even greater advantage of the application
in breast cancer, potentially reducing the number treatments and treatment time (today
approximately 12 treatments in 3 months) [4]. The level of detail and experience of HP 13C
MRI in oncology is providing assurance of the value in the method; therefore, we consider
the current translational state to be high.

4.10. Challenges and Limitations

HP 13C MRI is limited by the short lifetime of the hyperpolarized signal as well as the
need to acquire five-dimensional data (three spatial, one temporal, and one spectral). The
technology requires rapid imaging strategies to improve the quantification of metabolism.
Research sites have improved dramatically in the effectiveness of producing consistent
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results and avoiding failed experiments, e.g., sample contamination, invalid or missing
data. This is not reported in the literature but could be a useful guideline for the progress,
complexity, and feasibility of HP 13C MRI as a future clinical method. Assessment of the
literature shows most publications reporting technical advances; however, publications
are focused on signal refinement over technological paradigm shifts. Therefore, the main
limitation is believed to be in the clinical workflow and not the MR methods.

Several challenges can arise regarding the dissolution workflow of HP 13C MRI,
ranging from the costly components, substrates, and laboratory quality assurance. This
combined with long dissolution travel time results in unnecessary loss of signal, as the trans-
verse relaxation time is only a matter of minutes, complicating the chances of successful
examinations. Nevertheless, recent advances show the ability to reduce the hyperpolarized
substrate travel time from the polarizer to injection, and a few sites have achieved results
of 30 s or less [4]. Another approach is to use UV-generated labile free radicals [154].
This method can be used to create nuclear polarization storage and transport the sam-
ples across larger distances before being applied. Hyperpolarized carbon-13 pyruvate is
commonly produced via the dDPN; however, recent discoveries indicate the possibility
of producing hyperpolarized substrates via PHIP-SAH [86]. This could be a cheaper and
faster alternative to produce hyperpolarized substrates and thereby accelerate the transition
to clinical application.

Improved workflow may come from consensus and multicenter studies. Multicen-
ter studies [155] and detailed descriptions of the methods used in data acquisition and
analysis [156] of clinical HP 13C MRI experiments are needed to ensure reliability and
comparability across research sites. Although several sites are performing clinical trials, the
number of study participants is still limited. Improved comparability should strengthen
the evaluation of clinical studies and alleviate possible bias occurring from study design
differences. Nonetheless, a recent study focused on the development of methods and
feasibility of using HP 13C MRI data for evaluating brain metabolism to guide the com-
munity towards comparability [157]. If reports such as this are conducted in other areas,
it could prove beneficial to creating consensus and furthermore helping initiatives of new
research sites.

Since the spin-lattice relaxation time (T1) is affected by the system field strength,
it could be proposed to increase T1 by lowering the field strength. However, this approach
would reduce the ability to separate metabolites by chemical shift by a factor of two, when
shifting from a 1.5 to 3 T MRI system. Therefore, it is expected that transition to clinical
practice will be on 3 T systems, a statement supported by the current application in clinical
studies (clinical trials (Table A2) and EudraCT (Table A3)).

5. Conclusions

The transition of hyperpolarized carbon-13 to clinical applications has been debated
regarding clinical needs and technological advancements. This review evaluates the current
state of HP 13C MRI through a comprehensive literature analysis with emphasis on the road
to clinical application. This review highlights the movement of the community towards
multicenter trials, with an immense increase in the number of clinical trials being performed
in the coming years. The conclusion of this review is that the workflow of HP 13C MRI is
the limiting factor to achieving clinical application.
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Appendix A

Appendix A.1. Electronic Search Strategy

Table A1. Electronic search strategy.

No. Search Item No. of Results Excluded (Why) Included

1
Ardenkjaer-
Larsen JH
(Author)

123 (8 review)

9 (age < 2003)
1 (not English)

3 (not hyperpolarized)
1 (corrigendum)
1 (not carbon)

108

2
hyperpolarized
AND MR AND
carbon review

26
3 (not carbon, not
hyperpolarized)

2 (duplicates from 1)
21

3

hyperpolarized
AND MR AND

carbon NOT
review

178

19 (not carbon)
2 (not hyperpolarized)

1 (hyperpolarized
diamonds)

11 (duplicates from 1)

145

4 hyperpolarized
AND 13C

743 (48 review)

174 (duplicates from 1,2,3)
1 (duplicate in PubMed)

30 (not carbon)
9 (diamonds)

2 (not English)
11 (not hyperpolarized)

516

5
forward and

backward citations
from papers

24 24

Total 1094 280 814

Appendix A.2. Studies Reported to clinicaltrials.gov as “Active, Not Recruiting” or “Recruiting”
on Hyperpolarized Carbon-13 MRI

Table A2. Studies reported to clinicaltrials.gov as “active, not recruiting” or “recruiting” on hyperpo-
larized carbon-13 MRI.

Title Condition Trial Number

1

Pilot Study of Safety and Toxicity of
Acquiring Hyperpolarized

Carbon-13 Imaging in Children With
Brain Tumors

Pediatric brain
tumors NCT02947373

2 Hyperpolarized Carbon-13 Imaging
of Metastatic Prostate Cancer Prostate cancer NCT02844647

3
Imaging of Traumatic Brain Injury
Metabolism Using Hyperpolarized

Carbon-13 Pyruvate

Traumatic brain
injury NCT03502967

4

Metabolic Characteristics of Brain
Tumors Using Hyperpolarized
Carbon-13 Magnetic Resonance
Spectroscopic Imaging (MRSI)

Brain tumor adult NCT03067467
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Table A2. Cont.

Title Condition Trial Number

5
Hyperpolarized Carbon 13-Based

Metabolic Imaging to Detect
Radiation-Induced Cardiotoxicity

Thoracic cancer/left
sided breast cancer NCT04044872

6
Hyperpolarized Carbon-13 (13C)

Pyruvate Imaging in Patients With
Glioblastoma

Glioblastoma
multiforme (GBM) NCT04019002

7

Hyperpolarized 13C Pyruvate MRI
for Treatment Response Assessment
in Patients With Locally Advanced

or Metastatic Pancreatic Cancer

Pancreatic ductal
adenocarcinoma NCT04565327

8
Feasibility of Acquiring

Hyperpolarized Imaging in Patients
With Primary CNS Lymphoma

Primary CNS
lymphoma NCT04656431

9

Effect of Cardiotoxic Anticancer
Chemotherapy on the Metabolism of

[1-13C]Pyruvate in Cardiac
Mitochondria

Breast neoplasms NCT03685175

10

Hyperpolarized Carbon C 13
Pyruvate Magnetic Resonance

Spectroscopic Imaging in Predicting
Treatment Response in Patients With

Prostate Cancer

Prostate cancer NCT03581500

11

Hyperpolarized 13C Pyruvate MRI
Scan in Predicting Tumor

Aggressiveness in Patients With
Localized Renal Tumor

Benign kidney cancer NCT04258462

12

Hyperpolarized Pyruvate (13C) MR
Imaging in Monitoring Patients With

Prostate Cancer on Active
Surveillance

Prostate
adenocarcinoma NCT03933670

13
Hyperpolarized Carbon C 13

Pyruvate in Diagnosing Glioma in
Patients With Brain Tumors

Primary brain
neoplasm NCT03830151

14

Serial MR Imaging and MR
Spectroscopic Imaging for the

Characterization of Lower Grade
Glioma

Glioma NCT04540107

15

Hyperpolarized 13C MR Imaging of
Lactate in Patients With Locally

Advanced Cervical Cancer (LACC)
Cervical Cancer

Uterine cervical
neoplasms NCT03129776

16

Role of Hyperpolarized
13C-Pyruvate MR Spectroscopy in

Patients With Intracranial Metastasis
Treated With (SRS)

Brain metastases NCT03324360

17
Hyperpolarized Imaging in

Diagnosing Participants With
Glioma

Glioma NCT03739411
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Table A2. Cont.

Title Condition Trial Number

18
Metabolic Imaging of the Heart

Using Hyperpolarized (13C)
Pyruvate Injection

Hypertension/hypertrophyNCT02648009

19

Magnetic Resonance Imaging (MRI)
With Hyperpolarized Pyruvate (13C)

as Diagnostic Tool in Advanced
Prostate Cancer

Prostate cancer NCT04346225

20
Imaging Oxidative Metabolism and
Neurotransmitter Synthesis in the

Human Brain
Brain cancer NCT03849963

21

Study to Evaluate the Feasibility of
13-C Pyruvate Imaging in Breast

Cancer Patients Receiving
Neoadjuvant Chemotherapy

Breast cancer NCT03121989

22
Development and Evaluation of a
Quantitative HP MRI for Clinical

Prostate Cancer Exam

Prostate
adenocarcinoma NCT04286386

23
A Pilot Study of (MR) Imaging With
Pyruvate (13C) to Detect High Grade

Prostate Cancer
Prostate cancer NCT02526368

24

An Investigational Scan (hpMRI) for
Monitoring Treatment Response in

Patients With Thyroid Cancer
Undergoing Radiation Therapy

and/or Systemic Therapy

Thyroid gland
carcinoma NCT04589624

25
Effect of Fatty Liver on TCA Cycle

Flux and the Pentose Phosphate
Pathway

Fatty liver NCT03480594

26
Hyperpolarized C-13 Pyruvate as a

Biomarker in Patients With
Advanced Solid Tumor Malignancies

Prostate cancer NCT02913131

27 Characterization of Hyperpolarized
Pyruvate MRI Reproducibility

Malignant solid
tumors NCT02421380

Appendix A.3. Studies Reported to EudraCT for Clinical Trials of Hyperpolarized Carbon-13 MRI

Table A3. Studies reported to EudraCT for clinical trials of hyperpolarized carbon-13 MRI.

Title Condition EudraCT
Number

1

Early detection of effects of
chemotherapy in pancreatic cancer

patients—a study using
MR-hyperpolarization scanning

based on hyperpolarized Pyruvate
(13C) injection

Pancreatic cancer 2016-004491-22

2
MRI of neurometabolic impairment

in ALS and TIA using
hyperpolarized pyruvate

Amyotrophic lateral
sclerosis 2020-000352-36
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Table A3. Cont.

Title Condition EudraCT
Number

3

Clinical and pathophysiological
aspects of visualization of metabolic
flux in the failing human heart using

hyperpolarized [1-13C]-pyruvate
cardiac magnetic resonance

Chronic heart failure 2018-003533-15

4 MRI with hyperpolarised pyruvate
in glioblastoma—a phase II study

Glioblastoma
multiforme 2020-000310-15

5

Metabolic imaging of patients with
mycosis fungoides using

hyperpolarized 13C-Pyruvate
magnetic resonance imaging—A

feasibility study

Mycosis fungoides 2018-001656-35

6

A Dose-Ranging Pharmacodynamic
Study to Evaluate the Effects of

IMB-1018972 on Myocardial
Energetics, Metabolism, and

Function in Patients with Type 2
Diabetes

Diabetic
cardiomyopathy 2020-003280-26
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