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Abstract

We propose a novel neural network architecture, SZTrack, to detect and track the spatio-

temporal propagation of seizure activity in multichannel EEG. SZTrack combines a convolu-

tional neural network encoder operating on individual EEG channels with recurrent neural

networks to capture the evolution of seizure activity. Our unique training strategy aggregates

individual electrode level predictions for patient-level seizure detection and localization. We

evaluate SZTrack on a clinical EEG dataset of 201 seizure recordings from 34 epilepsy

patients acquired at the Johns Hopkins Hospital. Our network achieves similar seizure

detection performance to state-of-the-art methods and provides valuable localization infor-

mation that has not previously been demonstrated in the literature. We also show the cross-

site generalization capabilities of SZTrack on a dataset of 53 seizure recordings from 14 epi-

lepsy patients acquired at the University of Wisconsin Madison. SZTrack is able to deter-

mine the lobe and hemisphere of origin in nearly all of these new patients without retraining

the network. To our knowledge, SZTrack is the first end-to-end seizure tracking network

using scalp EEG.

Introduction

Epilepsy is a chronic neurological disorder characterized by spontaneous and recurring sei-

zures [1]. While often treated with medication, roughly 30% of epilepsy patients are medically
refractory [2] and do not achieve seizure freedom with anti-epileptic drugs [2]. Alternative

treatments for these patients rely on our ability to detect, track, and localize seizure activity in

their brains. Namely, if we can determine that the seizures originate from a discrete seizure

onset zone (SOZ), then the most effective treatment is to surgically remove this region [3].

Multichannel electroencephalography (EEG) is the first modality used in the clinical evalua-

tion of epilepsy. At present, the EEG is visually scanned for electrographic signatures of a
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seizure. This process is time consuming, requires specialized expertise, and is prone to human

error [4].

Automated methods for scalp EEG have largely focused on the simpler problem of seizure

detection. Here, the EEG signals are first windowed into short epochs, from which a set of fea-

tures are extracted. Next, a classifier is trained on these features to declare each epoch as “sei-

zure” or “baseline” [5]. The field has explored several features that capture ictal, i.e., seizure

related, morphologies in the data. These features include cross-channel correlation [6], spectral

power [7, 8], approximate entropy [9], Lyapunov exponents [10], and wavelet coefficients [11].

While informative, these features are not robust to patient heterogeneity [12] and the high-

amplitude artifacts present in EEG data. As a result, traditional seizure detectors were trained

and evaluated on a patient-specific basis [6, 7, 13], which is impractical during a prospective

clinical review.

The rise of deep learning has prompted a new direction for seizure detection via neural net-

works. In the simplest case, hand-crafted feature extraction is combined with multi-layer per-

ceptrons to classify short windows of the EEG segment [14]. More advanced methods have

used 2D Convolutional Neural Networks (CNNs) to detect seizures based on EEG spectro-

grams [15, 16] and 1D CNNs to learn discriminative features directly from the EEG time series

[17–19]. In parallel to the window-wise encoding, time-series data are often modeled via

Recurrent Neural Networks (RNNs). Broadly, RNNs track temporal relationships by passing

hidden states between connected network components. RNNs may be applied to either the

raw EEG signal itself [20], or to features extracted from windows of the original EEG [21].

RNNs can also be coupled with CNN architectures, as in the work of [22]. Here, the CNN

encodings extracted from longer (i.e., 101 second) clips of EEG were classified using an RNN

network. Extending the combined CNN/RNN approach, the work of [23] couples a 1D CNN

with an RNN to classify seizure activity on a shorter one-second timescale.

In recent years, Graph Convolutional Networks (GCNs) have become popular for multi-

channel analysis of EEG data. Broadly, GCNs extend the traditional convolutional architec-

tures, which operate on a regular grid, to arbitrary graphs [24, 25]. Citing the network

structure of the brain, GCN approaches in epilepsy encode the underlying connectivity of the

brain, for example through spatial proximity or diffusion MRI pathways, directly into the fil-

tering operations of the network. In the work of [26], spectral features derived from the Fast

Fourier Transform are analyzed using GCNs to classify 10 second windows of multi-channel

EEG as either containing or not containing seizure activity. Along the same lines, the work of

[27] uses temporal GCNs to detect the presence of seizure activity in long (96 second)

sequences. Going one step further, the authors of [28] learn subject-specific graphs for (tempo-

ral) seizure prediction using intracranial EEG. Finally, GCNs have appeared in conjunction

with RNNs in other fields. For example, the work of [29] used this combination to the problem

of emotion recognition from EEG, and the work of [30] apply a spatio-temporal GCN [31] to a

Brain-Computer Interface (BCI) motor imagery task.

While deep networks achieve higher accuracies than purely model-based techniques [23].

simply detecting the onset and offset times of a seizure has limited translational value. Rather,

clinicians must understand the manifestation of seizure activity to plan downstream therapeu-

tics. Automated seizure localization from scalp EEG has received comparatively less attention

and has largely focused on improving the EEG spatial resolution (typically 20–40 sensors) by

deconvolving the signals into current dipoles [32, 33] or distributed sources [34–36] at the mil-

limeter scale. However, these inverse solvers are sensitive to physiological noise, the number of

EEG channels, and the underlying head model [37, 38]. With that said, a recent prospective

study [39] suggested that EEG source localization information can be used to alter presurgical

evaluation and in many cases shows a high degree of concurrence with MRI-based methods.
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However, the authors note that source has yet to be widely adopted in the clinic due to difficul-

ties in its interpretation and the lack of robust automated methods.

Thus, we take an alternative approach and combine the problems of detection and localiza-

tion to identify the onset and propagation of electrode-level seizure activity in clinical EEG

data. In this paper, we introduce SZTrack, the first end-to-end network for multichannel sei-

zure activity tracking. SZTrack uses a combined convolutional and recurrent approach to per-

form classification of seizure activity in individual EEG electrodes at timescales of 1 second,

thus generating predictive maps of seizure activity at each time-step. While the architecture

operates on each EEG electrode individually, we propose two novel aggregation techniques

during training to leverage multichannel phenomena in the EEG data. Our first aggregation

technique is to pool the channel-wise classifications into a single patient-wise seizure detec-

tion. This strategy allows us to train the network using standard clinical annotations of the sei-

zure onset and offset. It also accommodates the fact that seizure activity may be present in only

a subset of the EEG electrodes at a given time. Our second aggregation technique is to combine

the onset information across channels inanterior vs. posterior head regions andright vs. left

hemispheres into a single SOZ prediction. Once again, this strategy allows us to train our chan-

nel-wise architecture based on coarse SOZ annotations provided during clinical review. We

evaluate SZTrack on two clinical EEG datasets acquired at the Johns Hopkins Hospital and the

University of Wisconsin Madison. We demonstrate that SZTrack achieves comparable seizure

detection performance to state-of-the-art deep learning approaches. In addition, it can reliably

localize the SOZ in a leave-on-patient-out cross validation setting. Finally, SZTrack shows

promising cross-site generalization between the two datasets, which provides further evidence

of its clinical utility.

SZTrack: An end-to-end seizure tracking model

Fig 1 illustrates our SZTrack architecture. We first extract a hidden representation at the elec-

trode level by applying a 1D CNN encoder to each one-second window of the time series (left).

The encoding sequence for each electrode is passed through a Bidirectional Long Short-Term

Memory (BLSTM) unit to determine channel-wise seizure activity. As indicated in Fig 1, the

CNN and BLSTM parameters are shared across EEG channels, thus providing a compact deep

network architecture. The following subsections describe the SZTrack components as well as

the aggregation strategy used to train SZTrack for electrode level predictions from seizure

onset, offset, and coarse localizations. All models were implemented in PyTorch 1.5.1. Our

code is publicly available for download at https://engineering.jhu.edu/nsa/links/.

CNN encoding to capture instantaneous phenomena

The CNN encoder (Fig 1, left) extracts feature representations directly from one-second win-

dows of each EEG electrode signal. Let Xi[t] be the signal in EEG electrode i during window t
and X represent the combined signals for the entire recording. The signal Xi[t] is passed

through a 3 layer 1D CNN encoder to generate a hidden representation hi[t]. The first layer

consists of 20 kernels (length = 7 samples and padding = 3 samples), followed by a LeakyReLU

nonlinearity [40], Max Pooling (kernel = 2 samples) and Batch Normalization [41]. The sec-

ond and third layers use 20 kernels (length = 3 samples and padding = 1 sample), followed by a

LeakyReLU nonlinearity and Batch Normalization. Residual connections are added in the sec-

ond and third layers to ensure a smooth flow of gradient information [42]. Finally, we apply

global average pooling resulting in a length 20 hidden representation hi[t] for each electrode.

CNN parameters are shared for all electrodes to ensure a consistent feature representation.
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Seizure tracking via recurrent neural networks

The working hypothesis in focal epilepsy is that a seizure originates from a discrete SOZ and

spreads over time to involve other areas of the brain [43]. This spreading pattern is unique

across patients, occuring at different time scales and encompassing different spatial extents

[44]. We capture this temporal evolution using a BLSTM (Fig 1, right), which captures both

long-term and short-term dependencies [45]. Formally, the CNN encodings hi[t] are passed

through a BLSTM layer of 40 hidden units. This comparatively large size provides the repre-

sentational flexibility to track the seizure evolution on longer (i.e., minute-level) time scales.

We have tied the BLSTM weights across the electrodes to prevent SZTrack from biasing its

predictions towards certain areas of the scalp. Let oi[t] be the output of the BLSTM for elec-

trode i at time t. The channel-wise seizure prediction Yi[t] in EEG electrode i and time window

t is made via a simple softmax assignment, i.e., PðŶ i½t� j XÞ ¼ softmaxðWToi½t� þ bÞ.

Max pooling for global seizure prediction

Although SZTrack is designed to track the temporal evolution of seizure activity, we only have

access to coarse seizure onset and offset times for training. Therefore, we develop a max-pool-

ing strategy to aggregate the electrode level predictions Ŷ i½t� into recording-level predictions

Ŷ ½t� for each one-second window t. Formally, the global prediction Y[t] at window t is pre-

dicted as the maximum predicted probability of seizure in any individual channel, i.e.,

PðŶ ½t� ¼ 1 j XÞ ¼ max
i

PðŶ i½t� ¼ 1 j XÞ: ð1Þ

Effectively, when one channel enters the seizure state, the network registers a seizure,

accounting for the fact that the activity may concentrate in a single electrode or subset of elec-

trodes. This flexibility allows SZTrack to learn seizure spreading patterns at the electrode reso-

lution with only onset/offset training labels.

Fig 1. SZTrack architecture. Individual EEG electrode signals are fed through a 1D CNN (left). The sequences of representations are fed through the

BLSTM layer and then classified for seizure activity in each electrode.

https://doi.org/10.1371/journal.pone.0264537.g001
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Lateralization and anterior vs. posterior classification

Similar to the coarse temporal information, our EEG datasets contain only hemisphere and

lobe annotations of the seizure onset, such as “left frontal” or “right temporal”. Thus, in order

to train SZTrack with these labels, we aggregate electrode level seizure predictions Ŷ i½t�
according to the two partitions illustrated in Fig 2(a) and 2(b). In one partition, Fig 2(a), the

EEG electrodes are divided into the left and right hemispheres, denoted H1 and H2, respec-

tively. In the other partition, Fig 2(b), the EEG electrodes are divided intoanterior and poste-

rior head regions, denoted L1 and L2, respectively. This classification boundary is defined

such that the anterior head region coarsely aligns with frontal lobe seizure foci, while posterior

head region contains temporal and parietal foci.

To arrive at a hemisphere oranterior and posterior prediction, we combine first order dif-

ferences in P(Y[t] = 1 j X), denoting seizure onset times, with electrode level predictions. Let

ΔPon[t] capture the transition from baseline to seizure at time t. Mathematically,

DPon½t� ¼ maxðPðŶ ½t� ¼ 1 j XÞ � PðŶ ½t � 1� ¼ 1 j XÞ; 0Þ ð2Þ

As reported in Eq (2), ΔPon[t] will approach 1 for confident transitions into seizure, and

will be 0 if predicted seizures stays the same or decreases. These differences ΔPon[t] are multi-

plied by the seizure activity at time t, P(Yi[t]jX), summed, and normalized to create a channel-

level SOZ onset predictions P(Li = 1jX).

PðLi ¼ 1 j XÞ ¼
PT� 2

t¼0
DPon½t�PðŶ i½t� ¼ 1 j XÞ

PM
i¼1

PT� 2

t¼0
DPon½t�PðŶ i½t� ¼ 1 j XÞ

ð3Þ

Effectively, Eq (3) computes the predicted seizure activity in channel i at time t,

PðŶ i½t� ¼ 1 j XÞ, weighted by the onset activity ΔPon[t] at that time. Notice that this

Fig 2. Localization zones and electrode connectivity graph. Partition of EEG electrodes into zones to train our network based on coarse hemisphere

(a) andanterior and posterior head regions (b).

https://doi.org/10.1371/journal.pone.0264537.g002
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aggregation relies on both accurate temporal onset detection via ΔPon[t] and spatial electrode

prediction via P(Yi = 1jX) for a correct localization result. These predictions represent the pos-

terior probability map of the SOZ electrode.

During training, the electrode onset scores P(Li = 1jX) are aggregated according to the

regions defined in Fig 2(a) and 2(b) to create region level onset scores, ĥ ¼ PðHemi ¼ j j

XÞ ¼
P

i2Hj
ðLi ¼ 1 j XÞ and l̂ ¼ PðRegion ¼ j j XÞ ¼

P
i2Lj
ðLi ¼ 1 j XÞ. These hemisphere

andanterior and posterior predictions are trained using cross-entropy loss function using true

labels h and l, thus allowing SZTrack to learn electrode-level patterns from coarse clinical

annotations.

Validation strategy

We evaluate the seizure detection and localization performancesin separate experiments using

leave-one-patient-out cross validation (LOPO-CV). Thiscross validation strategy mimics a

standard clinical review by quantifying how well each method generalizes to unseen patients.

In the detection experiment, we consider the temporal overlap between clinically provided sei-

zure labels and the seizure predictions of SZTrack. In the localization experiment, onset weight

in predicted by SZTrack in each the localization based divisions in Fig 2 is considered. Our

detection and localization experiments are further detailed in the following subsections.

Seizure onset/offset detection. We train SZTrack using a cross-entropy loss between the

recording-level seizure prediction PðŶ ½t� ¼ 1 j X½t�Þ and the clinician annotation of whether

not a seizure is occurring at time window t. To mitigate over-fitting, training is done for 50

epochs with a weight decay of 0.0001 and a batch size of 4. The learning rate is set at 0.01 and

reduced by a factor of 0.5 every 20 epochs.

Performance is evaluated at the one-second window level and by correct classification of

the seizure period within each EEG recording. We adopt the strategy of [23], in which the

detection threshold is calibrated during each LOPO-CV fold to allow 2 minutes of false posi-

tive detection per hour on the training data. At the window level, we report sensitivity, specific-

ity, Area Under the Receiver Operating Characteristc (AU-ROC), and Area Under the

Precision-Recall curve (AU-PR) without assuming any temporal dependencies. At the seizure

level, we first identify continuous intervals that cross the calibrated detection threshold as “pre-

dicted seizures”.

The end of a seizure interval is typically corrupted by high levels of artifact (e.g., muscle and

eye movements from lingering spasms). Thus, seizure offsets are clinically more difficult to

identify, and post-seizure EEG is often mis-classified as a continuation of seizure activity.

Since clinical evaluation of epilepsy focuses on the seizure onset and evolution behavior, we

adopt a strategy that rewards true seizure detection (i.e., maximizing sensitivity) without

penalizing the model for continuing post-seizure predictions. Predicted seizure intervals that

overlap with annotated seizure activity are considered true positives, while intervals occurring

exclusively during baseline are considered false positives. We note that this quantification

strategy has been used previously in the seizure detection literature in [46] Predicted seizure

intervals that overlap with annotated seizure activity are considered true positives, while inter-

vals occurring exclusively during baseline are considered false positives. We report the seizure

level metrics False Positive Rate (FPR), computed as the number of false positives per hour,

and sensitivity, computed as the ratio of accurately classified seizures to missed seizures. We

also report average latency for true positive detections. These metrics quantify the clinically

relevant need for accurate seizure detection (sensitivity) with low latency and a small number

of false positive detections.
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Seizure localization. We evaluate lobe and lateralization accuracy in separate experiments

on recordings clipped from 15 seconds prior to 30 seconds after seizure onset. This clipping

mitigates the influence of physiological confounds, such as eye and muscle movements, in the

challenging localization task. In each case, the loss is a weighted combination of the cross-

entropy seizure detection loss:

L ¼ lszCEszðŷ; yÞ þ CEhemiðĥ; hÞ; or

L ¼ lszCEszðŷ; yÞ þ CEregionð̂l; lÞ
ð4Þ

We initialize SZTrack via the models learned in the corresponding LOPO-CV seizure

detection experiment and retrain the network for 50 epochs with the combined loss function

in Eq (4) using the same weight decay and learning rate schedule described above. To quantify

robustness, we investigate the LOPO-CV performance while sweeping the detection loss

weight λsz from (0.1 − 1.0).

Baseline models. We compare SZTrack to an ablated model, in which we remove the

BLSTM layer. This model, which we call No-BLSTM, allows us to evaluate the benefit of track-

ing temporal dependencies in the EEG data. We also adapt to recently published deep learning

models for seizure detection that use GCNs for spatial information fusion. In both cases, we

use the graph defined in Fig 3, which connects neighboring and contralateral EEG electrodes.

The first model is a temporal GCN (TGCN) introduced in [27]. We rely on “Architecture

II” from the paper, which achieves the best performance across most of the evaluation metrics

in the original work. For comparison with SZTrack, we remove the max pooling along the

temporal dimension and the average pooling along the spatial dimension, which allows the

TGCN to output predictions at the electrode-level and one-second window-level resolution.

The second and third GCN networks are introduced in [26] and apply the propagation rule in

[47] along with graph pooling for sequence detection. Here, the Shallow-GCN model uses two

GCN layers with 64 and 128 hidden units, respectively, followed by a single linear classification

layer. The Deep-GCN model uses five GCN layers with increasing hidden sizes of 16, 16, 32,

64, and finally 128, followed by two linear layers with 30 and 20 hidden units before a final

classification layer. Once again, we adapt the networks by removing the graph pooling layer to

allow for electrode-level predictions. Unlike the previous methods, the Shallow-GCN and

Deep-GCN operate on spectral input features. We construct this 10-dimensional input by

extracting the spectral power in 10 equally-spaced frequency.

Finally we compare SZTrack against two multichannel CNN baselines and a multichannel

CNN-BLSTM baseline that have recently appeared in the seizure detection literature. These

models differ from SZTrack in that they output a single global seizure prediction at every time
window. Hence, these models are incapable of tracking seizure activity at the resolution of indi-

vidual electrodes, which is the goal of SZTrack. The Wei-CNN baseline [17] uses 5 CNN layers

followed by 2 linear layers. The CNN-2D baseline operates on the short-time Fourier trans-

form images. Four CNN layers are applied before a final linear layer is applied for classifica-

tion. The CNN-BLSTM presented in [23] extracts features from the multichannel EEG signal

using a CNN before classifying the sequence of features using a BLSTM layer.

We include all models in the our detection experiments. Empirically, all baselines except

the CNN-BLSTM output noisy seizure detections, since they are made independently for each

one-second window. Therefore, we smooth the predictions of these baseline models by averag-

ing the outputs over 20 seconds. This smoothing procedure is omitted for SZTrack and the

CNN-BLSTM. We assess the localization performance for SZTrack and the No-BLSTM and

TCGN baselines. We omit the multichannel architectures, as they cannot output localization
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information at the window level. Similarly, we omit the Shallow-GCN and Deep-GCN base-

lines, as they do not include a temporal modeling component to capture seizure onset and evo-

lution. In addition, we adapt the CNN-BLSTM models from our detection experiment to

localization by adding a linear classification layer operating on the final hidden state of the

BLSTM. We re-train these CNN-BLSTM models using the detection models as a starting point

for an additional localization baseline. These models are trained explicitly for localization and

λsz is set to 0 accordingly.

Fig 3. Electrode connectivity graph. Electrode connectivity graph used in GCN baselines.

https://doi.org/10.1371/journal.pone.0264537.g003
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Results

Clinical EEG datasets

JHH Dataset: Our primary EEG dataset consists of 201 seizure recordings obtained from 34

focal epilepsy patients undergoing presurgical evaluation in the Johns Hopkins Hospital

between 2016–2019. Patients ranged from 6–77 years with a mean age of 35.7 ± 16.8 years. The

dataset contains 18 females and 16 males. Inclusion criteria were that the patient was a candi-

date for a focal resection with planned intracranial monitoring in the future. As part of this cri-

teria, all patients had a well-characterized seizure onset zone based on the available clinical

data. Exclusion criteria included non-epileptic seizures, generalized epilepsy, and patients who

were not deemed to be surgical candidates. Many patients in the dataset separately underwent

MRI or PET imaging. These scans revealed a range of structural abnormalities, including but

not limited to focal cortical dysplasia (FCD), mesial temporal sclerosis (MTS), white matter

disease, encephalocele, and gliomas. Table 1 summarizes the patient characteristics. Where

available, we have included imaging notes from the patient medical record.

All EEG were recorded on a Nihon Kohden system with a built-in amplifier. A 60 Hz notch

filter, 70 Hz low pass filter, and 0.016 high pass filter were applied to the data after acquisition.

The data was recorded at 200 Hz using the 10–20 electrode placement system [47]. For our

analysis, the EEG recordings have been clipped to include roughly 10 minutes of pre-seizure

and post-seizure activity.

UWMDataset: Our generalization dataset consists of 53 seizure recordings from 15 pediat-

ric patients admitted to University of Wisconsin-Madison (UWM) from February 2018 to

December 2019. Patients ranged from 8–17 years with a mean age of 13 ± 3.1 years. The data-

set contains 5 females and 10 males. Inclusion criteria included a suspected focal onset of the

epileptic seizures, as characterized by expert review of the medical record. As the UWM data-

set was drawn from a larger study of multimodal neuroimaging, inclusion criteria also

included that the patient underwent MRI scanning with available T1 MRI and resting-state

Table 1. Patient demographics and clinical attributes for our JHH evaluation dataset (N = 34) and UWM generalization dataset (N = 15).

JHH Dataset UWM Dataset

Seizure Type Focal Epilepsy Pediatric Focal Epilepsy

Has localizations? Yes Yes

Number of patients 34 15

Average Age 35 ± 16 years 12.8 ± 3.1 years

Minimum/Maximum Age 6/77 years 8/17 years

Number of Males/Females 16/18 10/5

Seizures per Patient 5.9 ± 5.8 6.6 ± 7.9

Minimum/Maximum Seizures per

Patient

1/24 1/33

Average EEG per Patient 1.8 ± 1.8 hours 2.1 ± 0.9 hours

Average Seizure Duration 112 seconds 60 seconds

Minimum/Maximum Seizure

Duration

13/979 seconds 13/212 seconds

Indicated Conditions Cavernoma, MTS, perventricular heterotopia, stroke, encephalocele, FCD,

low grade glioma

Focal cortical dysplasia, gliosis, encephalitis,

encephalocele

Lesional/Non-Lesional/Unspecified 24/3/7 14/0/1

Temporal/Extra-Temporal 26/8 3, 12

Posterior/Anterior 27/7 10/5

Right/Left 18/16 6/9

https://doi.org/10.1371/journal.pone.0264537.t001
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fMRI. However, the imaging data was not used in the present study. Of the 19 patients at

UWM that met the inclusion criteria, 4 patients were excluded, 1 due to prior resection, 1

patient whose EEG recordings contained only auras, and 2 patients with indeterminate seizure

onset zone. Similar to the JHH dataset, many patients had structural brain abnormalities visi-

ble on MRI and PET, such as FCD, encephalocele, gliosis, MTS, and encephalitis. Table 1 sum-

marizes the patient characteristics. Where available, we have included imaging notes from the

patient medical record.

The EEG were recorded on on a Natus Xltek EMU40EX system with built-in high and low

pass filters of 0.1 and 400 Hz. Further notch filtering was done after acquisition. The data was

recorded at 256 Hz using the 10–20 common reference and was resampled to 200 Hz to be

consistent with the JHH dataset.

All EEG data was collected during routine clinical care and was anonymized prior to analy-

sis under an approved IRB protocol at each participating site (JHH and UWM). Following

[48], we bandpass each recording between 0.5 to 30 Hz and remove high intensity artifacts by

thresholding each recording at two standard deviations from its mean value. The EEG signals

were then normalized to have mean zero and variance one. The EEG signals were then nor-

malized to have mean zero and variance one. One second non-overlapping windows were

extracted for input to the models. For efficiency, we train the JHH detection models on EEG

data containing 2 minutes of pre- and post-seizure activity; however, we evaluate them on the

full 20-minute recordings.

Detection performance. Table 2 reports the detection results on the JHH dataset. We

observe that the SZTrack and CNN-BLSTM exhibit nearly comparable performance at the

window level, with AU-ROCs of 0.895 and 0.899, respectively. This comparison with the

highly-optimized multichannel CNN-BLSTM show the ability of our simpler SZTrack model

to achieve state-of-the-art seizure detection performance while preserving channel-wise infor-

mation. Beyond these two models, the CNN-2D achieves the next-best overall performance, as

highlighted by the AU-ROC and AU-PRC measures. This performance may be due to the rela-

tively simple architecture, which can leverage the spectral input information. The remaining

baselines are clustered together, with the ablated No-BLSTM and the two GCN models (Deep

and Shallow) outperforming the recently proposed TGCN and Wei-CNN methods. We note

that the TGCN and Wei-CNN baselines rely on larger and more complex architectures, which

may result in overfitting to the relatively modest JHH dataset.

Unlike the window-level results, where there is a clear ordering between the methods, the

performance is mixed at the level of contiguous seizure detection. For example, SZTrack and

the CNN-BLSTM achieve the lowest detection latency at the cost of higher false positive

Table 2. Performance on the JHH dataset. Seizure detection results on the JHH dataset. Window-level metrics are aggregated across one-second segments of the EEG.

Seizure level results are calculated over the duration of the seizure interval.

Window Level Results Seizure Level Results

Model AU-ROC AUC-PR Sensitivity Specificity FPs/hr Sensitivity Latency (s)

SZTrack 0.895 ± 0.112 0.644 ± 0.281 0.593 ± 0.305 0.936 ± 0.065 13.05 0.865 12.35

CNN-BLSTM 0.899 ± 0.085 0.635 ± 0.241 0.590 ± 0.048 0.945 ± 0.048 16.46 0.919 10.84

No-BLSTM 0.797 ± 0.101 0.438 ± 0.224 0.518 ± 0.211 0.883 ± 0.092 8.17 0.894 21.07

TGCN 0.760 ± 0.124 0.485 ± 0.177 0.591 ± 0.183 0.821 ± 0.157 7.99 0.859 25.41

Deep-GCN 0.786 ± 0.0978 0.394 ± 0.218 0.485 ± 0.208 0.887 ± 0.078 8.05 0.823 23.56

Shallow-GCN 0.792 ± 0.097 0.412 ± 0.177 0.488 ± 0.183 0.892 ± 0.157 8.77 0.835 27.49

Wei-CNN 0.764 ± 0.156 0.488 ± 0.280 0.405 ± 0.279 0.921 ± 0.109 7.5 0.77 21.27

CNN-2D 0.824 ± 0.147 0.527 ± 0.247 0.470 ± 0.253 0.921 ± 0.109 10.2 0.84 25.39

https://doi.org/10.1371/journal.pone.0264537.t002
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predictions per hour. In contrast, the No-BLSTM, TGCN and static GCNs (Deep and Shallow)

make fewer false positive detections but have notably higher latency. In terms of sensitivity,

the CNN-BLSTM performs the best at 0.919 with the No-BLSTM model a close second at

0.894. The two GCN models performed comparably with sensitivities of 0.823 (Deep) and

0.835 (Shallow), which is on par with SZTrack. Finally, the Wei-CNN method achieves consid-

erably lower sensitivity than the others, perhaps due to the larger architecture and lack of tem-

poral modeling. Taken together, our seizure detection experiment demonstrates the clinical

utility of our simple channel-wise architecture and information fusion strategy.

To assess cross-site generalization, Table 3 reports the seizure detection performance of the

JHH models when evaluted on the UWM dataset. In this case, we recalibrate the detection

threshold for each of the JHH models (obtained via LOPO-CV) on the UWM dataset, but we

do not retrain the model parameters on the new data. Consequently, there is a performance

decline across all models when translated from the JHH adult cohort to the UWM pediatric

population. Nonetheless, we observe the same general trends. Namely, SZTrack shows compa-

rable performance to the strictly detection based CNN-BLSTM model at the window level with

AU-ROCs of 0.813 and 0.857, respectively. At the seizure level, SZTrack exhibits higher sensi-

tivity (0.639) at the cost of more FPs/hr (14.05) when compared with the CNN-BLSTM, which

had sensitivity and false positive rate of 0.523 and 2.83. Surprisingly, the Wei-CNN shows high

generalization performance, with an AU-ROC of 0.849, exceeding its AU-ROC of 0.764 in the

JHH dataset. This might be linked to the fact that the Wei-CNN was optimized for detection

on the publicly available Children’s Hospital of Boston (CHB) dataset [8], which also contains

pediatric patients. Similarly, the CNN-2D shows a high level of generalization stability across

datasets, perhaps indicating the robustness of spectral information.

Fig 4 illustrates the seizure tracking output PðŶ i½t� j XÞ by SZTrack for two patients from

the JHH dataset, as superimposed in red on a topographic scalp plot. These recordings contain

annotations of seizure spreading created by epileptologists during clinical workup. Seizure

activity maps are provided at the time of annotation to show concordance between annotated

seizure activity and SZTrack predictive outputs. As seen, the seizure activity automatically
learned by SZTrack from the EEG data shows strong agreement with clinically observed

spreading patterns during the seizure. We emphasize that due to our LOPO-CV training strat-

egy, SZTrack had no a priori knowledge of these patients prior to generating the predictions in

Fig 4. To the best of our knowledge, this is the first tacking result of its kind reported in the

literature.

Table 3. Generalization detection results on the UWM dataset. Seizure detection performance when applying the JHH models to data from UWM. We ran a LOPO-CV

on UWM to calibrate the seizure versus baseline detection threshold. However, we did not retrain the neural network weights.

Window Level Results Seizure Level Results

Model AU-ROC AUC-PR Sensitivity Specificity FPs/hr Sensitivity Latency (s)

SZTrack 0.813 ± 0.164 0.380 ± 0.301 0.427 ± 0.288 0.950 ± 0.060 14.05 0.639 5.48

CNN-BLSTM 0.857 ± 0.116 0.393 ± 0.298 0.329 ± 0.291 0.954 ± 0.083 2.83 0.523 12.28

No-BLSTM 0.724 ± 0.213 0.350 ± 0.312 0.287 ± 0.273 0.961 ± 0.073 7.48 0.517 12.65

TGCN 0.691 ± 0.205 0.257 ± 0.240 0.270 ± 0.228 0.894 ± 0.107 15.14 0.613 14.85

Deep-GCN 0.679 ± 0.219 0.285 ± 0.293 0.211 ± 0.206 0.958 ± 0.063 10.57 0.528 15.66

Shallow-GCN 0.699 ± 0.214 0.302 ± 0.299 0.245 ± 0.227 0.962 ± 0.063 8.77 0.557 16.39

Wei-CNN 0.849 ± 0.126 0.406 ± 0.291 0.536 ± 0.332 0.900 ± 0.145 11.11 0.701 5.87

CNN-2D 0.782 ± 0.157 0.382 ± 0.272 0.442 ± 0.221 0.956 ± 0.056 10.21 0.728 13.89

https://doi.org/10.1371/journal.pone.0264537.t003
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Fig 5 illustrates the model predictions made by SZTrack and the No-BLSTM baseline for

the fronto-temporal seizure shown on the top row of Fig 4. We have used the open-source

EEG visualization software EPViz (https://engineering.jhu.edu/nsa/links/) to overlay the chan-

nel-wise predictions in blue on top of the EEG signals. As seen, SZTrack (a) predicts seizure

activity originating in the temporal lobe channels T7 and P7. This prediction agrees with the

clinically annotated onset information “subtle slowing left temporal” at 623 seconds in the

EEG. Seizure activity quickly spreads to further involve left temporal, parietal, and left frontal

electrode channels. Once again this prediction concurs with the clinical note of “Broad Left

Temporal > Frontal Sharp Waves” at 639 seconds. In contrast, the No-BLSTM baseline cor-

rectly detects the left temporal onset but does not provide contiguous predictions. Conse-

quently, it fails to capture the clinically observed spreading pattern.

Localization performance. Fig 6 illustrates the average lateralization and lobe classifica-

tion performances in JHH dataset as the detection loss weight λsz is swept from zero to one.

Accuracy results from each location class are averaged and boxplots from three separate runs

are displayed for SZTrack, No-BLSTM, and the TGCN. The CNN-BLSTM baseline score is

shown by the single gray boxplot, as this model was evaluated independently of seizure detec-

tion. The lateralization results are striking, as SZTrack uniformly outperforms the No-BLSTM

and TGCN baselines, achieving its highest average accuracy of 0.826 at λsz = 0.6. The lobe iden-

tification task appears more difficult, as there is a universal decline in performance across all

methods. In this case, the TGCN slightly outperforms SZTrack, achieving a maximum average

lobe detection accuracy of 0.605 at λsz = 0.1 versus SZTrack’s 0.587 for λsz = 0.6. Nonetheless,

SZTrack achieves robust detection and lateralization performance, thus illustrating itspotential

clinical utility. We also note that this result is the first demonstration of end-to-end seizure

Fig 4. Seizure activity tracking. Seizure activity tracking in two JHH patients. Clinical SOZ annotations are given for each patient. Where clinical

annotations are provided, images show seizure activity tracking corresponding to annotation times.

https://doi.org/10.1371/journal.pone.0264537.g004
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localization from scalp EEG reported in the literature. With that said, further prospective anal-

yses are required to evaluate the impact of SZTrack on the current clinical workflow.

For a qualitative evaluation, Fig 7 illustrates the LOPO-CV localization results on the JHH

dataset for a single hyperparameter setting (λsz = 0.2 for lateralization and λsz = 0.6 for lobe

classification). The seizure onset maps, as denoted by P(LjX), are shown superimposed on

head plots in red. Lateralization and lobe images for each patient are displayed on the left and

Fig 5. SZTrack and No-BLSTM output comparison. Channel-wise predictions for the fronto-temporal seizure shown on the top row of Fig 4 are

superimposed on the EEG signal. In (a) SZTrack makes a confident prediction of seizure onset in the temporal channels which spreads to the parietal

and frontal areas. In (b) No-BLSTM responds to isolated seizure activity at the onset but does not provide a temporally stable prediction.

https://doi.org/10.1371/journal.pone.0264537.g005

Fig 6. Localization sweep results. Average localization accuracy in JHH when varying the weight on the detection loss. Boxplots are shown for the

SZTrack, No-BLSTM, and TGCN models. A horizontal dashed line shows performance for the CNN-BLSTM model.

https://doi.org/10.1371/journal.pone.0264537.g006
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right, respectively, with the expert-determined SOZ provided below. For ease of comparison,

we have added small circles to the corner associated with the clinical SOZ. A green circle indi-

cates a concordance between SZTrack and clinical annotations while a red circle indicates dis-

agreement. In 20 of 34 patients, SZTrack identifies both the correct hemisphere and lobe.

SZTrack identifies the correct lobe or hemisphere in all of the 14 remaining patients.

As a preliminary study of generalization, we selected a random LOPO-CV fold and applied

the trained SZTrack model to the UWM data with no fine tuning. Fig 8 illustrates localization

Fig 7. Localization results from the JHH dataset. Patient-wise lateralization and lobe classification for SZTrack in JHH. Predicted SOZ locations are

superimposed on the head figure in red. The small circle indicates the coarse clinical SOZ annotation, where green indicates concordance with clinical

annotations and red circle indicates disagreement. SZTrack correctly localizes both the hemisphere and lobe in 21 of 34 patients. In 12 of 34 patients,

SZTrack correctly localizes either hemisphere or lobe; it misses completely in just one patient.

https://doi.org/10.1371/journal.pone.0264537.g007
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maps P(LjX) for the hemisphere and lobe identification, as averaged across the seizure record-

ings for each patient. As seen, SZTrack correctly localizes both partitions in 8 of the 15

patients. In 5 of the patients, SZTrack correctly localizes either hemisphere or lobe. It misses

completely in only 2 of the 15 patients. This result suggests that our SZTrack architecture is

capturing salient information regarding seizure onset location that generalizes across different

epilepsy cohorts.

Discussion

SZTrack introduces a channel-wise architecture that consists of a CNN encoder, operating on

one second windows of the EEG signal, followed by a BLSTM to capture both short- and long-

term temporal dependencies. While the SZTrack architecture analyzes each EEG channel indi-

vidually, our novel training strategy allows the network to learn and predict seizure activity

based on the multichannel data. These predictions show high concordance with clinician

determination of the seizure onset and offset. In addition, we have demonstrated the first end-

to-end seizure localization results based on multichannel scalp EEG. Excitingly, SZTrack is

able to track spatiotemporal seizure activity at higher resolution than the clinician annotations

used for training.

In terms of seizure detection, SZTrack performs comparably to the benchmark

CNN-BLSTM architecture. This result demonstrates that our max-pooling aggregation

Fig 8. UWM dataset generalization results. Lateralization and lobe classification results when applying a SZTrack model trained on JHH to data from

UWM. Predicted SOZ locations are shown superimposed on the head figure in red. The small circle indicates the coarse clinical SOZ annotation.

https://doi.org/10.1371/journal.pone.0264537.g008
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strategy can account for multichannel phenomena to a similar extent as a larger cross-channel

architecture. Going one step further, Figs 4 and 5 demonstrate that SZTrack can learn chan-

nel-level seizure onset and propagation, a task that is impossible for the CNN-BLSTM. Specifi-

cally, it is not possible to disentangle which EEG channel(s) are driving the CNN-BLSTM

prediction at any given time. In Fig 5 the added benefit of the LSTM for temporal seizure activ-

ity in the SZTrack architecture can be seen when comparing to model outputs provided by the

No-BLSTM baseline. While the No-BLSTM baseline identifies some seizure activity near the

annotated onset, it does not produce temporally contiguous seizure predictions after this

onset. With the added LSTM layer, SZTrack correctly infers the start and continuing evolution

of seizure activity.We stress that the tracking patterns are learned solely from annotations of

the seizure onset and offset interval; our dataset does not contain fine-grained information at

the level of individual channels.

When compared with GCN baselines, SZTrack exhibits higher seizure detection perfor-

mance. These GCN models encode hypothesized network structures of the brain directly in

their architectures in an attempt to capture “biologically informed” relationships in the data.

Empirically, we observe that this approach does not directly lead to increases in detection per-

formance, as SZTrack outperforms these graph based approaches. In fact, the results in Table 2

suggest that it may be more valuable to incorporate multichannel information during training

(e.g., our max-pooling strategy) rather than directly into the network architecture. This is par-

ticularly true if there is a mismatch between the assumed graph structure and the actual EEG

data.

In addition to detection efficacy, we make a first attempt to perform and validate end-to-

end seizure onset localization from scalp EEG. SZTrack outperforms the ablated No-BLSTM,

demonstrating the necessity of modeling temporal dependencies for this challenging task.

SZTrack also outperforms the TGCN, which relies on both a GCN layer for cross-electrode

information sharing and 1D temporal convolutions for time-series modeling. Similar to the

detection task, perhaps the lower TGCN performance reflects a mismatch between the

assumed graph and the actual data dependencies. The CNN-BLSTM, trained only for seizure

localization, shows the worst performance of all the models in lateralization, and near-chan-

ceanterior vs. posterior detection accuracy. This model analyzes all EEG channels concurrently

in its architecture, which likely blurs subtle differences indicative of the seizure onset location.

We note a general decrease inanterior vs. posterior classification for all models. We hypoth-

esize that this decrease is partially attributed to class imbalance. Most patients in our datasets

have temporal lobe onsets, which greatly reduces the number of examples to learn patterns

associated with other onset locations. Interestingly, in Fig 7 we note that in roughly 6 of 8 cases

where SZTrack fails to correctly localize the SOZ in the anterior vs. posterior classification

task, during the lateralization taskSZTrack places the mode of its SOZ probability in the cor-

rect anterior or posterior head region. This indicates that without the confounding effects of

the dataset imbalance, SZTrack may learn to correctly classify anterior or posterior head

regions even without being explicitly trained to do so.

The coarse division of onset zones intoanterior versusposterior may also contribute to the

performance decrease, as it does not accommodate seizures originating at the border of this

division or complex multi-focal cases. Particularly, we note that electrodes F7 and F8 may be

involved in both frontal and temporal lobe onsets [49], while our division scheme necessitates

that these electrodes be placed in only one head region. Future work will consider a more com-

prehensive channel grouping strategy that allows for soft assignments and overlapping classes.

In theanterior vs. posterior classification task, we noted more variation in performance across

models as the hyperparameter λsz is swept across its range. While the CNN-BLSTM drastically

under-performed in the lateralization task, we note that its performance inanterior vs.
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posterior classification is on par with SZTrack and the other two baselines, likely due to the

general difficulty of this task.

When applied to a generalization dataset, SZTrack shows robustness without the need for

retraining. In the detection task, SZTrack maintains a stable AU-ROC across the JHH and

UWM datasets. In the localization feasibility study, SZTrack models trained in the JHH dataset

correctly identify the SOZ to the hemisphere andanterior vs. posterior level consistent with

models trained and tested in the original dataset. These results demonstrate the robustness of

SZTrack to real-world changes in clinical condition.

While we have demonstrated theretrospective clinical utility of SZTrack in detecting, track-

ing, and localizing seizure activity intwo separate scalp EEGdatasets, we note that our method

has several limitations. While SZTrack achieves high seizure detection, the CNN-BLSTM sur-

passes SZTrack in performance in the original JHH dataset and UWM generalization dataset.

Future work will incorporate a multi-channel component to SZTrack, similar to the

CNN-BLSTM, to leverage cross-channel dependencies when making a prediction. Another

issue is the relatively pooranterior vs. posterior classification performance. As described above,

some issues inanterior vs. posterior classification may stem from our choice of dividing

boundary betweenanterior and posterior SOZs. Specifically, onsets that occur near the bound-

ary (e.g., fronto-temporal SOZ) are likely difficult for SZTrack to disambiguate. This scenario

motivates a finer evaluation and training strategy foranterior vs. posterior prediction. In the

future, we will explore data augmentation and aggregation techniques to increase the amount

of extra-temporal seizure data for model training. Finally, validation of SZTrack in clinical set-

tings is required to confirm its efficacy in prospective applications in the long term monitoring

settings.

Conclusion

We have introduced SZTrack, a novel deep neural network architecture for seizure activity

tracking in multichannel EEG. Through cross electrode parameter sharing and novel predic-

tive output aggregation, SZTrack achieves comparable seizure detection performance as deep

models that use GCNs for direct information sharing between EEG electrodes. In addition,

our aggregation techniques allow SZTrack to predict electrode level seizure activity from

coarser clinical annotations. We also evaluate SZTrack on the difficult task of seizure localiza-

tion, where it achieves high hemisphere and above-chanceanterior vs. posterior region classifi-

cation accuracy. The localization performance also generalizes across sites with no fine tuning.

SZTrack represents the first end-to-end neural network for seizure tracking, detection, and

localization, establishing an important benchmark for the field.
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S1 Appendix. JHH dataset demographics. Patient information including sex, age, seizure

focus localiztion, and other relevant notes are given for patients in the JHH dataset.
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focus localiztion, and other relevant notes are given for patients in the UWM dataset.
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S1 Movie. Seizure activity tracking for Fig 4 top row. SZTrack outputs for the evolving sei-

zure shown in the top row of Fig 4 are displayed as a movie.

(MP4)

PLOS ONE Automated seizure activity tracking and onset zone localization

PLOS ONE | https://doi.org/10.1371/journal.pone.0264537 February 28, 2022 17 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0264537.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0264537.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0264537.s003
https://doi.org/10.1371/journal.pone.0264537


S2 Movie. Seizure activity tracking for Fig 4 bottom row. SZTrack outputs for the evolving

seizure shown in the bottom row of Fig 4 are displayed as a movie.

(MP4)
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