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Abstract

Action and perception are closely linked in many behaviors necessitating a close coordination between sensory and motor
neural processes so as to achieve a well-integrated smoothly evolving task performance. To investigate the detailed nature of
these sensorimotor interactions, and their role in learning and executing the skilled motor task of speaking, we analyzed
ECoG recordings of responses in the high-γ band (70–150 Hz) in human subjects while they listened to, spoke, or silently
articulated speech. We found elaborate spectrotemporally modulated neural activity projecting in both “forward”
(motor-to-sensory) and “inverse” directions between the higher-auditory and motor cortical regions engaged during
speaking. Furthermore, mathematical simulations demonstrate a key role for the forward projection in “learning” to control
the vocal tract, beyond its commonly postulated predictive role during execution. These results therefore offer a broader
view of the functional role of the ubiquitous forward projection as an important ingredient in learning, rather than just
control, of skilled sensorimotor tasks.

Key words: auditory cortex, human ECoG, mirror network, sensorimotor interactions, speech perception, speech production,
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Introduction
Sensorimotor interactions have long been postulated as a fun-
damental ingredient of performance of complex tasks engaging
a perceptual system (visual, auditory, or somatosensory) and
a concomitant suite of motor actions (reaching, speaking, and
lifting) (Wolpert and Ghahramani 2000; Keller et al. 2012). The

conceptual motivations are anchored in control theory where
rapid complex actions can benefit from fast sensory feedback
to inform the controllers of the accuracy of the ongoing perfor-
mance so as to maintain or correct its course (Conant and Ashby
1970; Wolpert et al. 1995). The same rationale and motivations
also apply in purely sensory contexts where the balance between
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bottom-up stimulus representations and its top-down predic-
tions are postulated to play a key role in stimulus perception
(Keller and Mrsic-Flogel 2018).

Feedback may take the form of deviations (errors) between
the sensory consequences of an ideal target performance and
its “prediction,” computed by extrapolating a “forward” model of
the motor-plant. This is how accurate arm reaching is informed
by visual and proprioceptive cues (Jackson and Husain 1997)
and how the vocal tract exhibits smooth delivery and executes
rapid corrections of speech from auditory feedback (Hickok 2012;
Houde and Chang 2015; Wirthlin et al. 2019). This predictive
function of sensorimotor interactions has even been postulated
to apply in reverse, to explain how robust sensory perception
can arise from observing motor action, for example, the role of
lip-reading in speech comprehension, or in the Motor Theory of
Speech where acoustic features of speech are presumed to be
transformed and encoded as articulatory commands (Liberman
et al. 1967; Massaro and Chen 2008; Lotto et al. 2009). Finally,
these bidirectional sensorimotor interactions achieve their full
generalization in the findings of the mirror-neuron responses
(Perry et al. 2018), which have claimed a causal role not only
in all sensorimotor systems but also in accounts of social func-
tion and emotional relations (Iacoboni 2009). Predictably, these
claims have provoked numerous detractions and debates that
have served to enrich and deepen the understanding of these
phenomena.

In order to characterize sensorimotor interactions in the
human cortical speech system, we recorded and analyzed the
sensorimotor neural interactions with ECoG in humans while
they spoke, listened, or simulated speaking by moving their vocal
tract without producing sound. The goal was to characterize
more accurately the nature of the spectral or temporal repre-
sentation of the auditory and motor cortical responses. We also
used these responses to re-examine the basic computational
architecture of the sensorimotor interactions with the aim of
clarifying their functional role in action and perception. Figure 1A
illustrates the basic reciprocal sensorimotor projections as would
typically be involved in speech production (Poeppel 2014; Houde
and Chang 2015). Specifically, during speaking, motor areas
control vocal-tract movements that generate a speech signal.
It has also been proposed that certain motor cortical areas send
a parallel internal neural copy of the speech signal to the auditory
cortex—the forward prediction signal, where it is compared with
the responses induced by the incoming speech (Hickok and
Poeppel 2007). During listening to speech, an “inverse” mapping
from the auditory to the motor areas would create a motor
representation of the acoustic signals (Wilson et al. 2004).

Because of this bidirectional flow of interactions between
the auditory and motor responsive regions (L and M in Fig. 1A),
we shall refer to this phenomenological network as the “Mirror
Network” (or MirrorNet). In the context of this framework, we
explain how ECoG recordings directly reflected the spectrotem-
poral nature of the MirrorNet projections: the forward motor
influences into the auditory cortex during silent speaking (or
miming), the inverse auditory influences into the motor areas
during listening, and finally the bidirectional influences dur-
ing speech production. Two previous studies (Cogan et al. 2014;
Martin et al. 2018) had adopted experimental paradigms anal-
ogous to ours. However, the goals, analyses, and conclusions
differ fundamentally from those of this study, although they
are mutually consistent as we shall elaborate later. Finally, it
should be emphasized that we use the terms “motor” and “audi-
tory” here to refer to the dominant sources of the forward and
inverse projections that we seek to contrast; a myriad of other

influences likely contribute to or modulate these auditory and
motor signals such as those due to imagination, expectations,
linguistic processes for lexical access and sentence formation,
and other cognitive functions that cannot be fully controlled for
or eliminated (Skipper et al. 2017), but nevertheless can still be
contrasted to learn from their differences.

The findings from our experiments confirm the basic struc-
ture of the auditory–motor mirror network (Fig. 1A) and reveal
that the responses of the forward and inverse projections are
spectrotemporally rich enough to allow for accurate representa-
tions of speech. The results also suggest that a key function of
the sensorimotor interactions is to enable the brain to learn how
to use the vocal tract for speech production, rather than simply
to control its performance during speaking. In support of this
idea, we developed a computational instantiation of this basic
network and used it to train a speech synthesizer to produce
speech from mere exposure to a corpus of speech data, thus
demonstrating how complex actions like speaking or playing
a piano can be learned through auditory feedback and motor
feedforward signals between the two cortical regions.

STAR Methods
Contact for reagent and resource sharing of further information
and requests for resources and reagents should be directed to
and will be fulfilled by the Lead Contact, Prof. Nima Mesgarani
(nima@ee.columbia.edu).

Human Subjects

Four subjects (aged: 20, 22, 50, 51) participated in this study
while undergoing clinical treatment for epilepsy. All subjects
gave their written informed consent to participate in research. All
subjects were located at North Shore University Hospital (NSUH).
Research protocols were all approved and monitored by the
institutional review board at the Feinstein Institute for Medical
Research and at Columbia University. Informed written consent
to participate in research studies was obtained from each subject
before implantation of electrodes. All subjects had depth elec-
trodes implanted, with varying amounts of coverage over the left
and right auditory and motor cortices for each subject.

Method Details
Stimulus

Natural American English sentences were presented varying in
duration from 1 to 2 s from the TIMIT database. A computer
screen was placed in front of the subjects to cue them about the
task. Sentences were presented one at a time using a single Bose
SoundLink Mini 2 speaker in front of the subject. The cue on the
screen would read (in the following order): “Listen” (L): indicating
the subject that they have to listen to the sentence presented;
“Loud Articulation” or speaking (S): indicating to the subject that
they have to repeat the sentence they just heard loudly; “Silent
Articulation” or miming (M): instructing the subject to repeat
the sentence silently without any sound; “Listen”: instructing
the subject to listen to the same sentence, but now played in
their own voice; and “Silent Articulation”: the subject repeats
the sentence once again silently. Only 3 subjects had the screen
in front of them for the cue. In one subject (#4), we did not use
the screen to cue them and consequently collected limited data
(one presentation only) in the various L, S, and M conditions. To
segment the brain responses for each of these task conditions,
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Figure 1. Experimental Paradigms. (A) Schematic depicts the four types of recordings from all electrodes which are expected in each subject: Miming (M) responses

are when a subject articulates the speech without any sound; Listening (L) responses are from the subject listening passively to the speech; Speaking (S) signals are

recorded while subject articulates audibly the speech; Noise (N) are recordings of the background noise on the electrodes in silence. The schematic illustrates the

postulated forward and inverse projections between the auditory and motor areas. (B) Electrodes selection: (Upper panel) Recordings were usually made with numerous

electrodes, for example, 353 in this subject (240 in right hemisphere). Only a few electrode responses were selected for analysis, according to the illustrated criteria.

Specifically, auditory electrodes are those that exceed specific activation levels during listening (green trace), for example, tval-threshold = 30. Motor electrodes are those

that exceed a specific threshold of activation during miming (black trace), for example, tval threshold = 20. Speaking usually activates both auditory and motor electrodes

(dashed red trace), and even sometimes additional electrodes that are not in either set. However, these are not used in this analysis. (Lower left panel) Responses from

an auditory electrode (#127) during listening (green trace), and a motor electrode (#142) during miming (black trace) to the same speech stimulus (signal envelope in

blue trace). (Lower right panel) Average responses from all auditory electrodes during listening (green), speaking (red), and miming (black) to the same speech sentence

(signal envelope in blue trace). All responses are plotted on the same amplitude scale and baseline. Therefore, they are largest during listening, smaller during speaking,

and smallest during miming.

we recorded a video and audio of the subject performing the task
which was synced to the recording of their neural data.

Subsequent data analysis relied on segmenting all the
recorded stimuli and video into sentence-long segments, and
aligning all L, M, and S responses to the speech stimuli. In all
scenarios, the acoustic spectrograms (for L and S conditions)
were used as the reference to align the responses. In the M
condition, there were no acoustic signals, and so the videos of the
subjects articulating silently the sentences were used. The frame
rate of the video was 10 frames/s, and the beginning of a sentence
was estimated based on a careful visual inspection of when the
subject began to articulate. Extra care was taken to minimize
systematic temporal misalignments between the M responses
and their corresponding speech spectrograms. One independent
check of such misalignments is seen in the M-STRF’s measured
on motor and auditory electrodes. Those responses were aligned
exactly the same way relative to the speech spectrograms, yet
they exhibited a significantly different latency relative to the
onset of the stimuli, which we conclude reflect a functionally
meaningful temporal shift in the responses relative to the onset
of the articulations.

Noise samples were collected on all electrodes during 10 s
of silence at the start of the recording sessions. To extend the
signal to match the lengths of the L, S, and M recordings, we
modeled the noise samples of each electrode as the 10th order AR
processes. The AR coefficients are estimated by the OLS method
and used to generate new noise signals of the appropriate dura-
tion. The mean and variance of the generated noise signals are
matched to those of the 10 s of recorded spontaneous activity.

Data Preprocessing and Hardware

Electrocorticography signals with sampling rate of 3000 Hz were
recorded with a multichannel amplifier connected to a digital
signal processor TDT (Tucker-Davis Technologies). All data was

montaged again to common average reference (Crone et al. 2001).
Neural responses were first filtered using the Hilbert trans-
form to extract the high-gamma band (70–150 Hz) for analysis
(Edwards et al. 2009) and were then down-sampled to 100 Hz for
further analysis.

Auditory and Motor-Electrode Selection

Electrodes were designated as auditory electrodes or motor
electrodes depending on what drove their responses. Locations
of some of these electrodes in 3 subjects are shown in
Supplementary Figure 5.3. Auditory electrodes were those that
responded to speech during passive listening, but not during
silent miming. These sites were determined by calculating the
maximum t-value of each electrode’s response between silence
and speech. Electrodes with a maximum t-value greater than a
threshold value (t-values>30 (P < 0.001)) were selected (Fig. 1B),
resulting in 9, 15, 17, and 13 electrodes from subjects 1–4, respec-
tively, for a total of 54 electrodes used in most further analyses.
Motor electrodes were similarly selected by their activity during
silent miming of the speech sentences [t-values>20 (P < 0.001),
Fig. 1B], resulting in 21 electrodes from each of subjects 1–3 for
a total of 63 electrodes. Subject #4 had no responsive motor
coverage. For all subjects, no electrodes responded significantly
enough in both listening and miming conditions, and hence, the
two sets of electrodes were mutually exclusive.

Spectrotemporal Receptive Fields and Stimulus
Reconstruction

We calculated the spectrotemporal receptive fields (STRF) of each
electrode using a normalized reverse correlation algorithm. Reg-
ularization and cross-validation techniques were used to prevent
overfitting of the STRF (David et al. 2007). STRFs were calculated
using the same input speech spectrograms, and responses during
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the three different conditions: Listening (L-STRF), Speaking (S-
STRF), and Miming (M-STRF). The different STRFs were examined
either individually (per electrode) or averaged over all auditory
and motor electrodes. To confirm the meaningful nature of these
STRF measurements, we confirmed in all cases that the STRFs
lose their structured look when we shuffled the labels of the
sentences relative to the responses. Furthermore, we also con-
firmed that excising up to 50 ms of the onset responses and their
corresponding speech stimuli did not affect the shapes of the
STRFs, indicating that they reflected primarily the correlations
between the ongoing phase-locked responses and their corre-
sponding speech stimuli, and not just the onsets.

We also estimated using the same methodology the relation-
ship between auditory- and motor-electrode activities by treating
them as inputs and outputs and computing the “filter” that
transforms one to the other using the same reverse-correlation
algorithm.

Stimulus reconstruction decoders were calculated (Mesgarani
et al. 2009; Pasley et al. 2012) using custom code to implement
ridge regression. K-fold cross-validation was used to select a
ridge parameter that would optimally predict neural data in the
case of an STRF or optimally reconstruct spectrograms in the case
of stimulus reconstruction.

Generation of Brain Figures

This study was not specifically designed to localize the senso-
rimotor interactions, but rather to explore the dynamics of the
sensorimotor interactions. Therefore, there was no attempt to
optimize the distribution of the electrode recordings across the
various brain regions, and consequently, several regions were
highly under-represented, and a few electrodes were difficult
to localize because of their placement relative to skull screws
and other technical reasons. Nevertheless, we managed to map
many of the electrodes in each subject using co-registration
by iELVis (Groppe et al. 2011, 2017) followed by their identifi-
cation on the post-implantation CT scan using BioImage Suite
(Papademetris et al. 2006). Anatomical locations of these elec-
trodes were obtained using Freesurfer’s automated cortical par-
cellation (Dykstra et al. 2012) by destrieux brain atlas (Destrieux
et al. 2010). These labels were closely inspected by neurosurgeon
using subject’s co-registered post-implant MRI. The electrodes
were plotted on the average brain template ICBM152 (Fonov et al.
2011) using Brainstorm (Tadel et al. 2011). We were able to localize
accurately most auditory electrodes. However, in two subjects
(1,2), it proved difficult to be certain of the locations of a subset
of the motor electrodes. All those were labeled UC (uncertain).
Other locations are labeled as follows: Superior-temporal gyrus
and sulcus (STG, STS); inferior and middle temporal gyrus (ITG,
MTG); Heschel gyrus (HG); planum temporalis (PT); precentral
and post-central gyrus (PG, PCG); insula (INS); anterior lateral
fissure; caudal middle frontal; inferior opercular sulcus; supe-
rior frontal gyrus; and hippocampus. Supplementary Figure 5.3
gives an overview of the electrode placements in three sub-
jects. Orange and blue electrodes refer to auditory and motor
electrodes, respectively. Darker shades of these colors refer to
electrodes that were relatively strongly interacting electrodes.

Electrode Receptive Fields between Auditory and Motor
Electrodes

Electrode receptive fields between the two sets of auditory and
motor electrodes in each subject were calculated in the same

manner as the STRFs (i.e., k-fold ridge regression). Time lags from
−100 to +300 ms were used in the analysis. The two sets of
electrodes were commonly quite far apart, and hence, their noise
correlations were relatively weak compared with the evoked-
response correlations. We further used the prediction quality of
these auditory or motor receptive fields to weight the display of
each electrode’s mapping. Thus, the more predictable electrodes
have more strongly modulated receptive fields and hence more
vibrant colors.

Quantification and Statistical Analyses
Response Correlations across Conditions and Electrodes

Correlation coefficients ccij were computed to measure the
match between the responses across electrodes or conditions, as
well as between reconstructed and original spectrograms. Unless
explicitly stated, all responses were normalized to have a zero-
mean and unit variance. Comparisons between the spectrograms
and reconstructed spectrograms were often done on a per-
frequency-channel case, with the matches then all averaged
at the end. We also computed the ccij on the full normalized
spectrograms, with very similar results.

Ranking Method for Sentence Recognition

To assess whether responses to the 60 sentences reflected specif-
ically the spectrotemporal structure of the stimuli that evoked
them, we computed the correlation-coefficients ccij in the follow-
ing two sets of tests:

1. ccij = < Mi, Lj>, where M is the raw response to the ith
sentence and L is the response to the jth sentence. If the
responses are accurate enough, then this ccij should be largest
when both the L and M responses are to the same sentence,
that is, when i = j for all sentences.

2. ccij = < Mi, Lj>, where Mi and Lj are the reconstructed stimulus
spectrograms from all M and L responses on all electrodes,
to the ith and jth sentences, respectively. Again, if the recon-
structions reflect accurate spectrotemporal responses, then
the ccij should be largest when the two reconstructions are of
the same sentence, that is, i = j for all sentences.

We computed the ccij values across all sentences and then
ranked these values for each ith sentence against all other 60
sentences. We normalized the ranks between 0 and 1, where
1 refers to the highest and 0 is the lowest rank (among all
60 different sentences). We then combined the data from all
matches and computed the average rank of the ccii for all 60
sentences and compared the average to a random shuffling of
all sentence labels. The more reflective the responses are of the
sentences that evoke them, the better is the rank of the ccij.

Implementation and Training of the MirrorNet

The MirrorNet is a model for learning to control the vocal
tract based on an auto-encoder neural network architecture.
The structure of this network is shown in Figure 6, which is
functionally equivalent to the projections and measurements
depicted in Figure 1A, and is arrived at as detailed in the
beginning of the last section in Results entitled “Sensorimotor
interactions and learning in the Mirror Network.” The goal
of the MirrorNet is to demonstrate the potential function of
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the sensorimotor projections in learning how to control the
vocal tract by generating the appropriate motor commands
corresponding to any intended speech signal. This entails
learning the two neural projections investigated in the analysis
of this study (Fig. 6A): an inverse mapping from auditory
representation to motor parameters (Encoder) and a forward
mapping from the motor parameters back to the auditory
representation (Decoder). As a model of the vocal tract, we
used the WORLD synthesizer (Morise et al. 2016), a simple and
widely used speech synthesizer. A python wrapper of the original
code was used in this study (https://github.com/JeremyCCHsu/
Python-Wrapper-for-World-Vocoder). The MirrorNet model also
consisted of multilayer convolutional neural networks as the
Encoder and the Decoder.

The WORLD synthesizer takes in as input a set of parameters
at each time instant representing the spectral envelope of a
speech (SP), the pitch (F0), and the voicing/no-voicing indicator
(AP) and generates a time-waveform with a spectrogram of these
features. The overall goal is for the Encoder to invert this process
and produce the parameters (SP, F0, and AP) from the waveform
and for the Decoder and synthesizer in parallel to reproduce
the same waveforms. All waveforms are actually converted to
their corresponding auditory spectrograms, and all the errors
used in the learning process are measured in the spectrogram
domain. The dimensions of F0, SP, and AP were 1, 513, and 513,
respectively, for each 5-ms segment of speech, and the generated
speech from the synthesizer was sampled at 16 kHz. Thus, for a
2-s waveform (1∗32 000), F0, SP, and AP are 1∗400, 513∗400, and
513∗400 long, respectively. The neural networks were based on
a multilayered Temporal Convolutional Network (Lea et al. 2017)
using RELU as activation functions. This network implementa-
tion is illustrated in Figure 6C.

The Encoder and Decoder networks are trained to map the
input spectrogram (S) to the parameters and back again to a
reconstruction of the spectrogram S′, which in parallel with
the synthesizer output S′′ (Fig. 6A). The training objective is to
minimize both the error ec between (S′, S) and the error ed

between (S′, S′ ′). We thus consider the MirrorNet very simi-
lar to a classic “autoencoder network,” but with a constraint
that the output of the synthesizer S′ ′(F0, SP, AP) is mapped
to →S′ by minimizing ed and simultaneously minimizing ec

to map S′→S. Consequently, the adjustments of the Encoder
and Decoder networks are carried out simultaneously through
a backpropagation of the errors as explained in the text. The
speech database was obtained from the CSTR VCTK Corpus
which contains about 12 000 sentences. Each waveform is resam-
pled at 16 kHz, trimmed to 2 s, and normalized to unit power
https://doi.org/10.7488/ds/1994.

Training was performed on 194 batches, each of size 64
sentences using the Optimizer Adam. The initial learning rate is
10−3 and took about 60 min to train 1 epoch. Training strategy: The
key procedure that led to a successful training of the MirrorNet
is to perform the training epochs alternately minimizing ed and
ec. There were 2 phases to the training. Phase 1: The initialization
of the training proceeded by using random assignments of the
“hidden parameters” F0, SP, and AP, which are used to generate
through the synthesizer an initial random spectrogram and then
to minimize the error ed to have the Decoder converge toward
the synthesizer. At the same time, the random spectrogram is
used to initialize the Encoder to map it to the random F0, SP,
and AP. This initialization proceeds with many random F0, SP,
and AP equivalent to about 20 min of speech, and the error
ed decreased considerably. Phase 2: Using 20–40 min of natural

speech material, the initialized network continued to be trained
with alternating epochs and decreasing ed and ec for at least
another 20 min. The results of the training illustrated in Figure 6D
used unseen material network after training was stopped.
Clearly, the errors continued to decrease, and higher fidelity
is assumed to be possible if training continues with more
speech.

Data and Code Availability

There are restrictions to the availability of dataset due to the
protection of human subjects who participated in this study. The
data that support the findings of this study are available upon
request from the corresponding author [NM].

Results
Recordings were obtained with ECoG electrodes implanted
in 4 patients during surgery to relieve epileptic seizures (see
Supplementary Fig. 5.3 for some electrode locations in 3 of the
patients and Methods). Neural responses were recorded under
four different scenarios as illustrated in Figure 1A: 1) Listening
(L), where subjects listened to a sequence of 60 sentences
selected from a speech corpus (TIMIT, Zue et al. 1990); after each
sentence, subjects 2) Spoke (S) audibly repeating the sentence
they just heard. They then 3) Mimed (M) the same sentence
without producing any sound, and finally, a sample of 4) Noise (N)
was recorded while the subjects remained silent. For 3 subjects,
the L and M scenarios were repeated using the subjects’ own
spoken utterances, and these are the primary sources of the
results of the analyses described below. The contrast between
the M scenario and the others was utilized in a similar fashion
in Cogan et al. (2014), and more recently by Martin et al. (2018)
for playing a musical instrument with and without sound, and
hence some of our analyses and interpretations echo these
studies.

Surface and implanted electrodes were placed on each sub-
ject, distributed over a wide cortical area with coverage in HG,
STG, several Motor areas, and many other regions. For all our
analyses, the ECoG responses refers to the envelope of the γ -band
activations (70–110 Hz) extracted by filtering the raw electrode
signals; these responses are thought to approximately reflect
aggregate neural activity in a local region (Ray et al. 2008; Stein-
schneider et al. 2008; see Methods for details). Two sets of mea-
surements were used from electrodes that were selected based
on the strength of their responses in the L and M conditions
as illustrated in Figure 1B: Auditory electrodes are those that
respond strongly (activation criteria: t-values of the t-test 30)
when the subject listens passively to speech. Motor electrodes
are those that respond strongly (activation criteria: t-values 20)
when the subject mimes the speech (M) without any sound.
The number of such selected electrodes varied across patients
from 9 to 30 electrodes for each set. We have observed that
electrodes strongly activated by miming exhibited t-values <10
during listening, and vice versa. Hence, classifying electrodes
as either auditory or motor according to the threshold criteria
mentioned above resulted in electrodes that were either classi-
fied as auditory or motor, but never both. Figure 1B illustrates
the typical activation patterns in subject 2 electrodes, threshold
levels for selecting the electrodes from two hemispheres, and
the time waveforms in response to listening to speech on three
arbitrarily selected auditory electrodes. We emphasize again that

https://github.com/JeremyCCHsu/Python-Wrapper-for-World-Vocoder
https://github.com/JeremyCCHsu/Python-Wrapper-for-World-Vocoder
https://doi.org/10.7488/ds/1994
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa091#supplementary-data


6 Cerebral Cortex Communications, 2021, Vol. 2, No. 1

while threshold levels in Figure 1B are somewhat arbitrary (e.g.,
t-values > 20), the results reported here remain unaltered by the
choice of slightly different thresholds (and hence electrodes)
as long as the two sets of selected electrodes remain largely
mutually exclusive in the way described above. Finally, we stress
that the designation of the electrodes as auditory or motor in
this study is a functional definition based on their predominant
responsiveness to auditory and motor stimuli and not on their
anatomical locations.

We begin by analyzing separately the global response patterns
accumulated from all auditory and motor electrodes. We focus
first on the encoding of auditory responses evoked by silent
motor activity (during M), that is, the forward projections
in Figure 1A. Then, we examine the complementary motor
responses induced during passive listening to sound (during
L), that is, the inverse projections. Our aim here will be to
characterize the spectral and temporal nature of the activity
conveyed by both these projections. Subsequently, we shall dis-
sect in more detail the contributions of the individual electrodes
to the various overall global interactions and, where possible,
identify their anatomical locations over the auditory and motor
responsive areas. Based on these findings, we shall then explore
the functional significance of these projections in the context of
speech production and perception via mathematical modeling
and simulation of the Mirror Network.

Spectrotemporal Specificity of Auditory-Electrode Responses
Induced by Motor Activity

We begin by exploring the responses due to the forward pro-
jections postulated in Figure 1A, namely, the responses in the
auditory regions (electrodes) presumably induced primarily by
the motor activity of silent articulation, or miming (M). We sought
to determine the nature of these responses on the auditory
electrodes by comparing them to the neural activity during other
scenarios: L, S, and N. Data were accumulated from all 4 subjects
and electrodes to enhance the statistical significance of the find-
ings, although results from individual subject were consistent
with the overall findings (see Supplementary Figures). Four com-
plementary analyses were conducted to test if the vocal-tract
motion evokes auditory-like responses in auditory regions that
are significant and sufficiently detailed to allow a reconstruction
of the speech stimuli.

Response Correlations across Different Conditions

Auditory electrodes were (as expected by design) most respon-
sive during listening (L) and were relatively suppressed during
speaking (S) down on average to 75% of L r.m.s. response power
(Fig. 1B; lower right panel). This finding has been reported pre-
viously in numerous recordings and imaging studies (Paus et
al. 1996; Curio et al. 2000; Agnew et al. 2013; Houde et al. 2002;
Eliades and Wang 2003; Heinks-Maldonado et al. 2005). By com-
parison, M responses were weak at 55% of L on average (Fig. 1B;
lower right panel), but still higher than the average level N at
35% of L.

A key question we sought to answer concerned the nature
of the M responses relative to L and S and specifically whether
the temporal response modulations reflect the spectrotempo-
ral structure of the acoustic speech stimuli. One indicator of
such a relationship is if the responses to the M had significant

“meaningful” correlation with both L and S responses mea-
sured on the same electrode. Figure 2A illustrates the distribu-
tion of such pairwise correlation coefficients <M,L> and <M,S>

accumulated from all auditory electrodes in 4 subjects. In both
cases (top 2 panels), there were significant positive correlations
(P < 0.001, 2-sample t-test) confirming a resemblance between
the temporal structure of the responses among the 3 response
conditions. This conclusion is further supported by the absence
of such a positive bias in the correlation coefficients between M
or L and the noise N (histograms of <M,N> and <L,N> in the
lower 2 panels of Fig. 2A). Therefore, we conclude from these
data that despite the absence of sound, vocal-tract motion during
M evokes responses that resemble auditory responses which
results in significant correlations with the responses during L
and S conditions, but not in the noise N.

It should be noted that these recordings are noisy and the
responses in all conditions are small. This is true even for
the nominally large response conditions of L and S which
typically yield mutual correlation coefficients of about 0.1.
Furthermore, the wide scatter in the correlation distributions
indicates that response patterns in the different conditions
vary considerably relative to each other across the auditory
electrodes.

To assess more closely the fidelity of the M responses relative
to those of L and S, we tested whether the M responses pre-
served enough spectrotemporal details to discriminate among
the different speech sentences. To do so, we segmented and
labeled all responses to the 60 sentences in the different con-
ditions and then computed correlations between the M versus
L responses to the same and across all sentences. For high-
fidelity responses, that is, temporally modulated and spectrally
localized, it is expected that the correlation between M and
L responses to the same ith sentence (ri,j = <Mi,Li>) is ranked
higher than the correlations between responses belonging to dif-
ferent sentences (e.g., ri,j = <Mi,Lj>). Therefore, by rank ordering
all the correlations (with the lowest to highest normalized to
between 0 and 1), we can estimate the average rank attained
by the same sentence correlations from all sentences and com-
pare it to the rank distribution for randomly labeled sentences.
Figure 2B displays the average ranks for correlations between M
and recordings from each of the other three conditions (L, S,
and N) and how these compare to the random distribution of
ranks. Thus, both <M,L> and <M,S> correlations accumulated
from all auditory electrodes and subjects are modestly above
the average and higher than <M,N> correlations (quantified in
the figure legend), suggesting that M has meaningful response
correlations with those of L and S. These results are consistent
with distribution patterns of the three correlation coefficients
noted in Figure 2A.

Finally, we computed the correlations between simultane-
ously recorded responses on the auditory versus the motor elec-
trodes during L, M, and S conditions. The goal was to determine
if the responses shared a similar detailed temporal structure.
Figure 2C illustrates the results in subject 3, which demonstrate
that under M, L, or S conditions, auditory-electrode responses
were only weakly correlated with motor-electrode responses,
typically less than 10% of the average correlations seen within
the auditory or within motor-electrodes. This finding was
true of all subjects (Supplementary Fig. 2), suggesting that the
responses in the auditory and motor electrodes are different in
nature, consistent with previous measurements (Arsenault and
Buchsbaum 2016; Cheung et al. 2016), and as we shall elaborate
later.
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Figure 2. Correlations of auditory-electrode responses in different recording conditions. (A). Distributions of the pairwise correlation-coefficients between M versus L
(<M,L>) and M versus S (<M,S>) responses to the same speech stimuli, and also M and L versus noise N activity on the same auditory electrodes (<M,N>) and (<L,N>).

Data are aggregated from all subjects and electrodes. (Top two panels) M responses are positively correlated with L and S responses, and hence the distributions are

positively shifted relative to the lower two panels (P < 0.001; 2-sample t-test). (Lower two panels) Neither M nor L are significantly correlated with N. (B) The average rank

of correlation coefficients between responses during M and other conditions (L, S, and N). The distribution of ranked correlations from randomly ordered responses

to different sentences is shown together with the arrows signifying the average <M,L> and <M,S> on the same sentences. The latter were modestly different from

the mean (0.63σ and 1.13σ , respectively) compared with the average of noise response correlations <M,N> (0.15σ ). (C). The correlation coefficients between all pairs of

auditory and motor electrodes in subject 3, all measured using the responses within each condition separately. On average, the correlations between the auditory and

the motor electrode sets are quite weak compared with within each electrode set. This suggests that the responses across the two electrode regions are of a different

nature.

Spectrogram Reconstructions from Auditory-Electrode
Responses
A different approach to dissecting the details of cortical
responses is to reconstruct the stimulus spectrograms that
evoked them (Mesgarani et al. 2009). The advantage of this
method is that it integrates and maps all electrode responses
from all subjects to the same stimulus spectrogram space, where
they are easier to visualize, interpret, and compare to the original
stimulus spectrograms. Specifically, the more spectrotemporally
accurate the responses are, the better are the reconstructions of
the stimuli.

Figure 3 illustrates the method and the findings from all 4
subjects. Further details of the procedures and data analyses
are available in Methods. The first step is to “train” the inverse
mapping function GM between the M responses from all auditory
electrodes to the spectrograms of corresponding stimuli. This
GM is then used to reconstruct the same stimuli from all other
unseen L, S, and N responses. If any of these responses share sim-
ilar spectrotemporal modulations with M, then the reconstructed
spectrograms should reflect this similarity. The same rationale
has been successfully applied in other cortical recordings, such
as in vision (Haynes and Rees 2005; Reddy et al. 2010; Horikawa
et al. 2013) and speech and music (Martin et al. 2014, 2018).
Figure 3A explains the procedure and illustrates an example of
a speech sentence and its corresponding reconstructions from
M (using the trained filter GM), as well as L, S, and N. As expected,
the reconstructions from the M training data are the most corre-
lated with the stimuli. However, the same GM is also able to recon-
struct spectrograms from the unseen L and S responses, albeit

less accurately as the correlation measures indicate. The recon-
structions from N, by comparison, are worse as these responses
have no stimulus-induced activity. A summary of comparisons
from all responses in the 4 subjects are shown in Figure 3B (as
well as for each subject separately in Supplementary Figures 3.1–
3.9). Across all stimuli and all subjects, the reconstructions from
L and S responses correlated more strongly with matched M
reconstructions than the reconstructions from N responses did
(P < 0.001, 2-sample t-test). This suggests that the mapping func-
tion, trained solely on M conditions (GM), captured both the
spectral and temporal features shared with the L and S condi-
tions. For the temporal features, these results are consistent with
the findings in Figure 2 which already confirmed the significant
“temporal” correlations between the response waveforms. For
the spectral features, their fidelity is confirmed by noting that if
we randomize the spectral channels of the stimulus spectrogram
or its reconstructions, then all the correlation distributions in
Figure 3B collapse to around zero (i.e., completely overlapping the
N distributions). This indicates that the temporal correlations are
only significant between the corresponding spectral channels.
Therefore, we conclude that the reconstructions, and hence the
original M, L, and S responses, preserve the spectrotemporal
features of the stimuli.

To assess further the within-stimulus fidelity/reliability
of the reconstructions across each condition, we used the
ranking method described earlier in Figure 2B in which the
correlation between each reconstructed spectrogram and its
corresponding original stimulus was ranked relative to the cor-
relations with all other 60 stimuli (normalized between 0 and 1).

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa091#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa091#supplementary-data
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Figure 3. Analyses of responses on auditory electrodes. (A). Illustration of stimulus reconstruction procedures. M responses from 28 auditory electrodes in subject 2

were trained to reconstruct (through filter GM) the spectrograms of all speech stimuli that evoked them. L and S responses share sufficient details with M responses,

such that applying the GM to them also reconstructs similar spectrograms, as exemplified in the panels. The mapping fails to reconstruct a good spectrogram from the

noise N. (B). Spectrogram reconstructions from M, L, and S responses are compared with all stimulus spectrograms, and accumulated from all frequencies, electrodes,

and subjects. The correlation coefficients are depicted as histograms (M—black; L—green, S—red) each against the histogram of the N reconstructions (blue). The M, L,

and S distributions are significantly shifted upwards relative to the N (P < 0.001; 2-sample t-test), indicating better matches to the original spectrograms, and hence the

presence of spectrotemporal structure related to the stimuli (see text for more tests and details). (C) The average rank order of the correlation between a sentence and its

corresponding reconstruction, compared with all other sentence comparisons. Reconstructions from M, L, and S response conditions are sufficiently accurate to allow

reasonable recognition of the corresponding stimuli with above chance accuracy (6.75σ , 1.55σ , and 1.26σ ), where σ = 0.0027. Reconstructions from N responses perform

at chance level (0.02σ ). (D). Distribution of the correlation coefficients between original and reconstructed spectrograms based on training GM, GL, GS, and GN filters on

selected response segments, and cross-validated with predictions from unseen segments. Distribution of the correlation-coefficients indicate that N (blue) responses

produce worse predictions than M (black), L (green), and S (red) conditions. (E). Average STRFs from all auditory electrodes in subjects 1, 2, and 3. (Left-panel) The L-STRF

is estimated from L responses. It displays the average reference spectrotemporal responsiveness measurable with the (lower-frequency biased) speech stimuli of these

experiments; this average speech spectrum is depicted by the side plot next to the rightmost panel. (Middle-panel) The M-STRF captures response selectivity during

miming. Highlighted by the dashed circle is an apparent early wave of excitatory influences that precede the responses. (Right-panel) S-STRF exhibits strong suppressive

influences (highlighted by the dashed circle) that are potentially responsible for the decrease in auditory responses during speaking.

The average ranks from all such matches are indicated by the
different color arrows in Figure 3C, relative to the distribution of
random rankings that result from shuffling all stimulus labels.
When trained on the M responses, the reconstructions of L
and S (but not N) had higher average ranks than would result
from random assignments. This further supports the idea that
the reconstructed spectrograms from L and S (using the GM

mapping) meaningfully reproduced the original spectrograms.
Curiously, as was the case in other comparisons thus far,
S responses appear to share less with M than those during
listening L, perhaps because of ongoing interactions between
auditory and motor influences during speaking (as we discuss
later).

In another way to characterize the reliability of the spec-
trotemporal character of the responses, we performed K-fold
cross-validation of reconstruction filters on segments of the
responses within each condition. This method does not com-
pare responses from different conditions against each other but
rather assesses the reliability and predictability of each condition
individually. For example, M responses were arbitrarily divided
into K segments; reconstruction filters GM were then trained
on a subset of the data (K-1 segments) and used to predict

the spectrogram of the remaining Kth segment, which subse-
quently was correlated with the corresponding Kth segment of
the stimulus spectrogram. The K-fold cross-validation procedure
was repeated for each response condition, resulting in a dis-
tribution of correlation-coefficients for L,S, and M conditions.
These distributions were each plotted against the distribution
generated from N responses, as noise condition responses are
presumed not to have a predictive structure. Figure 3D illustrates
the results obtained from the average of all subjects (individual
subject results are available in Supplementary Figures 3.1–3.9).
In all cases, we found a difference between the distributions
of L, S, and M versus N (P < 0.001, 2-sample t-test), with the
largest difference in the L responses, reflecting their larger and
deeper modulated structure. The correlations were smallest for
the M condition but still significantly different from those of the
random N responses (P < 0.01, 2-sample t-test).

Finally, to gain further insights into the dynamics and
spectral character of the M, L, and S responses in relation to
the speech stimuli, we computed the spectrotemporal receptive
fields (STRFs) for each condition (Klein et al. 2000), averaged
from all the subjects and electrodes, as shown in Figure 3E.
One rationale for this global measure is that in each of these

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa091#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa091#supplementary-data
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experimental M, L, and S conditions, the stimulus drove the
auditory electrodes through different routes and engaged
diverse local processes, and hence the transformations from
the spectrogram to electrode responses can be efficiently
approximated and interpreted through their STRFs. The STRFs
were computed for each electrode by estimating the response-
prediction filters (using the cross-validation method described
above; see Methods). Each STRF was then weighted according to
its prediction reliability (or the correlation coefficient between
predicted and actual responses), and all resulting (weighted)
STRFs were then averaged over electrodes and subjects. Finally,
to confirm the reliability of the STRFs, we verified that they
remained unchanged if they were computed using a smaller
portion of each stimulus and response (e.g., by removing 100 ms
at the onset of each stimulus and corresponding response).
However, the STRFs became randomly shaped and insignificant
as expected when computed after scrambling the order of the
stimuli relative to their responses.

It is well-known that cortical STRFs measured during lis-
tening L to speech stimuli vary considerably in the details of
their tuning, polarities, latencies, and locations (Elhilali et al.
2007; Mesgarani et al. 2014; King et al. 2018), and hence the
average L-STRF (left panel; Fig. 3E) indicates that, while responses
were evoked at all frequencies (dashed circle; Fig. 3E), they were
strongest at low frequencies (∼200 Hz), a preference that is also
seen in the other STRFs, likely reflecting the frequency-bias of
the speech stimuli themselves (Fig. 3A).

Important other details, however, are revealed when consid-
ering the M- and S-STRFs. For example, the M-STRF (middle
panel Fig. 3E), measured during the silent motion of the vocal
tract, indicated that electrodes were activated 50–100 ms prior
to the onset of the responses. As we shall discuss later, this
may reflect pre-motor activity inducing “predictive” responses
in the auditory-electrodes as postulated by the forward pathway
(Fig. 1A). In contrast, the S-STRFs which broadly resembled the
tuning and shape of the L-STRF displayed a large early wave of
inhibition, which may explain the suppressed responses often
measured during speaking or vocalization (Houde et al. 2002;
Eliades and Wang 2003).

In summary, the results from the various analyses in Figures 2
and 3 lead to the same conclusion—that the M responses induced
in auditory electrodes during silent miming exhibit spectrotem-
poral details comparable to those evoked during listening (L)
and speaking (S). Responses during M are therefore not a broad
“static” influence (possibly suppressive) on the speech responses
during listening and speaking, but rather are rapid and spec-
trotemporally similar to, although significantly smaller than, the
speech responses during listening and speaking.

Spectrotemporal Specificity of Motor-Electrode Responses
Induced by Sound

So far, we have focused on the motor influences through their
presumed forward projections into the auditory responsive
regions. Equally important are the inverse projections from the
auditory cortex to the motor areas, as postulated in the structure
of the MirrorNet (Fig. 1A). In the vocal-tract context, these inverse
projections are known to induce motor neural responses during
listening to speech (Wilson et al. 2004), but it is unclear if they are
spatiotemporally detailed, or if they are similar to what would
have been produced during utterance of the speech, a hypothesis
reminiscent of the “Motor Theory of Speech” (Liberman et al.
1967). A key prediction of this hypothesis is that the motor

activity should be temporally agile and commensurate with what
is needed to move the articulators to produce speech. To test this
idea, we compared the temporal structure of the motor-electrode
responses evoked during speaking (S) and miming (M), with
that measured during passive listening (L) to the same speech.
The goal was to determine if the motor responses measured
during listening were distinctive enough to reflect accurately
the corresponding sentences that evoked them.

Correlating Motor-Electrode Responses across Different
Conditions

As described in Figure 1B, motor electrodes were defined as
those that responded strongly during miming M. None of these
electrodes responded appreciably during listening, and certainly
none sufficiently enough to exceed the auditory-electrode selec-
tion criteria applied (Fig. 1B). Consequently, auditory and motor
electrodes were mutually exclusive sets of electrodes in all sub-
jects (anatomical positions are discussed in detail later). Motor
electrodes were most active during silent miming (M), becoming
slightly suppressed to 71% of M response (r.m.s.) power during
speaking S, an analogous pattern to that seen on the auditory
electrodes where auditory responses were also suppressed dur-
ing speaking compared with listening. On the motor electrodes, L
responses were weak (54% of M) but were still significantly larger
than N (31%).

Figure 4 illustrates a series of analyses and results that are
analogous to those discussed earlier for the M responses on the
auditory-electrodes in Figures 2 and 3. In Figure 4A, the detailed
temporal structure of the L responses was compared directly
across conditions through pairwise-correlations on each motor-
electrode, pooled from subjects 1, 2, and 3. The top two pan-
els demonstrate a significant positive bias in the correlations
between L versus M and S indicating that, despite the absence of
any articulatory motion during listening, there was neural activ-
ity on the electrodes that shared a similar temporally modulated
structure with the responses during articulation in M and S. No
systematically significant correlations were found between any
of the responses versus the N condition.

Reconstructing Spectrograms from Motor-Electrode
Responses

The results above suggest that the inverse pathway induces
responses on the motor electrodes during listening (L) that
are phase-locked and somewhat similar to those evoked
during articulating speech (Fig. 4A). However, it is unclear what
exactly these responses represent. Thus, despite the known
representational complexity of speech in the auditory cortex (Chi
et al. 2005; Elhilali et al. 2007; King et al. 2018), it was nevertheless
possible to reconstruct the spectrograms of the stimuli from the
responses in order to interpret global features of the responses
(Fig. 3A). Responses on the motor electrodes are likely related to
vocal-tract articulatory parameters reflecting muscular motion,
and hence they are at best a very indirect correlate of the
stimulus spectrograms. However, given the unknown nature
of these parameters, and the enormous complexity of their
representation (Bouchard et al. 2013; Chartier et al. 2018), we
have chosen to bypass these details and instead reconstruct the
spectrograms with the hope that they may still preserve global
characteristics and relationships among the motor responses
and the corresponding stimuli.
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Figure 4. Analyses of responses on motor electrodes. (A) (Top panels) Distribution of correlation coefficients between L versus M and S responses, aggregated from all

electrodes and subjects. Both are significantly positively shifted indicating shared response temporal structure among these conditions. (Bottom panels) Distributions

of correlation coefficients between N versus L and M responses. N is not expected to share any structure with responses from the other conditions, and hence they are

scattered around zero. The top two distributions are significantly shifted upwards relative to the bottom two (P < 0.001; 2-sample t-test). (B) Distribution of correlation

coefficients between stimulus spectrograms and their reconstructions using GM, applied to M, L, and S responses. They are all significantly positively shifted relative to

those reconstructed from N (in blue). (C) Average rank-ordering of correlations between each reconstructed spectrogram and its corresponding stimulus is significantly

better than chance for M, L, and S conditions (5.7σ , 3.4σ , and 2.12σ , respectively) compared with chance for N. (D) Distribution of prediction correlations for L, M, and S
are significantly shifted relative to those derived from N responses. (E) Average STRFs in three response conditions measured on all motor electrodes in three subjects.

The dashed circles highlight excitatory and inhibitory features that are discussed in the text. The average speech spectrum is depicted by the side plot next to the

rightmost panel.

Reconstruction filters (e.g., GL or GM) were trained on the L or
M responses, and then applied to reconstruct the spectrograms
from the responses in the other conditions, as detailed earlier
(Fig. 3A). If all these responses shared a common structure, then
the reconstructions should be better matched to the original
spectrograms compared with the reconstructions from noise N.
Figure 4B confirms this conjecture showing that the distribution
of correlations between reconstructed and original spectrograms
are significantly better during M, L, and S compared with N.
Furthermore, the reconstructed spectrograms were sufficiently
detailed to be better associated with their corresponding stim-
ulus sentences (among ∼60 samples), as demonstrated by the
average ranking for responses in all conditions in Figure 4C.

The reliability of the motor-electrode responses was next
assessed by training predictive filters on a subset of the
responses within each condition, and then cross-validating them
on an unseen portion of the same responses (as in Fig. 3D). The
accumulated results from subjects 1, 2, and 3 are shown in the
three panels of Figure 4D for the M, S, and L conditions versus N.
Predictions were significantly better correlated with the stimulus
for M, S, and L conditions than for the noise N.

Finally, Figure 4E depicts the averaged STRFs measured on
all motor electrodes from the M, L, and S responses, exactly
the same way as for the auditory electrodes (Fig. 3E). During
listening and speaking, the motor electrodes L-STRF (left panel)
and S-STRF (right panel) resemble each other except for a striking
strong wave of inhibition in the L-STRF (top) that surrounds the
onsets. Since the L-STRF was measured on the motor-electrodes

in the absence of any articulatory (motor) activity, it is thus
analogous to the auditory M-STRF (middle-panel in Fig. 3E).

Conceptually, the most important conclusion of the above
analyses is that listening induces on the motor-electrodes a
meaningful systematic response to speech (L-STRF), which
shares a resemblance to the temporally modulated structure
of the responses evoked during speaking (S-STRF) and miming.
In the context of the Mirror Network schematic of Figure 1A, this
result is consistent with the existence of an inverse (Encoder)
pathway projecting from the auditory to motor responsive
regions, analogous to the forward (Decoder) projection from the
motor to auditory responsive regions.

Electrode Receptive Fields and Locations

Response measures in the analyses above were based on combin-
ing information from all auditory or motor electrodes in order to
generate a global estimate of the interactions and the encoding of
auditory–motor information. Individual electrodes naturally do
not contribute equally or in the same way to the overall mea-
sures. For instance, it is evident in the histograms of Figures 2B
and 4A that there was a sizable spread in how different electrodes
contribute to the overall correlations between L and M responses
(<L,M>).

Auditory-electrodes exhibit diverse cortical STRFs when mea-
sured with speech stimuli (David and Shamma 2013), but these
also depend on the behavioral conditions (Fritz et al. 2003; Mes-
garani et al. 2009), on the stimuli (Valentine and Eggermont 2004;
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Gourévitch et al. 2009), and on the nature of responses used
to measure them. For instance, auditory- and motor-electrode
STRFs in Figures 3E and 4E changed during L, M, or S scenarios,
likely reflecting the engagement of diverse interactions and pro-
cesses when generating the responses in different conditions. It
is therefore critical to ask where the sources and destinations of
these influences are and how they are manifested on electrodes
located in different cortical regions. We approached these ques-
tions by explicitly examining the patterns of reverse correlations
among all electrodes under the different conditions.

In the first approach, we measured the reverse-correlation
(“revcor”) patterns between auditory and motor-electrodes (Klein
et al. 2000; Gourévitch et al. 2009). This measure “pretends” that
responses on one set of electrodes act as stimulus (source or
input) to responses on another set of electrodes. It thus provides
a detailed and explicit estimate of the correlations between the
two responses, which may well be (but clearly not necessarily)
related to their interconnectivity.

The small panels on the right in Figure 5A depict the revcor
estimates from each of 21 motor electrodes in subject 2; these
represent how motor responses during listening L are selectively
and dynamically related to each of 15 simultaneously active
auditory electrodes, whose indices and locations are indicated on
the y-axis of the left-most panel. In effect, the panels display the
“receptive field” of each motor electrode. All panels are shown
on the same color scale, and each is weighted by its predictive
reliability (see Methods for more details). The average of all the
receptive fields is depicted by the large panel on the left in order
to highlight the auditory electrodes most effectively correlated
with the motor responsive regions of this subject. The strongest
average correlations in Figure 5A emanate from auditory
electrodes near #9–#15, which are all located in the secondary
auditory fields of the PT and STG. The most reliably driven
motor electrodes are #1–3 and #6–10, which exhibit similar but
gradually changing response dynamics and selectivity, and are
located in or over the middle and inferior temporal gyri (Cheung
et al. 2016).

Figure 5B provides an analogous, complementary view to the
above interactions, instead treating the motor-responses during
M conditions as “inputs” into each of the 15 auditory electrodes;
the corresponding “receptive field” patterns are displayed in
the 15 small panels. The most reliable auditory responses here
appear on electrodes #1–2 (STS) and #14–15 (STG); these are most
correlated with a cluster of motor electrodes near #4 and #14
located nearest to the STG and ITG. Finally, we note that in this
subject, the HG electrodes did not apparently play a significant
role in providing predictive or inverse responses between the
auditory and motor responsive regions; and neither did the
motor-electrodes located nearest to the primary motor areas in
the PG (#17–18).

We have similarly analyzed data from two other sub-
jects (Supplementary Figs 5.2 and 5.3). The broad outlines of
the results are consistent with those already shown here.
Specifically, the auditory electrodes from non-primary areas
(STG, PT, INSULA, and STS) were the most related with the
motor electrode responses during both L or M conditions, as
is evident in the supplementary data of two more subjects
1 and 3. The one exception is the interactions depicted in
the panel of Supplementary Figure 5.2 between an HG and
motor electrodes during L responses. In motor electrodes, the
interactions confirm the significant contribution of the MTG
and STG (e.g., #14 in subject 1 and #13–16 in subject 3), as well
as the absence of significant interactions from primary motor
areas (e.g., postcentral gyrus #12–13 in subject 1; and PG #21 in
subject 3).

Finally, our subject 2 was bilaterally implanted (Fig. 1B), and
so we redid the analyses separately for the right and left hemi-
sphere auditory and motor electrodes. We confirm here that both
hemispheres reproduce the same findings reported earlier. This
result is consistent with the findings reported by Cogan et al.
(2014) on the bilateral nature of the sensorimotor responses in
the cortex.

Sensorimotor Interactions and Learning in the Mirror
Network

Our findings thus far have addressed the first aim of this exper-
imental study, characterizing the spectrotemporal specificity of
the forward and inverse projections of the conceptual network
presented in Figure 1A. We now address their functional sig-
nificance, specifically in the context of speech production and
perception, but more generally in enabling sensorimotor tasks.
Developing and simulating a mathematical model of the Mirror
Network highlights a potentially critical function of the forward
projections, namely, to enable learning the inverse maps needed
for control and performance of sensorimotor tasks.

We begin with a redrawing of the network of Figure 1A, by
unfolding the inverse mapping from the forward as shown in
Figure 6A, referred to henceforth as the MirrorNet. Here the audi-
tory cortex is depicted twice, as an input and as an output. This
organization of the system is well-known in the neural network
literature as an Auto-Encoder, where the input (responses in the
auditory cortex) is mapped onto itself at the output, through
two transformations: an Encoder to a latent (hidden) represen-
tation (the motor responsive region here), and then through a
Decoder back to the output (auditory cortex). Normally, such
auto-encoder networks are simply trained by requiring that the
Encoder and Decoder projections be able to reproduce the input
with minimum error. In doing so, the auto-encoder finds a new,
possibly more compressed and efficient but equivalent, repre-
sentation of the auditory input as activations in the hidden
(motor) region, which can still be mapped back to the auditory
representations.

First, we consider learning the Decoder projections in the
MirrorNet. In the sensorimotor literature, it has always been
assumed that the forward predictive projection from the motor to
sensory areas serves to monitor task performance, and to provide
rapid feedback of errors to ensure accurate motor execution
(Wolpert and Ghahramani 2000). This predictive role has also
found extensive support theoretically and experimentally in the
sensory perceptual domain (Keller and Mrsic-Flogel 2018). The
formation of this projection in sensorimotor systems is concep-
tually straightforward in that it serves as a model of the motor
plant and hence can be learned by minimizing the differences
(ed) between the Decoder and vocal-tract outputs as illustrated
in Figure 6A.

The inverse projection (or Encoder), on the other hand, serves
to map sensory expectations and intentions into the motor com-
mands necessary to reproduce them. However, learning a func-
tioning inverse projection presents a significant challenge, for
without a large set of predetermined exemplars (training data)
to associate sensory signals to the correct neural motor com-
mands, one has to resort to trial-and-error approaches. Clas-
sifiers and neural networks require large amounts of training
data for accurate performance and generalization to unseen
data, but it is often difficult to acquire such training material.
For example, in the case of controlling the vocal tract, learning
to pronounce words of a new language relies not on finding
out what the motor commands ideally need to be (which is

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa091#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa091#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa091#supplementary-data
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Figure 5. Interactions among auditory and motor-electrodes. (A) All data shown here are from subject 2. (Right panels) Reverse correlation of M responses on auditory and

each of 21 motor electrodes, computes “auditory receptive-fields” that reveal the potential dependence of each motor-electrode responses on all the auditory electrodes.

Each panel is weighted by its predictive ability to account for the responses on that electrode. (Left panel) The average of all motor-electrode panels reveals a selectivity

to different auditory electrodes whose numbers and locations are identified on the y-axis. (B) (Right panels) Same as above except the reverse correlation is performed on

the L responses on each auditory electrode relative to the activations from all motor electrodes. The resulting “motor receptive-fields” are weighted by their predictive

ability. (Left panel) The average of all auditory-electrode panels reveals a potential selectivity to different motor electrodes whose locations are identified on the y-axis.

impossible!), but rather on listening to our pronunciation of the
words and trying to map the perceived errors (ec) back to implicit
corrections of the motor commands. As illustrated in the top
panel of Figure 6B, this backward propagation of the error to
the motor areas conceptually requires the inverse of the vocal
tract to be computed so as to translate the sensory errors into
motor-command adjustments that subsequently can be opti-
mized by adjusting the inverse mapping. In general, computing
the vocal-tract inverse is difficult if not impossible because of
its complexity, nonlinearity, and our incomplete knowledge of its
workings.

The MirrorNet in Figure 6B (bottom panel) solves this problem
by adding a forward projection that serves as a parallel, “neural”
model of the vocal tract. The critical value of this “neural” pro-
jection is that it readily provides a route for the ec errors to back-
propagate to the motor areas, enabling training of the inverse
mapping. Figure 6C illustrates a schematic of the resulting auto-
encoder network, which learns its connectivity by backpropagat-
ing the error (e.g., ec) through its “neural” pathways from stage
to stage, adjusting the weights as the error proceeds backwards.
The MirrorNet learns its Decoder weights by minimizing ed as
discussed earlier; notably, the Encoder is also learned by back-
propagating to minimize the error (in this case, ec) through the
Decoder neural pathway. Without the Decoder forward projection,

the Encoder inverse mapping cannot be readily learned in this
way since the error ec has no route to propagate backwards
through the motor plant.

We thus conclude that a crucial role played by the forward
projection is to provide a pathway to learn the inverse mapping
in an unsupervised way, and without any need for explicit motor
training data. That is, by simply listening and uttering the words,
the errors are automatically used to guide the vocal tract to reach
its sensory target.

Simulating Learning in the MirrorNet

A brief demonstration of “unsupervised” learning in the Mirror-
Net is provided here to illustrate the critical role of the forward
projection in facilitating the learning of the inverse mapping.
The MirrorNet shown in Figure 6C is implemented in PyTorch
with convolutional layers modeling the Encoder and Decoder
pathways (see Methods for details). For the (input and output)
auditory representations, we computed the auditory spectro-
gram, a representation mimicking the cochlear outputs (Chi et al.
2005; Mesgarani et al. 2006). The vocal-tract model was simulated
by the “World” synthesizer (Morise et al. 2016), a widely used
tractable vocoder model that takes three sets of input parameters
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Figure 6. Simulating learning in the Mirror Network. (A). The overall layout of the sensorimotor interactions. It emphasizes the relative contributions of the inverse

(Encoder) and forward (Decoder) projections between the auditory and motor areas. The overall network resembles a classic auto-encoder network that maps the

auditory cortex activity onto itself through a hidden layer (motor regions), but with an additional non-neural motor-plant (vocal-tract) pathway that shares with the

forward projection its motor input and auditory output. Two sources of error are available to train the neural pathways of the Encoder (ec) and Decoder (ed). (B) The

critical role of the forward projection in providing a neural pathway for the (ec) error to backpropagate to the motor regions (hidden layers) so as to train the Encoder

weights. (C) The MirrorNet implementation employs multiple layers of a convolutional neural network, and the “World” synthesizer as a simplified model of the vocal

tract. (D) Training the MirrorNet results in progressive improvements in the reconstructed spectrograms projected through the sequence of Encoder–Decoder layers. The

training is rather limited here involving only about 40 min of speech beyond the initialization with the random patterns.

as a function of time to synthesize a speech waveform: a spectral
envelope function (SP), a pitch track (F0), and voicing/non-voicing
indicator signals (AP). The goal of the MirrorNet here was to iter-
atively learn the Encoder weights (starting from random initial
values) that map any (input) auditory spectrogram to the “motor”
parameters that would both 1) reproduce the same spectro-
gram through the “World”synthesizer and also 2) simultaneously
regenerate it at the output of the Decoder projection, in which
case both errors ed and ec are minimized.

The network was initialized with random Encoder and Decoder
weights that were fully trained using <60 min of speech. Two
important procedures speeded up and guided the learning of the
correct mappings: 1) an initialization training epoch in which
the network was briefly trained to minimize only ed using ran-
dom synthesizer-like parameters SP, AP, and F0 and 2) training
the Encoder and Decoder alternately. The initialization epoch
guided the Decoder toward reproducing the same type of output
spectrograms as the synthesizer does, even if the input activa-
tions (in the hidden layer) were random. The alternating train-
ing procedure for network weights was as follows: the Decoder
(resp., Encoder) weights were trained with epochs in which only
ed (resp., ec) is minimized via error backpropagation while the
Encoder (resp. Decoder) weights remained fixed. These proce-
dures succeeded in training the MirrorNet in an unsupervised
manner with normal speech material, thus demonstrating the
utility of the forward pathway in learning the task of driving
the synthesizer. Figure 6D illustrates how reconstruction errors
decreased over training epochs, evident in the improvement in
quality of the reconstructed speech spectrograms of an unseen
sample sentence over epochs. Further technical details of con-
structing and training this neural network are given in Methods.

Once the network was trained, it could readily inverse-map its
sensory inputs (speech in this case) to the necessary parameters
that drive the associated motor plant (vocal tract). Furthermore,
the forward projection could still participate in its other com-
monly proposed predictive and control roles as a model of the
motor-plant. The MirrorNet structure therefore is sufficiently
general to serve as a model for analogous sensorimotor tasks
requiring learning of a skilled performance, like playing a musical
instrument, reading and writing, or training an autonomous
vehicle to navigate traffic.

Discussion
We begin by summarizing the findings and conclusions of our
experiments and computational simulations, and then describe
their implications for our understanding of sensorimotor inter-
actions, especially for learning to control sensorimotor tasks.

First, we confirmed the projections postulated to exist in the
network of sensorimotor interactions as in Figure 1A. Recordings
during silent miming (M) revealed measurable responses
in auditory responsive regions, confirming the influence of
presumed forward projections from the motor areas to the
auditory-responsive cortex. During listening (L) without any
motor actions, significant responses were also measured in the
motor areas confirming the existence of an inverse projection.
Finally, responses during speaking (S) were found to be, as
previously reported, suppressed relative to the M and L responses
in motor and auditory responsive regions, respectively.

Second, detailed analyses of signals carried by the forward
and inverse projections revealed remarkable spectrotemporal
specificity, sufficiently adequate to encode individual sentences.
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Thus, during a skilled task like speech production, we conjecture
that these auditory–motor interactions modulate and control
auditory and motor responses in detailed and meaningful ways
so as to play a role in learning and performance of the auditory–
motor tasks.

In the experiments and analyses reported here, the forward
and inverse activations (M in auditory and L in motor elec-
trodes) were small because they were measured in the absence
of other background responses due to acoustic or motor stimuli.
Consequently, to demonstrate the meaningful interpretation of
these responses, we had to apply diverse methods, for example,
spectrogram reconstructions, STRF predictions, and correlation
rankings, all with varying degrees of confidence. However, in
the case of speaking, S responses in both auditory and motor
electrodes are substantial, and they are strongly modulated by
inputs projected from the counter regions. This was best demon-
strated by the large changes between the various average STRFs
in Figures 3 and 4, for example, the changes from L-STRF to S-
STRF to M-STRF in Figure 3E.

Specifically, STRF changes revealed remarkably different
dynamics and patterns of interactions depending on the task
that complement the interpretations gained from the direct
response measurements. For instance, when speaking (S),
relatively strong inhibitory influences are seen in the S-STRFs
preceding the onset of the responses. This timing seems to
coincide with a preceding wave of responses on the M-STRFs.
One possible interpretation of these patterns is that the early
M activation reflects responses of local recipient inhibitory
interneurons and that these in turn exert their inhibitory
influences during speaking when the evoked auditory responses
are sizable. This interpretation is also consistent with the
fact that auditory L responses (which presumably supply no
motor inputs) do not exhibit either of the preceding waves
of activation in the L-STRFs. Motor electrodes, on the other
hand, receive an inhibitory wave preceding the L responses
(L-STRFs) that roughly coincides with an early activation of the M
responses (M-STRF). The S responses which combine motor and
auditory interactions are complex and less punctate, perhaps
reflecting the local interactions between the M and L sources.
All these details remain to be addressed in future analyses that
would consider the timing of the interactions (e.g., Cogan et al.
2014; Liebenthal and Möttönen 2018), especially on individual
localizable electrodes.

Third, the high spatiotemporal resolution of the ECoG allowed
us to localize sources and destinations for the auditory–motor
interactions and to reveal their relative timings. The results
on the whole are consistent with findings from global imaging
data with fMRI, EEG, and MEG. For instance, we found that the
forward and inverse projections are largely between non-primary
auditory responsive regions such as the STG, PT, versus MTG,
ITG on the motor side. Non-primary regions are known to be far
more plastic and hence susceptible to the effects of behavioral
engagement and learning from experience.

Finally, to demonstrate the functional significance of the
forward projections in the context of learning of skilled auditory–
motor tasks like speaking and musical playing, we simulated
the structure of the MirrorNet and showed how it can acquire
the skill needed to control a motor-plant like the vocal tract.
The key insight is that the forward path, long postulated to be
the route of predictive responses needed for vocal control and
perception, can instead play a different role, that of a neural con-
duit to backpropagate errors between the produced and received
speech, which are necessary to learn the inverse mapping from

the auditory to the motor responsive regions. While hugely sim-
plified, this computational model still plainly demonstrated the
principle that without the forward neural pathways, learning of a
skilled motor task like speaking becomes an unwieldy trial-and-
error procedure.

We next discuss the implications of these findings for the
theories of sensorimotor interactions in the particular context of
speech production and comprehension, and more broadly with
respect to sensory prediction and the hypothesized function and
significance of the mirror neurons. We end with a brief recount of
the functional significance of forward projection in learning the
inverse mapping, and how this idea provides a general solution to
the more general problem of learning how to control and monitor
performance of complex motor-plants.

Sensorimotor Interactions in Nonhuman Animals

The experimental findings that justified the functional role of
direct interactions between sensory percepts and motor acts are
extremely diverse, beginning with the notion that a corollary
discharge can function as a filter that suppresses self-generated
sensory input allowing the animal to remain sensitive to external
stimulation (Poulet and Hedwig 2006), to stabilize visual receptive
fields by predicting saccade targets (Sommer and Wurtz 2002),
to suppress auditory cortical activity during locomotion (Nelson
et al. 2013; Schneider et al. 2014), or to facilitate vocal learning in
birds (Prather et al. 2008; Keller and Hahnloser 2009). Aside from
the corollary discharge, or the forward projection common to all
these examples, there are fundamental differences among them.
For instance, all except for the last example are due to instinctive
processes that are not learned the way it is with the projections in
birds learning a vocal repertoire. Therefore, we shall distinguish
and refer in our commentary here only to skillful continuous
sensorimotor actions requiring extensive practice such as the
control of the vocal tract in speech production or of the hand
and fingers in musical playing. Hence, neither of these sensori-
motor interactions is expected to exist with untrained motion or
inappropriate sounds, as was demonstrated for speech and vocal
tract production in Cogan et al. (2014).

At the phenomenological level that we adopt in this study,
vocal learning in birds bears a close resemblance to the basic
structure of human vocal-tract control and learning (Fig. 1A).
I physiological single-unit recordings in birds have unambigu-
ously established the analog of the forward pathway, that it
likely generates a detailed spectrotemporal representation of
the stimulus which mimics that received from the ear during
vocalizations (Prather et al. 2008), and that this in turn would
allow the bird to compare them and minimize the difference, and
hence learn how to control its vocal source (Keller and Hahnloser
2009). Even the hypothesized induction of auditory responses
with silent “chirping” seems to have been mentioned in passing
many decades ago (Williams and Nottebohm 1985)! All these
details are reminiscent of the two directional projections and
minimization of errors ed and ec depicted in Figure 6.

Relation of the MirrorNet to Theories of Speech Perception
and Production

Sensorimotor interactions have long been known to play a key
role in promoting skilled task performance, and there is espe-
cially a substantial body of experimental studies and theoreti-
cal models of how the sensory and motor domains are linked
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during speech perception and production. These models vary
considerably in their levels of description and details. Some
have focused on analytical formulations of the processes needed
to control vocal-tract dynamics in speech production (Tourville
et al. 2008; Houde and Chang 2015; Parrell et al. 2019). Others
provided descriptions that encompass large regions of the brain
combining both speech production and comprehension, and
postulating specific bilateral neural substrates and connectivity
patterns among them (Hickok and Poeppel 2007; Poeppel et al.
2012; Cogan et al. 2014; Poeppel 2014). Anatomically grounded
accounts have also emerged from imaging experiments with
fMRI and EEG that have emphasized the overall bidirectional
flow of information across motor and sensory regions and that
have attempted to situate these processes within the overall
flow of information from the auditory to the prefrontal cortex
(Rauschecker and Scott 2009; Lima et al. 2016). The study by
Cogan et al. (2014) comes closest to our experimental method-
ology in its recordings of responses in the M, L, and S conditions
in similarly defined auditory and motor electrodes. However, all
their analyses had concentrated on the strong overt auditory and
motor responses and the S-responses, and not as we do, on the
covert activations due to the forward and inverse projections
that are also evident in their data (e.g., their Fig. 2D displays
weak AUD (green) and PROD (blue) responses during opposite
conditions).

In contrast to previous accounts of sensorimotor interactions,
the MirrorNet schematic that frames our experiments and moti-
vates the data analyses is strictly phenomenological in flavor.
Thus, while the postulated processes and interactions are bio-
logically plausible and supported by experimental evidence, the
network model is largely agnostic with respect to the specific
anatomical regions that source or receive the forward and inverse
projections; the biological implementations of the error signals;
or how they might be backpropagated to adjust the weights
and learn the projections. The network, however, makes specific
predictions that intersect and potentially impact other proposed
formulations. For instance, the sensorimotor inputs into the
auditory and motor cortical regions are evidently rapid, with
dynamics that are commensurate with those of speech and the
movements of the vocal tract. Furthermore, they are encoded
in a manner consistent with the representational domain of
the recipient region, that is, the forward projections are audi-
tory, and the inverse projections are motor (Fig. 6A). The pro-
jections are also likely to be quite adaptive so as to learn (for-
ward) and control (inverse) the specific structure of a person’s
vocal tract (Houde and Jordan 2002). Hence, these properties are
consistent the finding that the most auditory and motor elec-
trodes implicated in the sensorimotor projections were localized
in secondary (auditory) areas like the STG and PT (Fig. 5), and
non-primary motor areas. These auditory responsive regions are
highly adaptive, task-dependent, but also spectrotemporally rich
and agile to allow for reliable speech representation (Mesgarani
et al. 2014), properties that are consistent with the MirrorNet
requirements.

In an extensive excellent review of speech perception and
production theories, Skipper et al. (2017) distilled and contrasted
a few of the most salient of these ideas. To summarize, at
one extreme, the “Motor Theory of Speech” argues that speech
perception is firmly anchored in a motor (articulatory) repre-
sentation of the signals (Liberman and Mattingly 1985). On the
other extreme, the neurobiologically based “dual stream” model
dissociates the two domains into two streams, with one (ventral)
postulated to serve speech perception and recognition, while the
other (dorsal) controls speech production (Hickok and Poeppel

2007). The Analysis-by-Synthesis model is intermediate between
the above two theories, advocating a more nuanced “constraint”
on speech perception by the motor commands of the vocal tract
that produce it (Poeppel and Monahan 2011; Stevens and Halle
1967).

At first glance, the MirrorNet structure (Fig. 6A) seems to
be consistent with all these theories. Thus, to begin with,
the Encoder branch maps auditory responses to the motor
(vocal-tract) domain, analogous to the Motor Theory of Speech,
while the Decoder projection transforms motor commands to
auditory representations implementing the speech production
implied by the dorsal stream of the dual stream hypothesis.
Furthermore, mapping signals in the MirrorNet to and from
the auditory and motor regions implies that the resulting
representations (be it articulatory commands or auditory
responses) must be highly constrained so as to be consistent
across them, much as postulated by the Analysis-by-Synthesis
model.

However, these correspondences become more interesting
and intricate if speech production is considered to be more
than simply executing articulatory commands issued in “motor
areas” to produce auditory responses. Rather, for speech
production, these motor areas must be intimately linked to
brain regions where abstract concepts are first transformed
into linguistic forms through access to the lexical and phonetic
stores, before being converted to the appropriate correspond-
ing articulatory commands. Therefore, one has to conclude
that the “motor areas” of Figure 6A are in fact part of an
extended distributed network of regions across large parts
of the brain. And consequently, for these “motor-linguistic”
regions to be at the terminus of the Encoder projection of
the MirrorNet (Fig. 6A) allows this pathway to serve speech
comprehension exactly as postulated by the ventral-stream
hypothesis.

In summary, it is evident that if the “motor-areas” in Figure 6A
are viewed as part of a distributed set of sensorimotor brain
regions that participate in the many processes involved in speech
comprehension and production, then the overall structure of
the sensorimotor MirrorNet and its plasticity during learning
strongly supports a seamless link between speech perception
and production, albeit with substantial transformations from
the sensory to the motor modalities that are both learned and
constrained by experience.

Beyond Speech Perception and Production

The framework of the MirrorNet is quite general and can serve
many contexts outside of speech production and the vocal tract.
Any highly practiced actions associated with the reception or
production of sensory signals would be served well by such a
network as a means for controlling the motor-plant and learning
its commands. For instance, sign language and lip reading are
identical to speech production and perception in the context of
the MirrorNet, but with visual and proprioceptive signals replac-
ing the auditory, and hands, arms, or lips replacing the vocal tract.
Another example is playing the violin, which involves extensive
training of the fingers, arms, and postural musculature—the
motor-plant—to produce the music. Forward projections must
learn gradually with practice to model this motor plant. Simulta-
neously, the inverse projection adapts to map the desired music
into motor commands, and the learning thus proceeds by mini-
mizing the two errors (Fig. 6A). Therefore, the MirrorNet structure
predicts that these projections are highly specific to the skilled
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task that trained them, and hence their activations would not be
recruited by inappropriate actions and irrelevant sensory signals,
as was demonstrated by the speech selectivity reported for vocal-
tract activations (Cogan et al. 2014).

In fact, MirrorNet interactions need not involve a motor task
or motor-plant at all, but rather any constrained transformation
that is not significantly amenable to adaptation. For instance,
reading or sounding out a text is a transformation of a visual
image (text) into corresponding sounds, often with complex
rules of phonation (analogous to the complex rules of moving
the vocal tract) (Slowiaczek and Clifton 1980). The forward
projection would gradually learn the rules for mapping text
to sounds, and in time, sound becomes an “imagined” output
or the meaning of the text. The inverse mapping from the
sound provides the image of the “expected” text—an imaginary
writing task. These designations of course can be altered to
describe learning to write or draw from a visual or an auditory
image.

Therefore, the key idea common to all the above scenarios
is an auto-encoder network with forward and inverse mappings
(Fig. 6A), which is the essence of the idea of the “mirror neu-
rons.” However, many extraneous issues have been appended to
this network that are not an essential part of its function and
that have led to numerous criticisms (Lotto et al. 2009; Hickok
2014). For instance, consider the role of the forward projection,
which has been widely assumed to provide a predictive signal
(the “efference copy”), to facilitate control of motor performance
(Wolpert et al. 1995), or to provide a sensory goal rather than
a precise prediction (Caroline et al. 2013). However, it is also
possible to argue that this projection serves primarily as a route
for the backpropagation of the error needed to learn the inverse
mapping, without which it is difficult to control the vocal tract.
Therefore, the mirror neurons can serve an important function,
but that does not need to include the “higher-level” cognitive
tasks ascribed to them, from speech comprehension to empathy.

Finally, the architecture of the MirrorNet has been invoked
in many perceptual contexts since it lends itself to many
interpretations. One common case in point is as a substrate
for imagination, that is, sensory percepts devoid of external
stimuli or actions without actual movements (Tian et al. 2016). In
the MirrorNet, the forward projection of a skilled pianist can
recapitulate musical percepts by simply moving her fingers
appropriately without actually producing a physical sound
(Martin et al. 2018). In fact, as mentioned earlier, Martin’s study
had already demonstrated that the “imagined” activity, which
is experimentally similar to our M responses, exhibited detailed
spectrotemporal structure much like the L responses. Similarly,
the urge to dance or tap when listening to a beat or a melody can
also be interpreted as commands injected from a trained inverse
pathway into the appropriate motor areas. Such imagination
can be recast as an expectation, anticipation, or prediction of
sensory stimuli from a contextual memory or motor areas, and
hence may serve a preparatory function (Persichetti et al. 2020).
In fact, this view is consistent with Cogan et al.’s (2014) findings
of sensorimotor transformations where auditory responses were
shaped by subsequent, hence expected vocal-tract actions. The
MirrorNet, therefore, can be seen as a unifying architecture that
can harmoniously organize diverse perceptual processes and
sensorimotor tasks.

Supplementary Material
Supplementary material can be found at Cerebral Cortex Commu-
nications online.
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