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Endotoxins and other harmful substances may cause an increase in permeability in
endothelial cells (ECs) monolayers, as well as ECs shrinkage and death to induce lung
damage. Lipopolysaccharide (LPS) can impair endothelial progenitor cells (EPCs)
functions, including proliferation, migration, and tube formation. EPCs can migrate to
the damaged area, differentiate into ECs, and participate in vascular repair, which improves
pulmonary capillary endothelial dysfunction and maintains the integrity of the endothelial
barrier. Hydrogen (H2) contributes to the repairment of lung injury and the damage of ECs.
We therefore speculate that H2 protects the EPCs against LPS-induced damage, and it’s
mechanism will be explored. The bone marrow-derived EPCs from ICR Mice were treated
with LPS to establish a damaged model. Then EPCs were incubated with H2, and treated
with PI3K inhibitor LY294002 and endothelial nitric oxide synthase (eNOS) inhibitor
L-NAME. MTT assay, transwell assay and tube formation assay were used to detect
the proliferation, migration and angiogenesis of EPCs. The expression levels of target
proteins were detected byWestern blot. Results found that H2 repaired EPCs proliferation,
migration and tube formation functions damaged by LPS. LY294002 and L-NAME
significantly inhibited the repaired effect of H2 on LPS-induced dysfunctions of EPCs.
H2 also restored levels of phosphor-AKT (p-AKT), eNOS and phosphor-eNOS (p-eNOS)
suppressed by LPS. LY294002 significantly inhibited the increase of p-AKT and eNOS and
p-eNOS expression exposed by H2. L-NAME significantly inhibited the increase of eNOS
and p-eNOS expression induced by H2. H2 repairs the dysfunctions of EPCs induced by
LPS, which is mediated by PI3K/AKT/eNOS signaling pathway.
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INTRODUCTION

Acute lung injury (ALI) and acute respiratory distress syndrome
(ARDS) are a series of pulmonary pathological changes arising
from a wide variety of lung injuries, which have high morbidity
and mortality (Butt et al., 2016), characterized by disruption of
endothelial barrier integrity and diffuse lung damage. It can cause
an imbalance between coagulation and inflammation to induce
inflammation (Frantzeskaki et al., 2017). Besides, macrophages,
neutrophils inflammatory cells and their pro-inflammatory
products can destroy pulmonary epithelial cells, increase
pulmonary microvascular permeability, produce pulmonary
edema, damage gas exchange, and lead to respiratory failure
(Butt et al., 2016). Therefore, how to maintain the integrity of
the endothelial barrier through the regulation of the
microenvironment in the inflammatory state is critical to the
treatment.

ECs dysfunction and inflammation contribute to the
occurrence and development of lung injury. Thus, vascular
endothelial repair is an integral part of lung injury repair
(Zhao et al., 2020). EPCs are a kind of progenitor cells that
can differentiate into vascular ECs (Asahara et al., 1997), which
can migrate to the damaged area and differentiate into ECs to
participate in angiogenesis or repair, and promote the
improvement of endothelial functions (Li et al., 2017). In
addition, EPCs can repair the vascular injury and alleviate
LPS-induced lung injury, reduce inflammation, and promote
bacterial clearance of pneumonia (Mao et al., 2010), which has
a broad prospect in the treatment of lung injury.

Hydrogen (H2) is an important physiological regulatory factor
that has protective effects of anti-oxidation, anti-inflammation,
and anti-apoptosis on cells and organs (Huang et al., 2010b). H2

can reduce oxidative stress (Song et al., 2011), promote the
scavenging of free radicals, and inhibit vascular aging (Iketani
et al., 2018). A multicenter, open-label clinical trial showed that
hydrogen/oxygen mixed gas inhalation improved disease severity
and dyspnea in patients with Coronavirus disease 2019 (COVID-
19) (Guan et al., 2020). In addition, H2 has an excellent
therapeutic effect on inflammation, ischemia-reperfusion
injury, diabetes, cancer, atherosclerosis, and other diseases (Li
et al., 2013; Lee et al., 2015; Shimada et al., 2016; Li et al., 2019). It
can reduce the levels of serum Low-Density Lipoprotein
Cholesterol (LDL-C) and apolipoprotein- B (Apo-B), improve
the high-density lipoprotein (HDL) functions damaged by
dyslipidemia (Song et al., 2013), reduce the formation of
neointima after vein transplantation in rats (Sun et al., 2012),
and decrease hypertension, angiogenesis imbalance and oxidative
stress caused by placental ischemia (Ushida et al., 2016). It also
can protect the pulmonary microvessels of mice from the
endothelial function damage induced by septicemia, maintain
the consistency of pulmonary endothelium (Li Y. et al., 2020), and
improve microvascular ECs viability in traumatic brain injury by
inhibiting autophagy (Wang Y. et al., 2020). Animal experimental
studies have shown that H2 inhalation can provide protection in
animal models of lung injury caused by mechanical ventilation,
sepsis, ischemia-reperfusion, LPS and hyperoxia, seawater
infusion, etc. (Ohsawa et al., 2007; Xie et al., 2010; Chen et al.,

2015; Diao et al., 2016; Audi et al., 2017). Clinical studies show
that the inhalation of H2 by pregnant women can also inhibit the
LPS-induced apoptosis and oxidative damage of fetal lung cells
(Hattori et al., 2015). Previous studies have found that EPCs can
repair lung injury induced by LPS (Yang et al., 2019), and H2 has
the same effect (Hattori et al., 2015). We speculate that H2 may
have a protective effect on EPCs, and even repair LPS-induced
lung injury by improving the functions of EPCs. In this study, the
injury model of EPCs was established by LPS treatment, and the
cell viability, migration, angiogenic ability, and related protein
expression of EPCs were measured. The molecular mechanisms
of H2 on the functional damage and repair of EPCs induced by
LPS were discussed.

MATERIALS AND METHODS

Animals
ICR mice (4 weeks old, males) were obtained from the Cavens
Company (Jiang Su, China). All animal experiments were
approved by the Animal Experimental Ethics Committee of
Weifang Medical University (approval code: 2019SDL108).

Isolation and Culture of EPCs
MNCs were isolated from the femurs of 4-week-old male ICR
mice by density gradient centrifugation using Histopaque 1,083
(Sigma, St. Louis, MO, United States). The isolated MNC were
seeded in a 6-well culture plate coated with fibronectin and
cultured in EGM-2MV (Endothelial cell basal medium-2, plus
FBS, VEGF, R-IGF-1, rhEGF, rhFGF-B, GA-1000,
hydrocortisone and ascorbic acid) (Lonza, Basel, Switzerland).
After 3 days of culture at 37°C with 5% CO2, the culture medium
was changed thoroughly with fresh culture medium, and non-
adherent cells were removed, and the culture medium was
changed every 2 days.

Characterization of EPCs
MNCs from mice bone marrow were cultured for 5 days,
incubated with 50 ug/ml Human Dil-Acetylated Low Density
Lipoprotein (Dil-Ac-LDL, FuShen, Shanghai, China) at 37°C for
4 h. Then cells were fixed in 4% paraformaldehyde (PFA),
incubated with FITC-labeled Ulex europaeus agglutinin 1
(FITC-UEA-1, FuShen, Shanghai, China) for 1 h. After setting
the image acquisition parameters at each wavelength using
background control, images were obtained under OLYMPUS,
IX71 fluorescence microscope at 400x.

We further detected the expression of surface markers in cells
at 10d and 21d. Cells were fixed in 4% PFA, treated with 0.1%
Triton X-100 for 10 min. After being blocked with 5% FBS for 1 h
at room temperature, the cells were incubated with primary
antibodies against CD117 (C-Kit) (eBioscience, San Diego, CA,
United States), SCA-1 (Abcam, Cambridge, MA, United States),
VEGFR 2 (Abcam, Cambridge, MA, United States), CD31
(Abcam, Cambridge, MA, United States), eNOS (Cell
Signaling Technologies, Danvers, MA, United States) overnight
at 4°C. After being washed with PBS, EPCs were incubated with
secondary antibodies conjugated with Cy3 (Goat anti-mouse cy3,
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1:100, Proteintech Group, Chicago, IL, United States; Goat anti-
Rat cy3, 1:100, Jackson Immunoresearch Laboratories, West
Grove, PA, United States) or FITC (Goat anti-rabbit FITC, 1:
100, Proteintech Group, Chicago, IL, United States) for 1 h at
37°C. The immunofluorescence staining was evaluated under a
fluorescence microscope (OLYMPUS, IX71, 400x).

EPCs Treatment
Before the experiment, the cell culture medium was replaced by
basic medium (M199 + 5% FBS). Then EPCs were treated with
different concentrations (2.5 μg/ml, 5 μg/ml, 10 μg/ml, 20 μg/ml)
of LPS (Solarbio, Beijing, China) at different time (24, 48, 72 h) to
establish a damaged model. The cell damaged model was treated
with H2 in different concentrations (20%, 40%, 60%) at different
time (24, 48, 72 h) to explore the suitable conditions of H2. The
concentration of CO2 in the H2 incubator is 5%, the
concentration of O2 is 21%, and the concentration of H2 is
adjusted by N2. Finally, EPCs were treated with PI3K inhibitor
LY294002 (Sigma-Aldrich, St Louis, MO, United States) (10 μM,
20 μM, 30 μM) or eNOS inhibitor L-NAME (Beyotime, Shanghai,
China) (100 μM, 200 μM) to find out the suitable concentration of
inhibitors.

FIGURE 1 | Isolation and characterization of mice bone marrow-derived EPCs. (A) DiI-ac-LDL (red) and FITC-UEA-1 (green) could be taken up by EPCs (blue) and
merged images of red and green fluorescence. Scale bar = 20 μm (400x). (B) Co-expression of VEGFR-2 (green) with C-kit (red) in cells at 10 d. (C) Co-expression of
VEGFR-2 (green) with SCA-1 (red) in cells at 10 d. (D) Co-expression of eNOS (green) with CD31 (red) in cells at 21 days. Scale bar = 20 μm (400x).

FIGURE 2 | EPCs viability was reduced after being induced by LPS.
EPCs were treated with different concentrations (2.5 μg/ml, 5 μg/ml, 10 μg/
ml, 20 μg/ml) LPS for different time (24, 48, 72 h). Cell viability was measured
by MTT assay. Data are presented as mean ± SD (n = 6); **p < 0.01.
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Cell Viability of EPCs
EPCs were evaluated by 3-[4,5-dimethylthiazol-2-yl]-2,5-
diphenyltetrazolium bromide (MTT) assay. Cells (100μl,
5×104 cells/mL) were seeded in 96-well plates and cultured for
24 h until adhered to the wall. After different treatments, cells
were incubated with MTT (20 μl, 5 mg/ml) for 4 h at 37°C with
5% CO2. 200 μl of dimethylsulfoxide (DMSO) was added to each
well and shaken for 10 min. The optical density (OD) values at
492 nm were determined using a microplate spectrophotometer
(Multiskan GO, Thermo, United States).

EPCs Migration Assay
EPCs migration was measured by an 8 μm pore 24-well Cell
Migration Assay kit (BD Biosciences, San Jose, CA,
United States). EPCs suspension (300 μl, 5×104 cells/mL in
M199 medium) was added to the upper chamber and cultured
according to different groups, and 600 μl EGM-2MV medium
was added lower chamber. After different treatments, the
chamber was taken out, scrubbed carefully with a cotton swab
and rinsed with PBS. The lower cells were fixed and stained with
0.1% crystal violet. Carefully cut off the Polycarbonate film from

the base of the upper chamber, seal the film and take a picture
under a microscope.

Tube Formation in Vitro
Matrigel (BD Biosciences, San Jose, CA, United States) matrix
was dissolved overnight at 4°C. After being placed in a 37°C
incubator for 30min, 250 μl Matrigel was added to a 24-well plate.
After treatments, 5×104 cells were seeded in the Matrigel-coated
plate. After 6 h incubation, Calcein AM was added to staining for
30 min, and the samples were observed and photographed under
a fluorescence microscope.

Western Blot
Total protein was extracted with Radio immunoprecipitation
assay (RIPA, Beyotime, Shanghai, China) lysis buffer and
quantified with a BCA assay kit (Solarbio, Beijing, China). In
total, 25 μg of protein was electrophoresed on a 10% denaturing
polyacrylamide gel and transferred onto polyvinylidene difluoride
(PVDF) membranes. After being blocked with 7% dried skimmed
milk for 3 h at room temperature, the membranes were incubated
with primary antibodies against GAPDH (1: 20,000, Proteintech

FIGURE 3 | H2 alleviated EPCs dysfunctions induced by LPS. EPCs treated with LPS induced EPCs damage, and then EPCs were treated with different
concentrations (20%, 40%, 60%) for different time (24, 48, 72 h). The viability of EPCs was assessed by MTT assay (A). EPCs migration was measured by transwell
assay (B,C). Tube formation was measured by a Tube formation assay (D,E). Data are presented as mean ± SD (n = 6); **p < 0.01.
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Group, Chicago, IL, United States), AKT (1: 1,000, Proteintech
Group, Chicago, IL, United States), p-AKT (1: 2000, Proteintech
Group, Chicago, IL, United States), eNOS (1: 1,000, Cell Signaling
Technologies, Danvers, MA, United States), p-eNOS (1: 1,000,
Cell Signaling Technologies, Danvers, MA, United States)
overnight at 4 °C under constant shaking. After washing with
TBST buffer (Shandong Sparkjade Biotechnology Co., Ltd.)
4 times (each 5min), the membranes were incubated with the
secondary antibodies conjugated to horseradish peroxidase (HRP)
for 3 h at room temperature under constant shaking. After
washing with TBST buffer for three times (each 5 min), the
protein bands on the PVDF membrane were detected using the
ECL chemiluminescence detection kit and chemiluminescence gel
imaging system (FluorChem Q, ProteinSimple, CA,
United States).

Statistical Analyses
All data are presented as mean ± standard deviation (SD). The
data were analyzed using SPSS software (version 26.0, SPSS Inc.,
Chicago, IL, United States). Differences between three groups or
more were analyzed by one-way ANOVA. Values were
considered significant at p < 0.05.

RESULTS

Isolation and Characterization of EPCs
Bone marrow mononuclear cells (MNCs) isolated from mouse
bone marrow showed cobblestone-like morphology
(Supplementary Figure 1). These induced MNCs engulfed
Dil-ac-LDL and FITC-UEA-1 (Figure 1A), the differentiation
markers of EPCs. Then we examined cell-surface markers of
EPCs. After 10 days of culture, VEGFR-2 with C-kit were co-
expressed in the isolated cells (Figure 1B), and VEGFR-2 with
SCA-1 were also co-expressed. (Figure 1C). After 21 days of
culture, the cells expressed both eNOS and CD31. (Figure 1D).
Therefore, these induced MNCs were characterized as EPCs and
could be used in later experiments.

LPS Impaired EPCs Functions
MTT assay results showed that, compared with the control group,
LPS reduced the viability of EPCs in a concentration-dependent
and time-dependent manner. We used 20 μg/ml LPS to induce
72 h for the follow-up experiments (Figure 2). In addition, we
also found that LPS significantly reduced the ability of migration
and tube formation of EPCs (Figures 3B–E).

FIGURE 4 | LY294002 and L-NAME inhibited the H2-induced repair of EPCs dysfunctions damaged by LPS. EPCs were treated with the PI3K inhibitor LY294002
(10 μM, 20 μM, 30 μM) or the eNOS inhibitor L-NAME (100 μM, 200 μM), incubated with LPS (20 μg/ml) and H2 (60%) for 72 h. The viability of EPCs was assessed by
MTT assay (A,B), n = 6). EPCs migration was measured by transwell assay (C,D) n = 15. Tube formation was measured by Tube formation assay (E,F) n = 15. Data are
presented as mean ± SD; *p < 0.05 and **p < 0.01.,
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H2 Alleviated LPS-Induced EPCs
Dysfunctions
Compared with the control group, LPS reduced the viability of
EPCs. H2 significantly improved the LPS-induced reduction in
EPCs viability in a concentration-dependent and time-dependent
manner, and the effect of 60% concentration of H2 on EPCs for
72 h was the most significant (Figure 3A).

Migration assay showed that LPS reduced EPCs migration
ability, compared with the control group. H2 reversed the LPS-
induced changes. H2 increased the migration of EPCs in a
concentration-dependent and time-dependent manner, and
60% concentration of H2 treatment for 72 h has the most
significant effect on the repairment of EPCs migration ability
(Figure 3 B and C).

The EPCs tube formation was detected with tube formation
assay. Compared with the control group, LPS reduces the tube
formation of EPCs, which could be reversed by H2 treatment in a
concentration-dependent manner (Figure 3 D and E).

LY294002 and L-NAME Inhibited
H2-MediatedRestoration of EPCs Functions
The effects of specific inhibitors LY294002 (PI3K inhibitor) and
L-NAME (eNOS inhibitor) on EPCs functions were measured to
investigate the protective mechanism of H2. As shown in Figure 4
A and B, LY294002 (10 μM, 20 μM, 30 μM) and L-NAME
(100 μM, 200 μM) inhibited the H2-mediated restoration of
EPCs viability impaired by LPS. 20 μM LY294002 and
200 μML-NAME were employed in the subsequent

FIGURE 4 | Continued.
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experiments. Figure 4 C-E showed that LY294002 and L-NAME
significantly inhibited the H2-mediated restoration of EPCs
migration and tube formation ability damaged by LPS.

H2 Restored the PI3K/AKT/eNOS Pathway
Inhibited by LPS
We further investigated the protein levels of AKT, p-AKT, eNOS
and p-eNOS to clarify the relationship between H2 and PI3K/
AKT/eNOS signaling pathway. As shown in Figure 5, LPS (20 μg/
ml) decreased the protein levels of p-AKT, eNOS, p-eNOS in
EPCs. H2 restored these protein levels in a time-dependent
manner, and H2 treatment for 2 h was employed in the
subsequent experiments. As shown in Figure 6, LY294002
significantly inhibited the increased levels of p-AKT, eNOS,
p-eNOS induced by 60% H2. Figure 7 showed that L-NAME
significantly inhibited the increased levels of eNOS and p-eNOS
induced by 60% H2, however, there was no effect of L-NAME on
the expression levels of p-AKT.

DISCUSSION

EPCs were first initially discovered in 1997 by Asahara et al. EPCs
are defined as a cell population capable of differentiating into
mature ECs and have vasculogenic potential, which contributes to

vasculogenic, wound healing (Asahara et al., 1997) and repair of
ischemic tissue damage (Fan et al., 2014). As a potential
therapeutic agent, EPCs have attracted attention for a variety
of diseases including cerebral ischemia (Zhou et al., 2021),
diabetes (Wang K. et al., 2020), ALI etc. (Asahara et al., 1997).
However, due to differences in the isolation, amplification and
identification of EPCs, as well as controversy over therapeutic
function, the further development and clinical application of
EPCs were limited. In this study, we successfully isolated the
mouse bone marrow-derived EPCs for subsequent research of the
repair mechanism of H2 on EPCs dysfunctions induced by LPS.
This study is the first report of the effect of H2 on EPCs.

H2 is an odorless, colorless, tasteless, and insoluble
multifunctional medical gas. It can cross the cellular membranes
and has the functions of anti-oxidation, anti-inflammatory and anti-
apoptosis (Hong et al., 2010). In 1975, Dole et al. found that high-
pressure hydrogen gas has an antioxidant effect and can inhibit the
growth of tumors inmice (Dole et al., 1975). However, the study was
not taken seriously because of the limitations of the experiment and
the difficulty of reproducibility. In recent years, research onH2 in the
medical field has gradually widened. Clinical studies have found that
H2 plays a therapeutic role in diseases which related to the
respiratory system (Guan et al., 2020), nervous system,
cardiovascular (Camara et al., 2019), digestive system (Eryilmaz
et al., 2020), reproductive system, urinary system (Gokalp et al.,
2017), and metabolic exercise (Qiu et al., 2020). It is recommended

FIGURE 5 | (A)Representative western blot images. H2 up-regulated the levels of p-AKT (B), eNOS (C), and p-eNOS (D) in EPCs at different time points. Cells were
treated with LPS (20 μg/ml) and H2 (60%) for 0, 1, 1.5 and 2 h, respectively. Western blotting was used to detect the expression levels of target protein. Data are
presented as mean ± SD; **p < 0.01.
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to inhale a mixture of H2 and oxygen (O2) (33.3%O2 and 66.6%H2)
in the “Clinical Guidance for COVID-19 Pneumonia Diagnosis and
Treatment (Trial Version 7)” issued by the China National Health
Commission. The recommendation recognized the importance of
H2 in contemporary medical gas research.

In this study, LPS (20 μg/ml) significantly reduced the
proliferation, migration, and tube formation of EPCs. This is
consistent with Yu et al. research, which found that LPS (10 μg/
ml) impaired the viability, migration, adhesion abilities, and tube
formation of late EPCs (Yu et al., 2017). Compared with the control
group, the proliferation and adhesion activities of bone marrow-
derived EPCs were impaired in LPS (100 ng/ml) induced group in
dose and time dependence (Li et al., 2014). Our previous study also
demonstrated that LPS (30 μg/ml) inhibited the proliferation,
migration, and tube formation of EPCs (Yang et al., 2019).
Furthermore, western blot results showed that LPS reduced the
expression levels of p-AKT, eNOS, and p-eNOS in EPCs. LPS had no
effect on AKT expression. Our previous research proved that LPS
(30 μg/ml) decreases the levels of p-AKT, eNOS, and p-eNOS in
EPCs (Yang et al., 2019). Yang et al. found that LPS (10 μg/ml)
reduced the expression of p-eNOS in human pulmonary
microvascular endothelial cells (HPMECs) (Yang et al., 2018). Liu
et al. found that p-AKT was markedly suppressed in H9c2 cells after
treatment with LPS (1 μg/ml) for 24 h (Liu et al., 2021). The effect of

LPS onAKT expression in out study was consistent with the study of
Li et al. and Zhan et al. Li et al. showed that there was no significant
change in AKT expression of LPS-induced (20 μg/ml) mouse
microvascular ECs (Li H. et al., 2020). Zhan et al. reported that
the AKT level of HPMECs did not change markedly under LPS
(1mg/L) induction (Zhan et al., 2020). In addition, Wang et al.
found that p-AKT protein expression was significantly increased in
LPS-induced (100 ng/ml) rat microvascular ECs (Wang et al., 2013).
Fan et al. found that LPS (100 ng/ml) stimulation significantly
increased the phosphorylation of both AKT and eNOS in
HPMECs (Fan et al., 2020). Taken together, we speculate that the
inconsistent study results may be due to the differences in LPS
concentration. In addition to toxic effects, LPS also has extensive
biological activity. Low doses of LPS have immune-activating effects
(Morris and Li, 2012) (Lin et al., 2009). Therefore, there are
differences in the functional gene expression and cell functions
under different concentrations LPS treatment. However, the
relevant mechanism still needs further confirmation.

The effectiveness of molecular hydrogen has been proven in the
prevention and treatment ofmany diseases. H2 had a protective effect
on the rat model of ALI (Jiang et al., 2013; Audi et al., 2017) by
significantly improving lung endothelial permeability, reducing cell
apoptosis and histopathological changes (Diao et al., 2016), and
preventing LPS-induced pulmonary ECs dysfunction (Li Y. et al.,

FIGURE 6 | (A) Representative western blot images. LY294002 inhibited the increase of p-AKT (B), eNOS (C) and p-eNOS (D) expression induced by H2 (60%).
Cells were treated with LPS (20 μg/ml), H2 (60%) and LY294002 (20 μM) for 2 h, respectively. Western blotting was used to detect the expression levels of target protein.
Data are presented as mean ± SD; **p < 0.01.

Frontiers in Pharmacology | www.frontiersin.org May 2022 | Volume 13 | Article 8948128

Mu et al. Hydrogen Repairs EPCs Injury

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


2020). Fu et al. demonstrated that hydrogen-rich saline has a
protective effect on LPS-induced ALI by regulating cell
apoptosis and inhibiting endothelial dysfunction (Fu et al.,

2020). Inhalation was the most direct way to administer
molecular hydrogen (Huang et al., 2010a; Kawamura et al.,
2010). At the same time, molecular hydrogen could be dissolved
in physiological saline to make hydrogen-rich water for
intravenous injection, or it could be taken orally (Cardinal
et al., 2010; He et al., 2013). A hydrogen incubator was used in
this study. It could simulate the in vivo environment after inhaling
hydrogen, which was more conducive to our research. H2 has a
protective effect on the ECs barrier, mechanism of which has not
been fully elucidated, and the effect of H2 on EPCs has not been
reported. Our study indicated that H2 attenuated the dysfunctions
of EPCs induced by LPS, improved EPCs proliferation, migration,
tube formation, and restored the expression levels of p-AKT,
eNOS, p-eNOS. Recent studies revealed that H2 could inhibit
the expression of inflammatory factors, reduce sepsis-induced
endothelial damage and inflammation, improve endothelial
dysfunction (Cardinal et al., 2010; He et al., 2013).

Previous studies showed that the PI3K/AKT/eNOS pathway is
involved in the changes of the LPS-induced ECs barrier function
(Zheng et al., 2018), but whether it is involved in the effect of H2 on
EPCs repairment remains unclear. The results of the present study
discovered the unique molecular basis for H2 to inhibit LPS-induced
EPCs dysfunctions. After inhibiting the PI3K/AKT/eNOS signaling
pathway by LY294002 and L-NAME, theH2-mediated restoration of
EPCs functions was partially prevented. The western blot results
demonstrated that H2 up-regulated p-AKT, eNOS and p-eNOS

FIGURE 7 | (A) Representative western blot images. L-NAME inhibited the increase of eNOS (C) and p-eNOS (D) expression induced by H2 (60%), and did not
affect p-AKT levels (B). Cells were treated with LPS (20 μg/ml), H2 (60%) and L-NAME (200 μM) for 2 h, respectively. Western blotting was used to detect the expression
levels of target protein. Data are presented as mean ± SD; **p < 0.01.

FIGURE 8 | H2-mediated restoration of EPCs dysfunctions is mediated
by the PI3K/AKT/eNOS pathway.
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levels were inhibited by LPS. LY294002 significantly inhibited the
increase of p-AKT, eNOS and p-eNOS induced by 60% H2.
L-NAME significantly inhibited the increase of eNOS and
p-eNOS induced by 60% H2, and had no effect on p-AKT levels.
PI3K/AKT/eNOS activation plays a crucial role in our study. PI3K/
AKT signaling pathway mediates a variety of pathophysiological
processes and involves multiple important cellular activities, such as
cell proliferation, apoptosis and autophagy (Ravikumar et al., 2010;
Liby and Sporn, 2012; Saiprasad et al., 2014). Additionally,
numerous studies show that the PI3K/AKT signaling pathway
plays a vital role in the process of EPCs proliferation, migration,
homing and tube formation (Everaert et al., 2010;Wang et al., 2011).
Our previous results demonstrate that Rev-D4Fmediates restoration
of EPCs functions by PI3K/AKT/eNOS signaling pathway (Yang
et al., 2019). The PI3K/AKT/eNOS pathway was involved in
restoring the dysfunctions of EPCs in diabetic mice (Cao et al.,
2017). Yu et al. suggested that the proliferation, migration and
survival of EPCs impaired by LDL cholesterol via the PI3K/AKT
signaling pathway (Yu et al., 2010).

In summary, we concluded that the PI3K/AKT/eNOS
signaling pathway was contributed to H2 repairment of EPCs
dysfunctions induced by LPS (Figure 8).

CONCLUSION

Our results showed that H2 reversed the LPS-induced EPCs
dysfunctions. Moreover, H2 restored the LPS-attenuated levels
of p-AKT, eNOS and p-eNOS. Therefore, this study proves that
H2-mediated restoration of EPCs dysfunctions is mediated by the
PI3K/AKT/eNOS pathway.
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