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Abstract. The vascular endothelial cell cadherin com-
plex (VE-cadherin, a-, B-, and y-catenin, and p120/
p100) localizes to adherens junctions surrounding vas-
cular endothelial cells and may play a critical role in the
transendothelial migration of circulating blood leuko-
cytes. Previously, we have reported that neutrophil
adhesion to human umbilical vein endothelial cell
(HUVEC) monolayers, under static conditions, results
in a dramatic loss of the VE-cadherin complex. Subse-
quent studies by us and others (Moll, T., E. Dejana, and
D. Vestweber. 1998. J. Cell Biol. 140:403-407) suggested
that this phenomenon might reflect degradation by
neutrophil proteases released during specimen prepa-
ration. We postulated that some form of disruption of
the VE-cadherin complex might, nonetheless, be a
physiological process during leukocyte transmigration.

In the present study, the findings demonstrate a specific,
localized effect of migrating leukocytes on the VE-cad-
herin complex in cytokine-activated HUVEC monolay-
ers. Monocytes and in vitro differentiated U937 cells
induce focal loss in the staining of VE-cadherin, a-cate-
nin, B-catenin, and plakoglobin during transendothelial
migration under physiological flow conditions. These
events are inhibited by antibodies that prevent transen-
dothelial migration and are reversed following transmi-
gration. Together, these data suggest that an endothe-
lial-dependent step of transient and focal disruption of
the VE-cadherin complex occurs during leukocyte
transmigration.
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Introduction

Vascular endothelial-specific cadherin (VE-cadherin,! cad-
herin-5) is a transmembrane protein that associates via its
cytoplasmic tail with a number of cytosolic proteins (Gei-
ger, 1991; Dejana et al., 1995, 1998; Dejana, 1996; Lampug-
nani et al., 1995), including a-catenin, B-catenin, plakoglo-
bin (y-catenin), and p120/p100 (Dejana et al., 1995, 1998;
Staddon et al., 1995; Allport et al., 1997). These proteins,
in turn, link VE-cadherin to the cytoskeleton. VE-cad-
herin appears to be critical for vascular structure assembly,
as assessed in mouse embryoid bodies lacking VE-cad-
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herin (Vittet et al., 1997). Other in vivo and in vitro studies
have implicated the adherens junctions and, primarily,
VE-cadherin, in the maintenance of endothelial integrity
and control of leukocyte passage (Dejana et al., 1995,
1998; Del Maschio et al., 1996; Gotsch et al., 1997; Matsu-
yoshi et al., 1997). Antibodies directed against VE-cad-
herin promoted an increase in neutrophil recruitment in a
murine model of thioglycollate-induced acute peritonitis
(Gotsch et al., 1997).

The adhesion of PMN (polymorphonuclear leukocytes)
to the apical surface of endothelium previously has been
shown to induce signals both in the leukocyte and the en-
dothelial cell. Huang et al. (1993) described coupling of
transmigration events to a transient increase in intracellu-
lar Ca®" concentration ([Ca?'];) within endothelium, and
migration was inhibited by >90% after pharmacological
chelation of [Ca 2*];. Others have demonstrated that lym-
phocytes and monocytes induce similar increases in [Ca?™];
upon adhesion to vascular endothelium (Pfau et al., 1995;
Ziegelstein et al., 1994). In addition, Yoshida et al. (1996)
have reported that adhesion of leukocytes to activated en-
dothelium induces transmembrane linkage of E-selectin to
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the cytoskeleton and subsequent rapid dephosphorylation
of serine residues in its cytoplasmic domain (Yoshida et al.,
1998). Further study (Hixenbaugh et al., 1997; Saito et al.,
1998) has demonstrated that neutrophil transendothelial
migration is associated with phosphorylation of endothe-
lial cell myosin light chain kinase. These findings support
the notion that leukocyte—endothelial adhesive interac-
tions are a required prerequisite of transendothelial mi-
gration and may provide a model mechanism of signal
transduction that facilitates leukocyte transendothelial mi-
gration.

In vivo and in vitro studies have indicated that neutro-
phil and monocyte transendothelial migration occurs gen-
erally between endothelial cell-to-cell lateral borders. Our
working hypothesis is that stably adherent leukocytes that
are spread on the apical surface induce endothelial-depen-
dent changes in the lateral junctions that precede leuko-
cyte passage and facilitate transmigration. Recent in vitro
studies (Del Maschio et al., 1996; Allport et al., 1997) have
demonstrated dissociation and degradation of the VE-cad-
herin complex during transendothelial migration of PMN
under static conditions. Subsequently, Moll et al. (1998)
used a lysis protocol that involved boiling in 1% SDS, fol-
lowed by immunoblotting to detect changes in B-catenin
and plakoglobin during neutrophil adhesion. Under the
latter conditions, coincubation of endothelium and PMN
did not alter the gross levels of these catenins (as reported
earlier, Del Maschio et al., 1996; Allport et al., 1997), indi-
cating that a nonphysiological degradation of the catenins
by neutrophil proteases was occurring during postlysis
analysis. An important caveat, however, is that these ex-
periments were not performed under conditions of physio-
logically relevant flow, and there remains a lack of sensi-
tivity to detect or visualize transient and/or focal changes
in the VE-cadherin complex during leukocyte migration.

To avoid nonphysiological proteolysis and to better
model the adhesion events seen in vivo, we adopted a
method of analysis using a parallel plate flow chamber and
then recovered the endothelial cell monolayers for imme-
diate fixation and immunofluorescence staining. The cur-
rent study also employed freshly isolated human mono-
cytes or PBMC (peripheral blood mononuclear cells:
monocytes, lymphocytes), which have significantly lower
protease content as compared with human PMN. Further,
the presence of lymphocytes in this model provided an in-
ternal control because lymphocytes do not transmigrate
the HUVEC monolayer. A second strategy employed the
U937 monocytic cell line stably transfected with L-selectin
(U937L; Luscinskas et al., 1994), which adhere, but do not
transmigrate 4 h TNF-a activated HUVEC, and differenti-
ated U937L (U937L-Dif; Chuluyan and lIssekutz, 1993),
which transmigrate within the same time frame (minutes)
as human monocytes (Luscinskas et al., 1996).

Using this approach, we observed that monocytes or
U937L-Dif, but not lymphocytes or U937L, induce focal
disruption of the VE-cadherin complex only at sites of
transmigration. This disruption can be inhibited by func-
tion blocking antibodies that prevent monocyte or U937L-
Dif transmigration, but not by control antibodies. Further,
the disruption of the VE-cadherin complex is reversible, in
that once all monocyte migration has occurred, the VE-
cadherin complex staining is restored. Taken together,
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these results demonstrate a direct and reversible effect of
monocyte transendothelial migration on the VE-cadherin
complex.

Materials and Methods

Materials

1 M Hepes solution, DPBS (Dulbecco’s PBS), DPBS with Ca?* and Mg?*
(DPBS*), M199, DME, and RPMI-1640 containing 25 mM Hepes were
purchased from BioWhittaker Bioproducts. Recombinant hTNF-a (pro-
duced in Escherichia coli) was purchased from Genzyme and contained
<10 pg/ml of endotoxin, as determined by the manufacturer. Human se-
rum albumin (HSA,; albuminate 25%, sterile and nonpyrogenic solution)
was obtained from Baxter Healthcare Corp. All other chemicals were of
the highest grade available from Baker Chemical.

Antibodies

The following murine mAbs have been reported previously (purified
1gG): anti-CD18 (TS1/18, ATCC); anti-CD49d (anti—ay-integrin, HP2.1,
19gG;) was purchased from Immunotech Inc.; anti-PECAM-1 (1.1, 1gG,,;
Liao et al., 1995); anti-MHC class | (W6/32, 19gG,,; Luscinskas et al., 1995).
Rabbit polyclonal 1gG anti-PECAM-1 (Ab 177; Muller et al., 1993) and
rabbit preimmune 1gG were used in flow studies. Murine mAbs for immu-
nofluorescence studies were used as purified 1gG. Anti-VE-cadherin
(clone TEA1/31, 1gG;) was purchased from Immunotech Inc.; anti-
B-catenin (IgG;) was purchased from Research Diagnostics Inc.; antipla-
koglobin (clone PG5.1, 1gG,,) was purchased from BioDesign Interna-
tional; anti-a-catenin (clone aCAT-7A4, 19gG;) was purchased from
Zymed Laboratories. Additionally, mouse mAb to VE-cadherin, (hec-1,
19G,,; Ali et al., 1997) was labeled directly with Oregon green 514 (Molec-
ular Probes Inc.) and used for dual fluorescence Ag staining. Goat anti—
mouse 1gG Texas red conjugate and goat anti-mouse 1gG CY3 conjugate
were purchased from Caltag Laboratories. Anti-CD14-FITC conjugate
(clone 3C10) has been reported previously (Muller et al., 1993) and anti-
CD3-FITC was purchased from Sigma Chemical Co.

Cell Culture

Endothelial Cell Cultures. HUVEC were isolated from 2-5 umbilical cord
veins, pooled, and established as primary cultures in M199 containing
20% FCS (Hyclone; Luscinskas et al., 1989). HUVEC were serially pas-
saged (1:3 split ratio) and maintained in M199 containing 10% FCS, en-
dothelial cell growth factor, porcine intestinal heparin, and antibiotics. Ex-
periments were performed at subculture 1 or 2 using 2-d postconfluent
cells.

Leukocyte Cell Lines. U937L (Luscinskas et al., 1994) and U937L-Dif
cells were cultured in RPMI-1640 containing 10% FCS, 1 mM glutamine,
and antibiotics, and serially passaged (1:20 split ratio) as required. U937L
were differentiated by treatment of cell suspensions (0.3 X 106 cells/ml)
with 1 mM dibutyryl cAMP in cell culture media for 72 h (Chuluyan and
Issekutz, 1993).

Isolation of Leukocytes

Human Peripheral Blood Mononuclear Cells. PBMC were isolated from
whole blood (normal volunteers) by centrifugation on Ficoll-Hypaque
density gradients at 15°C (LSM, Organon Teknika). Contaminating RBCs
were removed by hypotonic lysis. The percentage of monocytes and lym-
phocytes was generally 28% and 65%, respectively, as assessed by Wright-
Giemsa, and contaminating cells were RBCs with <1% PMN.

Human CD4* Lymphocytes. PBMC, isolated as above (in RPMI-1640
containing 5% FCS) were incubated at 4°C for 2 h in the presence of anti-
CD4-coupled beads (Dynal Inc.). CD4" cells bound to the magnetic
beads were removed by magnetic isolation and detached from the mag-
netic beads (DETACHaBEAD CD4, Dynal Inc.). The population was
>99% CD4* lymphocytes as determined by indirect immunofluorescence
and flow cytometry.

Human Monocytes. Monocytes were isolated from freshly drawn leu-
kopacks resulting from platelet pheresis. PBMC, isolated as above, were
subjected to counterflow centrifugal elutriation as described (Luscinskas
et al., 1994). Monocyte fractions were >94% purity as determined by
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FACScan (CD14*, CD3™) and Wright-Giemsa, and >99% viable (Trypan
blue).

Human Neutrophils. PMN were isolated as described previously (Lus-
cinskas et al., 1989). PMN were >95% pure as determined by Wright-
Giemsa.

Flow Studies

The parallel plate flow chamber used for leukocyte adhesion assays has
been described in detail (Shen et al., 1992; Luscinskas et al., 1994). Acti-
vated HUVEC monolayers (25 ng/ml TNF-a, 4 h) on 25-mm diam fi-
bronectin-coated glass coverslips were placed in the flow chamber and
PBMC (10° cells/ml) or monocytes (0.5 X 10%ml) were drawn across the
monolayers for 5 min at 0.52 ml/min (estimated wall shear stress of 1.0
dynes/cm?). In some experiments, this was followed by 12 min of perfusion
with buffer alone to allow adherent monocytes to complete the process of
transmigration. Leukocyte—endothelial cell interactions were recorded
live time by videomicroscopy and adhesion and transmigration deter-
mined from 4-8 high power (60X phase-contrast objective) fields. Trans-
migrated leukocytes were determined as being beneath the endothelial
monolayer, i.e., in a different plane of focus, distinct from both adherent
leukocytes and the endothelium. Coverslips were fixed immediately in ice-
cold methanol at —20°C for 5 min or 2% paraformaldehyde at room tem-
perature for 10 min, washed three times in DPBS™, and stained for VE-
cadherin complex as described below. Control monolayers were activated
with TNF-a for 4 h and perfused with buffer alone for 3-5 min in the flow
chamber and processed in parallel.

Indirect Immunofluorescence Analysis of HUVEC
Junctional Proteins

Fixed HUVEC monolayers were blocked with TBS, pH 7.4, containing 0.1
mg/ml salmon sperm DNA, 1% (vol/vol) horse serum, and 1% (vol/vol)
goat serum (block) for 20 min at 37°C. Monolayers were then incubated
for 45 min at 37°C with specific mAb (10-20 p.g/ml in block), rinsed three
times in DPBS*, and incubated with goat anti-mouse 1gG Texas red/CY3
(1/100 dilution in block) for 45 min at 37°C. Coverslips were rinsed three
times in DPBS™ and incubated with anti-CD3-FITC (1/50 dilution) or
anti-CD14-FITC (5 ng/ml) for a further 30 min at 37°C, rinsed twice in
DPBS*, once in dH,0, and mounted with Vectashield (Vector Labs).
Stained HUVEC were visualized as follows: 1, an upright microscope (Mi-
croFot FXA,; Nikon, Inc.) equipped for fluorescence and a 20X phase ob-
jective. Images were captured using a cooled charged-coupled device
(CCD) video camera (SenSys, Photometrics) as described previously
(Allport et al., 1997). Exposures were matched in each case (typically
0.3-0.6 s). 2, confocal image analysis, images were captured using a laser
scanning confocal microscope (BioRad MRC-1024/2P multiphoton inter-
faced with Zeiss Axiovert S100 microscope) equipped with a 63X water
immersion objective. Serial 0.5-.m sections were taken routinely in the z
direction.

Live-Time In Vitro Flow and
Immunofluorescence Analysis

Activated HUVEC monolayers were preincubated on ice with 5 pg/ml
anti-PECAM-1 antibody, P1.1, for 30 min, followed by 30 min with anti-
mouse 1gG Texas red. The monolayers were washed, placed in the flow
chamber, and perfused with PBMC (5 X 105/ml) at 0.26 ml/min (estimated
wall shear stress = 0.5 dynes/cm?) for 15 min. Leukocyte—endothelial in-
teractions were recorded (40X objective) on videotape. At intervals dur-
ing monocyte transmigration, live-time immunofluorescence images and
corresponding phase-contrast micrographs were taken using a computer-
controlled cooled CCD camera and Nikon TE-300 inverted microscope
equipped for phase-contrast and fluorescence. The immunofluorescence
and phase micrographs were subsequently overlaid in register using the
Oncor Image software (see Fig. 2).

Analysis of Changes in VE-Cadherin Complex Staining

Image Capture by CCD Camera. Fluorescence (Texas red and FITC chan-
nels) and phase images of the same field were captured by photomicros-
copy and CCD camera. The phase image was used to locate and quantify
the number of adherent leukocytes. A two-color immunofluorescence
staining protocol was used to identify changes in junctional staining (red)
and simultaneously the number and location of adherent lymphocytes
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were determined (green FITC-labeled anti-CD3 mAb). The identity and
location of monocytes (anti-CD3-FITC negative leukocytes) was then de-
duced. The phase-contrast, red, and green images for each field were
pseudocolored (Oncor Image software) and then overlaid in register for
direct analysis of the location of monocytes/lymphocytes in relation to dis-
ruption of VE-cadherin complex staining. A leukocyte was considered to
be associated with an observed staining disruption, if it was located within
one leukocyte diameter. Data were normalized to the total number of
monocytes or lymphocytes per field because the range of adherent/trans-
migrated leukocytes per field varied due to monocyte string formation
(Luscinskas et al., 1996; Lim et al., 1998).

Image Capture by Confocal Microscopy. Serial z-sections of each field
were captured sequentially using the same specifications and separate ex-
citation wavelengths to prevent bleed-through between emission chan-
nels. This method allowed accurate detection of gaps in the VE-cadherin
complex staining with no contribution from the FITC channel. CY3 la-
beled junctional proteins were excited at 568 nm and FITC-labeled mono-
cytes were excited at 488 nm. The individual Z-series were subsequently
rendered as a single two-color Z-series demonstrating the location of each
leukocyte (x, y, and z) in relation to junctional staining using Confocal As-
sistant software (BioRad). Further manipulation of confocal Z-series was
performed using NIH Image 1.62 software. This allowed us to isolate an
area of interest from each Z-series and replot the data in an x-z direction.
The new y-series was then collapsed to generate a single composite image.

Statistics

Adhesion and transmigration data were collected by ANOVA, and Stu-
dent’s two-sample t test was used to calculate statistical significance (Ex-
cel, Microsoft Corp). P values of <0.05 were considered significant.

Results

Monocytes Transmigrate at the Lateral Borders of
Endothelial Cells Under Flow

Previous reports have indicated that leukocytes might mi-
grate endothelium via either transcellular or paracellular
routes. To study the adherens junctions during monocyte
transendothelial migration, it was first necessary to estab-
lish that monocytes migrate via paracellular routes in our
model. Using live-time immunofluorescence microscopy
and the parallel plate flow chamber, we perfused PBMC
across activated HUVEC monolayers that had been pre-
stained with a nonblocking anti-PECAM-1 (P1.1, Liao et
al,, 1995) and secondary Texas red-labeled goat anti-
mouse 1gG, to visualize the staining pattern of PECAM-1
at the lateral junctions. There was no difference in the
number of monocyte interactions or their rate of transmi-
gration in the presence of the P1.1 and secondary antibod-
ies when compared with media alone (data not shown).
Phase-contrast and immunofluorescence images for each
field were captured at intervals and later overlaid in regis-
ter to produce photomicrographs (representative shown in
Fig. 1, a—c). PECAM-1 staining in live HUVEC are de-
picted in red (Fig. 1 a), the corresponding phase image of
adherent (Fig. 1 b, asterisk) and transmigrating (Fig. 1 b,
arrows) monocytes is shown in Fig. 1 b, and the immuno-
fluorescence and phase images were overlaid to generate
Fig. 1 c. Quantitative measure showed that the majority of
cells migrated between endothelial cells (80%, n = 3,
three coverslips per experiment, total 22 fields). Hence,
this model is appropriate to study the VE-cadherin com-
plex components of the EC lateral junctions during trans-
migration of leukocytes.
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PECAM-1

Overlay

Adhesion and Transmigration of U937L-Dif cells, but
Not U937L Cells, Under Flow Induces Loss of
VE-Cadherin Staining

Significant numbers of U937L cells adhered to 4 h TNF-a
activated HUVEC (400 * 167 cellssmm?, n = 3), but few
transmigrated the endothelial monolayer (=49%). Similar
numbers of U937L-Dif cells stably adhered to activated
endothelium (290 + 126 cellssmm?, n = 3) and by five min-
utes, approximately half of the adherent cells had transmi-
grated (138 *+ 49 cellssrmm?). This level of migration and
the time course are similar to that observed for isolated
blood monocytes as previously reported by us for this sys-
tem (Luscinskas et al., 1996).

Coverslips from the experiments described were recov-
ered and stained for VE-cadherin. Random fields were vi-
sualized under phase-contrast and fluorescence optics and
the analysis of monolayers showed that U937L cells ad-
here to the endothelial surface, but remain round and ap-
pear unactivated (Fig. 2 a, arrows). Despite this level of
U937L adhesion, essentially no disruption of the VE-cad-
herin staining was observed (Fig. 2 b), even when the
U937L cells were located immediately over an endothelial
tricellular corner (Fig. 2, arrowheads). By comparison, ad-
herent U937L-Dif cells appear flattened and irregular (ac-
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Figure 1. Live-time assess-
ment of monocytes transmi-
gration across activated HU-
VEC monolayers at lateral
junctions. Activated HU-
VEC monolayers, preincu-
bated with 5 pg/ml anti-
PECAM-1 antibody, P1.1,
and anti-mouse IgG Texas
red were washed and then
perfused with PBMC (5 X
10%/ml) for 15 min. Live-time
immunofluorescence images
and corresponding phase-
contrast micrographs were
taken at intervals and subse-
quently overlaid in register.
PECAM-1 staining is shown
in red (@) and the corre-
sponding phase image is
shown in b. Actively migrat-
ing monocytes are indicated
by arrows and a newly ar-
rested monocyte is indicated
by the asterisk. An overlay of
the two images is indicated in
c. Bars, 10 pm.

tivated), and rapidly transmigrate the HUVEC monolayer
(Fig. 2 c, arrows). U937L-Dif transmigration is accompa-
nied by focal loss of VE-cadherin staining close to adher-
ent/transmigrated U937L-Dif cells (Fig. 2 d, arrowheads).
The U937L-Dif-dependent loss of VE-cadherin could be
prevented by inhibiting migration using antibodies to PE-
CAM-1, (rabbit polyclonal antibody, Ab 177). U937L-Dif
cell transmigration was inhibited by 61% (138 = 49 mi-
grated cells/fmm?, n = 3 in the presence of preimmune IgG,
and 36 *+ 20 cells/mm? in the presence of Ab 177,n =3,P <
0.05), whereas there was no effect on adhesion, as seen
previously under static conditions (Muller et al., 1993;
Liao et al., 1995, 1997). The presence of Ab 177 reduced
U937L-Dif-dependent dissociation of VE-cadherin to a
level equivalent to the baseline level seen with U937L cells
(a decrease from 24.1 = 5.7% t0 54 = 44%,n =3, P <
0.05). One would not expect 100% of adherent/transmi-
grated U937L-Dif cells to be associated with VE-cadherin
loss due to the fact that transmigration is not a synchro-
nized event, but occurs continuously throughout the short
perfusion period, and only ~50% of the U937L-Dif cells
transmigrate. At any given moment, therefore, only a per-
centage of adherent leukocytes are actively migrating and
inducing changes in the VE-cadherin complex.
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U937L-Dif

Figure 2. Adhesion and transmigration of U937L-Dif cells induces focal disruption of VE-cadherin staining under flow. U937L or
U937L-Dif cells (10%/ml) were perfused across 4 h TNF-a activated HUVEC monolayers for 10 min at 1.8 dynes/cm?. Coverslips were
stained for VE-cadherin as described. In the presence of U937L cells (a and b) there was no detectable disruption of VE-cadherin stain-
ing (b), even where cells were aligned directly over a lateral junction (arrowheads). In contrast, in the presence of U937L-Dif cells (¢
and d), there was loss of VE-cadherin staining (d, arrowheads) in areas of leukocyte adhesion/transmigration. Bars, 12 pm.

Taken together, these results indicate that in this model
nonphysiological U937L cell-dependent degradation of
the VE-cadherin complex does not occur and demon-
strates that this is a valid method of investigating leu-
kocyte-dependent changes in VE-cadherin complex. In
addition, these data support the hypothesis that only leu-
kocytes transmigrating the HUVEC are associated with
focal changes and indicates that PECAM-1 engagement
by leukocytes may play a role in capacitating the leukocyte
at the apical lateral junction to induce changes in VE-cad-
herin or in signaling to the endothelium to disassemble the
VE-cadherin complex.

Transendothelial Migration of Monocytes Induces Focal
Changes in VE-Cadherin Complex

We next examined the effects of either isolated human pe-
ripheral blood monocytes or buffer alone on VE-cadherin
staining, under flow. In the absence of leukocytes, perfu-
sion of the monolayers with flow buffer does not alter the
staining pattern of the VE-cadherin complex as assessed
by laser scanning confocal microscopy (Fig. 3 a). The
monolayer remains intact and staining for VE-cadherin,
B-catenin, PECAM-1 (Fig. 3 a), or a-catenin (data not
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shown) is continuous at lateral junctions. In some areas
there appear to be gaps in the staining when a single con-
focal Z-section is examined (identified by arrowheads),
but the staining pattern of each protein is actually contin-
uous when neighboring z-sections are included in the
analysis. These data indicate that while the VE-cadherin
complex forms a continuous staining band around the pe-
riphery of each cell, the band is not located within the
same plane. These data are consistent with the predomi-
nant role of VE-cadherin complex in the maintenance of
in vivo and in vitro barrier function (Breviario et al.,
1995; Dejana, 1996; Matsuyoshi et al., 1997; Dejana et al.,
1998).

In contrast, gaps in the VE-cadherin complex staining
were identified at locations of actively transmigrating
monocytes. Using two-color immunofluorescence, VE-
cadherin staining (red) was absent in sequential confocal
z-sections where the monocytes (green) were actively
transmigrating the endothelium (Fig. 3 b, arrows). The loss
of staining was seen only in the immediate location of the
migrating monocyte. The lack of yellow color indicated no
colocalization of the monocyte (green) with VE-cadherin
(red) staining and that there was simply a close apposition
between the monocyte and the endothelial cell. This is fur-
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Figure 3 (continues on facing page).

ther demonstrated when a selected region within panels
1-4 of Fig. 3 b is replotted in the x-z direction (Fig. 3 c,
white lines, A). In addition, there was no loss of VE-cad-
herin staining if the monocyte was exclusively above (yet-
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to-transmigrate, identified by *) or below (completed
transmigration) the endothelium (Fig. 3 b). This analysis
suggested that disruption of the VE-cadherin complex oc-
curs only during active transmigration, and that the com-
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Figure 3 (continues on next page).
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Figure 3. Transendothelial
migration of monocytes un-
der flow in vitro induces focal
changes in the VE-cadherin
complex. Monocytes (0.5 X
10%/ml) or buffer alone were
perfused across activated
HUVEC monolayers for 5
min at 1.0 dynes/cm? The
monolayers were recovered
from the chamber and were
immediately fixed in 2%
paraformaldehyde (RT, 10
min) and stained for adherens
junction proteins as described
in Materials and Methods.
Serial Z-sections were taken
on the laser scanning confocal
microscope where the CY3
and FITC channels were ac-
quired sequentially using ex-
citation wavelengths of 568
and 488 nm, respectively, to
prevent bleed-through, and
subsequently merged (a
and b). Each series of panels
(1-4) depicts sections from a
Z-series from the apical (1) to
the basolateral (4) surface.
Z The Z-series was also pro-
jected in the x-z direction and
shown at the bottom of each
corresponding Z-series (Z).
Selected images from b were
further processed using NIH
Image as described in Materi-
als and Methods to generate
c. a, Adherens junctional
protein staining (VE-cad-
herin, left; B-catenin, middle;
PECAM-1, right) is shown in
the absence of monocytes.
There were no detectable
gaps in the VE-cadherin
staining. Any apparent gaps
in the staining pattern (ar-
rowheads) were eliminated
when neighboring sections
were examined. b, In the
presence of monocytes, gaps
in the VE-cadherin staining
pattern were seen where a

monocyte was actively transmigrating the monolayer (arrow). There was no loss of staining where a monocyte was merely adherent to
the apical surface of the monolayer (asterisk). Similarly, actively transmigrating monocytes induced loss of 3-catenin staining (middle
panels, arrows). In contrast, no detectable loss of PECAM-1 staining was observed in the presence of actively migrating monocytes. c,
Selected regions (A, B, and C, bound by white lines) were projected in the x-z direction and collapsed to generate single images of
VE-cadherin staining, B-catenin staining, and PECAM-1 staining in the presence of monocytes. Bars, 10 pm.

plex quickly reseals following leukocyte passage. Subse-
quent analysis demonstrated a direct correlation between
the timing of monocyte transmigration and the loss of VE-
cadherin staining (see Fig. 5). Furthermore, B-catenin
staining also was disrupted only in the presence of actively
migrating monocytes (Fig. 3 b, arrows, and c, B), thus indi-
cating that both components were absent from the lateral
junctions in the region of transendothelial migration. For
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both VE-cadherin staining and B-catenin staining, 50% of
adherent monocytes (total 133 monocytes, 18 fields (63),
four separate experiments) were actively transmigrating
and, of the migrating cells, 90% were associated with loss
of adherens junction staining.

As a control, we examined PECAM-1 staining during
monocyte transmigration under the same conditions. We
found no discernible loss of PECAM-1 staining at the lat-
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eral junctions (Fig. 3 b). Of the fraction of monocytes
(54%) that were actively transmigrating the endothelium,
only 3% were associated with a gap in the PECAM-1
staining. There are a few caveats in this analysis, however,
because both the endothelium and the monocytes express
PECAM-1. Hence, staining of monolayers for PECAM-1
highlights not only the lateral junctions, but also the
monocytes (Fig. 3, b and c), resulting in a colocalization of
PECAM-1 and CD14 (Fig. 3, b and c, seen as yellow stain-
ing). In addition, as permeabilization of the monolayers
with NP-40 was required for these analyses, intracellular
PECAM-1 is detected also, resulting in a high background
of staining in both the HUVEC and monocytes. Taken to-
gether, these findings indicate that only components of
the adherens junction complex are lost during monocyte
transmigration, perhaps due to their requirement as seal-
ing elements, but recovered once the monocyte has com-
pleted transendothelial migration.

On the basis of the confocal data, demonstrating that
the same data would be obtained using a single image or a
Z-series, (VE-cadherin staining was absent from all z-sec-
tions in the location of actively transmigrating monocytes,
Fig. 3 b), we performed further analysis of stained mono-
layers using the fluorescence microscope and CCD cam-
era. In addition, we made use of PBMC instead of purified
monocytes, which allowed us to observe the effect of lym-
phocyte adhesion on the VE-cadherin complex also. Lym-
phocytes do not transmigrate HUVEC monolayers in our
hands under these conditions and served as an internal
control.

Activated HUVEC monolayers were perfused with
PBMC (10%ml, 5 min, 1.0 dynes/cm?) and then stained for
either VE-cadherin, B-catenin, a-catenin, plakoglobin, or
PECAM-1, or VE-cadherin and B-catenin together, as de-
scribed in Materials and Methods. Lymphocytes were
identified as CD3* staining cells, and monocytes were in-
ferred as CD3~ cells. Immunofluorescence staining was vi-
sualized and recorded using the fluorescence microscope
and CCD camera. Under these conditions, >40% interact-
ing monocytes (adhesion vs. transmigration cannot be dis-
tinguished at the magnification used in this assay) were
associated with loss of each VE-cadherin complex compo-
nent (Table 1). This was similar to the data obtained us-
ing confocal microscopy (see above). Double staining of

TableI. Transmigration of Monocytes |s Associated with Loss
of VE-Cadherin, 8-Catenin, a-Catenin, and Plakoglobin in the
Adjacent Endothelial Monolayer

Junctiona protein examined Interacting monocytes associated with staining loss

%

VE-Cadherin* 40 = 16
B-Catenin* 43+ 3
a-Catenin? 38+ 12
Plakoglobin® 54+ 1
PECAM-1* 8+3

Data are expressed as the percentage of monocytes per field that are associated with
loss of either VE-cadherin, a-catenin, 3-catenin, plakoglobin, or PECAM-1 staining
(see Materials and Methods for criteria of scoring). Data are from four fields (20X
objective) per coverslip and from at least two coverdlips per experiment. The rangein
cell numbers was 11-53 cells per field. Data are mean = SD.

*n = 4 different experiments.

*n = 3 different experiments.
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the same monolayers for B-catenin and VE-cadherin indi-
cated that transmigration of monocytes induced simulta-
neous loss of VE-cadherin and B-catenin at the site of
adhesion/transmigration. For VE-cadherin or B-catenin
alone, 40% of leukocytes were associated with loss of
staining (similar to the percent of monocytes actively mi-
grating above; Table I, n = 4), and all leukocyte-depen-
dent loss of VE-cadherin was also associated with loss of
B-catenin. We conclude that each adherens junction com-
ponent is affected simultaneously during monocyte trans-
migration.

Loss of VE-Cadherin Does Not Correlate with
Clustering of Monocyte Adhesion/Transmigration

If disruption of VE-cadherin in our flow assay system was
dependent on diffusion of released proteases from adher-
ent mononuclear leukocytes, then disruption of VE-cad-
herin would be predicted to occur in areas of high density
adhesion (clusters of monocytes), rather than in areas of
low density (single cells). To address this issue, experi-
ments with PBMC (from above) were analyzed further to
determine the profile of leukocyte binding with respect to
disruption of VE-cadherin complex (Table I1). Interest-
ingly, adherent monocytes were more often seen to alter
VE-cadherin when bound as single cells or in pairs of cells
(83 = 149%, n = 4) as compared with clusters of adherent
cells (15 = 13%, n = 4, P < 0.001). These data further sug-
gest that loss of VE-cadherin, B-catenin, or plakoglobin
was not due simply to release or diffusion of granule pro-
teases from fixed leukocytes. Here, we point out that from
the confocal microscopy data (Fig. 3), there is little evi-
dence to suggest monocyte-dependent proteolysis of VE-
cadherin.

Inhibition of Transendothelial Migration Reduces Loss
of VE-Cadherin Staining

To determine further whether adhesion of monocytes
alone is sufficient to induce disruption of the VE-cadherin
complex, or if monocyte transmigration is required, we
performed flow experiments in the presence of function
blocking antibodies that prevent transmigration. These in-
cluded anti-PECAM-1 (Ab 177) that does not impair ad-

Table II. Number of Monocyte I nteractions Associated with
Loss of Endothelial Cell VE-Cadherin, g-Catenin,
and Plakoglobin

Monocytes associated with loss of:

Monocytes in group VE-Cadherin* B-Catenin® Plakoglobin*
n % % %
>5 1+2 2+3 0x0
35 15+ 13 31+ 38 37 + 58
lor2 83 = 148 69 + 6° 64 + 58

Flow adhesion assays using PBMC were performed as detailed in Materials and
Methods. HUV EC monolayers were recovered and stained for components of the VE-
cadherin complex. Monocytes associated with loss of VE-cadherin, B-catenin, or
plakoglobin were scored as to whether they were in groups of: >5; 3-5; or 1 or 2
monocytes. The results are expressed as the percentage of monocytes in each group
associated with loss of junctional staining (mean = SD).

*n = 4 experiments.

*n = 3 experiments.

8Indicates significance P < 0.01 when compared with >5 monocyte group.
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Figure 4.

W6/32

HP2/1
+TS118

Preimmune Ab177

Treatment

were comparable in each case, 602 *+ 157 cells/mm? in the presence of HP2.1 and TS1/18; 573 * 53 cellssmm? in the presence of Ab177,
and 575.8 + 170 cellsyfmm? in the presence of preimmune 1gG. Data are the mean + SD, n = 4 (four coverslips analyzed per experi-
ment). b, The number of monocytes associated with changes in VE-cadherin were quantified as described in Materials and Methods.
Three fields were taken from each coverslip (two coverslips analyzed per experiment). Data are expressed as the mean = SD, n = 4.
The range of total leukocytes per field was 13-65 cells, with most fields falling between 25 and 47 cells.

hesion, but prevents transmigration in this system (Muller
et al., 1993; Liao et al., 1995, 1997), and a combination
of anti-a,-integrin (HP2.1) and anti—B,-integrin (TS1/18)
mADbs, which prevent a large proportion of monocyte
firm adhesion and subsequent transendothelial migration
under flow (Chuluyan and Issekutz, 1993; Meerschaert
and Furie, 1994; Luscinskas et al., 1996). Fig. 4 a demon-
strates that the presence of either Ab 177 or the combina-
tion of HP2.1 and TS1/18 results in a significant inhibition
of transendothelial migration. It was not possible to deter-
mine from the videotape the proportion of monocytes
present in the field of PBMC; therefore, all these data re-
fer to total cell populations. Specifically, the combination
of HP2.1 and TS1/18 mAb reduce the total leukocyte mi-
gration in presence of control mAb level from 50.7 = 8.6%
(W6/32 control, n = 3) to 19.7 = 7.5% (combination mADb,
n = 3, P <0.01), an inhibition of 61.1%. Similarly, Ab 177
reduces transmigration by 54.7% (46.7 = 9.2% transmi-
gration with preimmune IgG vs. 21.1 * 6.6% with Ab 177;
n =3, P <0.001).

We then examined the effect of these antibodies on leu-
kocyte-induced dissociation of VE-cadherin. In the pres-
ence of both HP2.1 and TS1/18, monocyte-dependent dis-
sociation of VE-cadherin was reduced significantly from
58.9 * 24.2% of monocytes (Fig. 4 b, W6/32) to 23.2 +
13.4% (Fig. 4 b, n = 3, P < 0.01). Similarly, anti-PECAM-1
reduced monocyte-dependent disruption of VE-cadherin
by 37% (Fig. 4 b, n = 3, P < 0.02), indicating that inhibi-
tion of transmigration reduced leukocyte-dependent dis-
sociation of the VE-cadherin complex, as demonstrated
with U937L-Dif cells (see above).

Monocyte-induced Dissociation of VE-Cadherin

Is Reversible
From our confocal microscopy data, we noted that restora-
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tion of VE-cadherin staining occurred following comple-
tion of transmigration. In addition, recent in vitro studies
(Huang et al., 1988; Haselton et al., 1996; Burns et al.,
1997; Lennon et al., 1998) suggest that transendothelial
migration of leukocytes does not lead to a rapid increase
in HUVEC monolayer permeability. We hypothesized,
therefore, that leukocyte-induced dissociation of the VE-
cadherin complex must be focal and rapidly reversible af-
ter transmigration. This question was addressed by varying
the protocol for the experiments as follows. PBMC were
perfused across activated HUVEC monolayers for three
minutes and then the monolayers either were fixed imme-
diately for staining analyses, or perfused for a further four
or nine minutes with buffer alone (no leukocytes) before
fixation. We observed by live-time phase-contrast micros-
copy with a 60X objective that no new adhesive interac-
tions occurred after five minutes and that monocyte trans-
migration had reached a plateau by seven minutes (Fig. 5).
As a control, purified CD4* T cells were used in parallel
experiments to simulate the conditions used for PBMC.
After three minutes of perfusion, 46.6 * 21.1% of
monocytes (Fig. 5, O, n = 3), and 6.6% of lymphocytes
(Fig. 5, O, n = 3) were associated with disruption of VE-
cadherin staining, which is similar to the actual percentage
of leukocytes transmigrating as assessed by live-time
videomicroscopy. By seven minutes, no further migration
occurred, and loss of VE-cadherin staining had declined
significantly to 16.9 = 7.0% (Fig. 5, O, P < 0.01). After 12
min of perfusion, monocyte-dependent loss of VE-cad-
herin had declined further to 11.7 = 8.9% (P < 0.001),
suggesting that the VE-cadherin complex was restored af-
ter completion of monocyte transmigration. In contrast,
no significant change was observed in the low level of puri-
fied CD4* T cells (Fig. 5, OJ, 6.9%) associated with loss of
VE-cadherin staining. Some loss of VVE-cadherin staining
was associated with adherent lymphocytes in the PBMC
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Figure 5. Monocyte-dependent loss of VE-cadherin is reversible
over time. PBMC or isolated CD4* lymphocytes were perfused
across activated HUVEC as indicated. Leukocyte—endothelial in-
teractions were recorded by live-time videomicroscopy and ana-
lyzed from at least six fields at 3, 7, and 12 min of perfusion. Total
interacting cells were 436 =+ 44, 770 = 336, and 1,155 *+ 353 cells/
mm?, respectively. Fixed monolayers were stained for VE-cad-
herin and the number of monocytes or lymphocytes associated
with loss of VE-cadherin were determined as described. The
range of total leukocytes per field was 23-68 cells. Data are ex-
pressed as mean = SD, n = 3 (three coverslips analyzed per ex-
periment, three fields per coverslip). *Indicates significance
when compared with the 3-min time-point. Transmigration data
are shown as filled symbols (@, PBMC; B, CD4" lymphocytes),
VE-cadherin staining data are shown as open symbols (O, mono-
cytes; [1, CD4* lymphocytes).

experiments (16.5 * 11.0%, n = 3), however, lymphocytes
were usually observed in areas of high monocyte binding
also. As isolated monocytes induce loss of VE-cadherin
staining (Fig. 3), and because no change in VE-cadherin
was observed for isolated CD4" T cells alone, the loss in
VE-cadherin staining at sites of adherent lymphocytes
(PBMC) is most likely attributed to monocyte-dependent
events.

Discussion

The multistep model of leukocyte attachment, rolling, and
arrest has been well defined, however, the underlying
mechanisms that mediate the last step of the cascade,
transmigration through the endothelial clefts, has not been
clearly established. To this end, we have explored the role
of the VE-cadherin complex during monocyte transendo-
thelial migration under flow in vitro across HUVEC mono-
layers. To circumvent postlysis degradation events (Moll
et al., 1998; Allport, J.R., unpublished observations), we
developed a model using the U937 cell line, monocytes, or
PBMC under flow conditions, followed by immunofluo-
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rescence analysis of VE-cadherin complex staining. This
system establishes two important conditions: first, it brings
leukocytes in contact with the endothelium in a physiolog-
ically relevant context that would not occur in a static ad-
hesion assay, and second, allows continuous live time
monitoring of leukocyte adhesion, arrest, and ultimately
transmigration, and the status of the endothelial cell
monolayers. Further advantages are that the endothelial
cell monolayers can be recovered for in depth analyses us-
ing immunofluorescence staining and that both U937L
cells and mononuclear leukocytes have significantly less
proteolytic capabilities as compared with neutrophils, es-
pecially in regard to neutrophil elastase, a serine protease
which can cleave endothelial VE-cadherin (Carden et al.,
1998). Using this approach, we demonstrate that leukocyte
adhesion/transmigration still induces focal changes in VE-
cadherin complex that correlate with the location of ac-
tively transmigrating leukocytes.

Leukocyte Transmigration Correlates with Changes in
VE-Cadherin Complex In Vitro

In this flow model, human peripheral blood monocytes
and differentiated U937L cells (U937L-Dif cells) transmi-
grate TNF-a activated HUVEC at similar rates and to a
similar extent (48-50%; Chuluyan and Issekutz, 1993; Lus-
cinskas et al., 1996), whereas purified CD4* T cells or
U937L cells adhere to the endothelium apical surface, but
do not transmigrate (<5% of total transmigrate). Both
monocytes (Fig. 3) and U937L-Dif cells (Fig. 2) induce
transmigration-dependent changes in the VE-cadherin
staining, whereas adherent CD4" T cells (Fig. 5) or U937L
cells do not result in any changes in VE-cadherin complex.
In additional experiments not presented, over a time
course up to 60 min of incubation under static conditions,
CD4* T cells did not transmigrate activated endothelium
and did not induce loss of VE-cadherin staining. The
monocyte-dependent loss of VE-cadherin is attenuated
by anti-PECAM-1 antibodies that reduce transmigration
without affecting the level of firm adhesion (Fig. 4; Muller
et al., 1993). Moreover, both U937L-Dif cell-dependent
changes in VE-cadherin staining and transmigration (but
not adhesion) are reduced significantly by anti-PECAM-1
antibodies. These data suggest that a transmigration-initi-
ated event triggers rapid and reversible alterations in the
endothelial VE-cadherin complex.

Leukocyte-induced Alterations in VE-Cadherin Under
Flow Are Focal and Reversible

Notably, the monocyte- and U937L-Dif-induced changes
in VE-cadherin staining occurred focally and mostly at the
site of adhesion/transmigration and did not result in global
loss of VE-cadherin staining in endothelial cell junctions
that lack adherent/migrated leukocytes. In fact, the per-
centage of transmigrating cells associated with loss of the
VE-cadherin complex may represent an underestimate for
three reasons. First, the lack of synchronized transmigra-
tion; second, only a proportion of the leukocyte popula-
tion undergoes transendothelial migration; and third, en-
dothelial junctions directly above any leukocytes that had
completed transmigration at the time of fixation would
have reestablished their lateral junctions and, hence, no
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disruption would be observed. Most changes occurred in
areas of single or two cell adhesion and not in areas of
monocyte clusters, suggesting VE-cadherin loss was not
due simply to release of increasing levels of proteases (Ta-
ble I1). Optical sectioning by confocal microscopy re-
vealed that the monocytes maintained a clear cut border
with the VE-cadherin staining as they transmigrated, with
no colocalization of VE-cadherin with the CD14 staining,
indicating tight association between the monocyte and en-
dothelial cell junction proteins. An important observation
is that the loss of VE-cadherin complex staining was re-
versible over the time course of migration (Figs. 3 and 5).
Monocyte transmigration induced a transient change in
VE-cadherin staining that correlated precisely with the
time course of monocyte migration. These data indicate an
endothelial cell regulatory mechanism during leukocyte
trafficking, as opposed to simple degradation by leukocyte
proteases.

Mechanisms that Regulate VE-Cadherin Complex and
Leukocyte Transmigration

What is the mechanism by which the VE-cadherin com-
plex is destabilized, disassembled, or retracted to allow
passage of leukocytes across the endothelial monolayer?
Previous data and the current study indicate a number of
possible mechanisms. Our data demonstrates that anti-
PECAM-1 antibodies reduce proportionally both migra-
tion of monocytes and U937L-Dif cells. Similarly, block-
ade of both B, and B, integrins reduced migration in
proportion to loss of VE-cadherin. One possibility is that
the anti-PECAM-1 IgG simply prevents the leukocyte
from getting close enough to the endothelial cell-cell lat-
eral borders to trigger alterations in VE-cadherin; a purely
mechanical interference. Alternatively, signaling events,
either negative or positive (Newman, 1999), required to
trigger alteration of VE-cadherin and allow passage of the
leukocyte, may be induced through homophilic interac-
tions between PECAM-1 molecules (Liao et al., 1995; Ber-
man and Muller, 1995; Liao et al., 1997). Consequently, if
the leukocyte is prevented from such interactions by
anti-PECAM-1 antibody, then these signaling events are
interrupted. Thus, even leukocytes adherent to the apical
surface in the presence of blocking anti-PECAM-1 anti-
body are prevented from making productive interactions
with endothelial PECAM-1. Nonetheless, PECAM-1 is
not the only molecule capable of maintaining endothelial
apposition during transmigration. PECAM-1-indepen-
dent mechanisms of transmigration indeed exist. While
this work was under review, a PECAM-1 null mouse was
reported (Duncan et al., 1999). As these mice have essen-
tially normal leukocyte transmigration, future studies are
planned to examine the effect of monocyte transmigration
on VE-cadherin complex in PECAM-1 null endothelium.
Another explanation for focal loss of VE-cadherin at
transmigration sites is that the entire complex is pushed
aside directly by the migrating leukocyte, analogous to a
trapdoor mechanism that simply recloses after leukocyte
migration. Migrating leukocytes remain in close appo-
sition to endothelial cell junction clefts within estimated
distances of =100 A (Huang et al., 1988). This narrow dis-
tance could be maintained throughout migration by the
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pairing of appropriate adhesion molecules on both cells
(i.e., PECAM-1-PECAM-1 and/or integrin-1gG interac-
tions). Because VE-cadherin does not appear to have a
leukocyte counter receptor, the VE-cadherin complex dis-
tribution is altered, whereas PECAM-1 remains localized
(Fig. 3). Hence, a trapdoor model envisions that endothe-
lial junction clefts are amenable to being pushed aside by
the extruded leading lamella of the crawling leukocyte. A
further assumption is that the energy required for bypass-
ing/splitting the VE-cadherin complex comes entirely
from the leading lamella of migrating leukocytes.

Several recent studies reviewed in the Introduction have
found that engagement of endothelial cell adhesion mol-
ecules triggered dramatic changes in the endothelium.
More recently, occupancy of surface endothelial leukocyte
adhesion molecules by blocking mAb or leukocytes led to
increases in both [Ca?"]; and actin stress fibers (Lorenzon
et al., 1998). Here, we show transmigrating leukocytes
cause a focal and reversible disruption/dispersion of the
VE-cadherin complex. Based on these data, we speculate
that transmigration, analogous to the multistep adhesion
cascade model, is a sequential multistep process that in-
volves active participation of both leukocytes and the en-
dothelium. The nature of the exact intracellular signals
and their integration with the physical movements of both
cell types will require further studies.

Burns et al. (1997) have reported that leukocytes mi-
grate preferentially at areas where multiple endothelial
cells come together (tricellular corners), reporting that
both tight junctions and VE-cadherin staining were dis-
continuous at these regions in their culture system, provid-
ing a potential gateway for leukocytes to traverse the
endothelium. This mechanism may be a component of
monocyte transendothelial migration in our model, but
does not seem to predominate for a number of reasons.
First, in our culture system, discontinuities in the expres-
sion of tight junction components exist along the lateral
borders of endothelial cells (data not shown) not only at
the points where three or more cells interface. Hence, it is
most likely that leukocytes are able to migrate around
tight junctions in this model. Second, the confocal micro-
graphs of immunofluorescent stained VE-cadherin in in-
tact HUVEC monolayers did not demonstrate the number
of gaps we see in the presence of monocytes or PBMC
(Fig. 3). Additionally, any gaps that were detected ap-
peared to occur only in regions where the monolayer was
pulled away from the substrate or neighboring cells. Third,
although tricellular corners may support a level of trans-
migration out of proportion to their surface area in the
monolayer (Burns et al., 1997), our flow assay system
showed no predisposition for monocytes to migrate at
multicellular interfaces. Last, and most important, the ap-
pearance of gaps in the VE-cadherin staining pattern cor-
related temporally with the migration of monocytes, in
that only during active migration were significant numbers
of gaps associated with adherent leukocytes (Figs. 3 and 5).

Others have suggested (Carden et al., 1998) that migrat-
ing leukocytes digest VE-cadherin at the site of adhesion/
transmigration and internalize the protein, removing it
from the endothelial cell membrane. This would require
reexpression of new VE-cadherin at the endothelial cell
surface that would most likely come from intracellular
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stores, as protein synthesis appears not to be required
(data not shown). The trivial explanation that loss of VE-
cadherin staining is due to inaccessibility of the mAb
epitope or loss of the epitope at sites of leukocyte adhe-
sion/transmigration is unlikely for two reasons. First, the
VE-cadherin complex appears to move away from the site
of adhesion/transmigration as an intact complex because
loss of VE-cadherin staining is accompanied by loss of
B-catenin and plakoglobin staining (Fig. 3 and Table I).
Both are intracellular proteins that would not directly
interact with the migrating leukocyte and hence, their
epitopes should not be impinged upon. Second, VE-cad-
herin staining remains at HUVEC junctions with overly-
ing adherent U937L cells, indicating that the epitope for
VE-cadherin antibody binding remains accessible (Fig. 2).
Since immunostaining of the entire complex is lost, then
regained, in concert, it is possible that transmigration trig-
gers dissociation of these large aggregates into smaller
groups of molecules, which disperse into neighboring plas-
malemma, rendering their staining much less intense.
These groups may retain attachments via catenins to actin
filaments that would facilitate their reclustering when
transmigration was completed. Recently, in MDCK epi-
thelial cells, it has been reported that a pool of surface
E-cadherin molecules is constantly trafficked through an
endocytic, clathrin-mediated recycling pathway (Le et al.,
1999). It remains to be determined if such a pathway exists
for VE-cadherin in endothelium. Future studies, however,
are necessary to exclude a requirement for secreted or
membrane-bound proteases, or their receptors, at the
leading edge of migrating leukocytes. The expanding
availability of murine models carrying targeted disruptions
of such genes may allow testing in the near future.
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