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The gastrointestinal immune system plays an important role in immune homeostasis
regulation. It regulates the symbiotic host-microbiome interactions by training and
developing the host’s innate and adaptive immunity. This interaction plays a vital role in
host defence mechanisms and at the same time, balancing the endogenous perturbations
of the host immune homeostasis. The fish gastrointestinal immune system is armed with
intricate diffused gut-associated lymphoid tissues (GALTs) that establish tolerance toward
the enormous commensal gut microbiome while preserving immune responses against
the intrusion of enteric pathogens. A comprehensive understanding of the intestinal
immune system is a prerequisite for developing an oral vaccine and immunostimulants
in aquaculture, particularly in cultured fish species. In this review, we outline the
remarkable features of gut immunity and the essential components of gut-associated
lymphoid tissue. The mechanistic principles underlying the antigen absorption and uptake
through the intestinal epithelial, and the subsequent immune activation through a series of
molecular events are reviewed. The emphasis is on the significance of gut immunity in oral
administration of immunoprophylactics, and the different potential adjuvants that
circumvent intestinal immune tolerance. Comprehension of the intestinal immune
system is pivotal for developing effective fish vaccines that can be delivered orally,
which is less labour-intensive and could improve fish health and facilitate disease
management in the aquaculture industry.

Keywords: GALT, gut immunity, immunostimulants, immunoprophylaxis, immune tolerance
INTRODUCTION

Diseases have always been the “Achilles’ heel” of intensive farming, and that analogy is especially
accurate for aquaculture. With the development of technologies and intensification of production,
several sources of stress such as animal handling, poor water quality, and overcrowding can
compromise the fish immune system (1), and the water of enclosed intensive system can serve as a
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medium that facilitates the horizontal transmission of pathogens
in the cultured species (2). Farmed fish are constantly exposed to
opportunistic pathogens that naturally inhabit the nutrient-rich
culture water (3). As it is connected to the external environment,
the gastrointestinal tract is considered one of the main sites of
pathogen translocation (4, 5). The gastrointestinal tract is a
multifaceted system with several roles that go beyond the
absorption of nutrients (5). The recent advances unravel the
intricate interactions between the intestinal microbiome, dietary
intake, and gut local immune system, and in turn how it affects
the host physiological responses and health. And the impairment
of gut health has been directly linked to the rising susceptibility
to enteric infections (6, 7).

Aquaculture is the fastest-growing animal production
industry and it leverages on practicability and profitability (8).
Owing to high practicability and stress-free administration, oral
supplements and vaccines that can ameliorate fish health has
been gaining traction and popularity in research, and
understanding of gut immune system paves the way to the
development of the oral application. Researchers and farmers
of fed-aquaculture (i.e., fish that rely on nutrient input from
formulated diets) are allowed to manipulate the health of the
finfish through the diets by either incorporating feed additives,
drugs, or even vaccines (5). Several feed supplements have long
been investigated (e.g., immunostimulants, immunonutrients,
phytotherapeutics, etc.) and have been reported to enhance the
intestinal health of an array of aquatic species. The uniqueness of
how each of these orally administered interventions could
ameliorate the physiological responses of the host, or how their
mechanisms can inhibit pathogen proliferation, deserves to be
appraised in a holistic view with the fish intestinal immune
system, which ultimately prevents disease outbreaks and
economic losses. In this review, a compilation of recent studies
on intestinal immunology of farmed finfish will be interpreted
and discussed, as well as the advent of orally delivered vaccines,
and plant-based immunostimulants on fish intestinal health.
GUT IMMUNITY

Regionalization of Gastrointestinal Tract
The gastrointestinal tract is a hollow muscular tube that connects
a series of alimentary organs, starting at the buccal cavity to the
rectum (9). It is a multifunctional system that is not restricted
only to digestion, but also nutrient absorption and sensing, water
and electrolyte balance, hormone secretion, and the more
challenging task to establish immunity (10). Although teleosts
exhibit great heterogeneity in terms of morpho-histology of the
gastrointestinal tract (11), the gut structure can be separated into
three segments (12, 13).

The first segment, commonly known as the foregut or
anterior gut, is a topographical region of the gastrointestinal
tract where the chemical digestion of ingested food matters
begins (14). In this segment, the absorption of dietary protein
takes place by enterocytes or intestinal absorptive cells (13). As
the longest portion of the gut (9) and the site for the majority of
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digestive activities (15), the second segment or the midgut
possesses enzymes from the pancreas, liver and intestinal wall
to catalyze digestion and uptake of macromolecules (16). The
midgut harbors highly diverse microbial consortia that are
believed to take part in the digestion (17). Commonly termed
as the hindgut, the third segment of the gastrointestinal tract is
engaged in osmoregulatory activities such as ion transport and
water reabsorption (13). Some studies described the teleost
hindgut as homologues to the mammalian large intestine (18).
As nutrient uptake progressively reduces (14) along the intestinal
tract, the importance of immune homeostasis mechanisms
gradually increases from the foregut to the hindgut segments
(19). These trends have been supported by the higher transcript
levels of immune-related genes along with the appearance of
smaller irregular intestinal folds from the foregut to the hindgut
(20, 21).

Unlike mammals, separations or transitions between the
different functional segments of the teleost gut are not clearly
defined (18). The trichotomous division of the teleost gut into
segments is obscure and inconsistent in research. For instance,
some studies defined the proximal region of the intestine
immediately after the stomach and pyloric ceca as the foregut
(22–25), whereas others considered the stomach as the foregut
(9, 26).

It should be noted that there are studies that have categorized
the entire gut into two segments instead of three (fore, mid and
hind); therefore, the third gut segment was neglected or not
recognized in these studies (9, 12). Some studies conducted with
Atlantic salmon (Salmo salar) had divided the intestine into the
mid and posterior regions, where the mid-intestine region was
further subdivided into two, termed the first and second
segments of the midgut (18, 20, 27).

For the agastric fish, the entire gut (after the oesophagus) is
divided into segments of equal length, e.g., 4 equal segments in
ballan wrasse (Labrus bergylta) and 7 equal segments in zebrafish
(Danio rerio). Segment 1, segments 2 - 3, and segment 4,
represent the foregut, midgut, and hindgut of ballan wrasse,
respectively (28). In zebrafish, segments 1-5 exhibits foregut/
midgut features, whereas the segment 6 and 7 behave like the
hindgut (19).

Gut-Associated Lymphoid Tissue
As one of the major parts of mucosal lymphoid tissues that are
constantly connected with external environment and could be
primary entry sites of pathogenic intrusions, fish gut-associated
lymphoid tissues (GALTs) play an indispensable role in fish
health (29). Unlike mammalian GALTs that possess organized
structures such as mesenteric lymph nodes and Peyer’s patches
(9), teleosts have diffusely organized GALTs that accommodate
abundant myeloid and lymphoid cells, which regulate
homeostasis to protect the host from potentially pathogenic
microbes and to tolerate anodyne food-derived antigens and
commensal microbiota (9, 30).

All segments of the gastrointestinal tract comprise four
concentric layers. From the outer lining of the gut inwards,
these layers are: the serosa, the outermost of the gut that consists
December 2021 | Volume 12 | Article 773193
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of a thin coating of squamous epithelium and connective tissue;
the muscularis, a deeper layer consisting of muscle fibre sheets;
the submucosa, might be absent completely in some teleost
species such as zebrafish, is a concentric layer that is made up
of loose connective tissues; and the mucosa, the innermost layer
that acts as a physical-chemical barrier towards intestinal lining,
and it is where the diffusely organised GALTs reside (9, 18, 31).
Unlike the mammalian mucosa, the finger-like mucosal villi are
absent in the teleost intestinal lining. The fish intestinal lining
possesses intestinal folds that consist of a monolayer of columnar
epithelium on the microvilli’s cell surface (18).

The gut epithelial layer acts as an intrinsic physical layer that
defends the host from the invasion of the harmful antigens (5).
The epithelium expresses a wide spectrum of bioactive soluble
factors, such as antimicrobial peptides, signaling molecules and
toxin-neutralizing enzymes such as alkaline phosphatase. These
defense molecules are also present in the mucus produced by
intraepithelial goblet cells (32). Moreover, mucus harbors a high
volume of mucins that cause the viscous nature of mucus. This
glycoprotein dissociates microbes and impedes microbial
adherence to the fish mucosa. Together with the epithelial
layer, the extrinsic barrier conferred by the mucus protects the
GALTs from the hostile environment of the gastrointestinal
tract (9).

The GALTs (Figure 1) comprise two main leukocyte
populations: (1) intraepithelial lymphocytes (IELs), which refer
to the adaptive lymphoid cells that reside in the epithelial layer;
(2) lamina propria leukocytes, which are consisting of
lymphocytes, macrophages, granulocytes and dendritic-like
cells (12, 33). The IgT+ B-cells have been reported as the
predominant IELs in carp and sea bass (13, 34), whereas the
IELs are primarily CD8-a+ cells (Cytotoxic T-cells) in sea
bass (35).

The IgT+ B-cells release antibodies of the IgT isotype, which
acts as mucosal-associated antibodies to coat teleost luminal
microbiota, analogous to mammalian IgA and amphibian IgX
(34). IgT appears to be the ortholog of IgZ as these molecules are
similar in structure and genome information (36). Two
subclasses of IgZ have been identified in zebrafish, namely IgZ
and IgZ2 (37). Functional analysis revealed that the IgZ
antibodies activate complement-mediated lysis and the IgZ2
antibodies are unable to trigger complement activity but can
coat and neutralize the microbes of the zebrafish gut, in turn,
prevent microbial translocation across the epithelium (36).

The CD8-a+ cells are another IEL in the fish gut. The cluster
of differentiation 8 alpha (CD8-a) is a receptor expressed by the
teleost cytotoxic T-cells. In addition to CD8-a, teleost
intraepithelial cytotoxic T-cells bear T-cell receptors of the gd
heterodimers (TRgd) that act like pattern recognition receptors
(PRRs) to recognize antigen in a more non-specific manner in
contrast to the systemic CD8-a+ cells that express ab T-cell
receptors (TRab) (38) . The latter binds to major
histocompatibility complex (MHC)-bound antigens specifically
(39). Based on a molecular study that showed the gene
expression of mhc-Ia and cd8-a of sea bass (Dicentrarchus
labrax) intestine were not correlated, it has been postulated
Frontiers in Immunology | www.frontiersin.org 3
that fish intraepithelial CD8+ cells are able to recognize
antigens without association with MHC molecules (35, 38).
The innate immune features continue to be found on the
teleost gd T cells as a study of zebrafish (40) demonstrated that
these IELs are capable of performing non-specific phagocytosis
toward both particulate and soluble antigens, and in turn act as
antigen-presenting cells to activate adaptive immunity, including
IgZ B-cells.

In addition to IELs, macrophages have been reported to be in
epithelial compartments of some teleost species (38). Adjacent to
the intestinal lumen, the epithelium-associated macrophages are
specialized in scavenging and phagocytosing apoptotic epithelial
cells and potentially harmful microbes (41). Mucosal
macrophages also reside in the teleost lamina propria and
intestinal muscularis. While the lamina propria macrophages
function as antigen-presenting cells and cytokine producers to
moderate local immune protections, the recently discovered
muscularis macrophages are highly innervated and may play
motility-oriented and neuroprotective roles in the teleost
enteric nervous system, albeit their functional significance
across multiple layers of the muscularis remain not clear (41).
A study on zebrafish showed that mucosal macrophages can
shape the intestinal microbial composition through the
expression of interferon regulatory factor irf8 (42). An
ineffective complement system followed by severe dysregulation
of commensal microbiota was found in the adult irf8-deficient
zebrafish. Akin to the mammalian macrophage, the bony fish
have two subsets of macrophages: proinflammatory macrophages
termed as M1 that produces TNF-a, and anti-inflammatory
macrophages named as M2 and they are inept at producing
TNF-a (43). These two macrophage subgroups are differentiated
and polarized by distinct microenvironmental factors, where M1
is committed to the establishment of the inflammatory process
and M2 is involved in the repair activity during the resolution
phase of inflammation (44).

Within the lamina propria, which is the underlying immune-
rich connective tissue beneath the epithelial layer, tissue
granulocytes can be found disseminated throughout the teleost
gut. Similar to other phagocytic cells such as macrophages and
dendritic-like cells, teleost granulocytes carry pattern recognition
receptors to sense the presence of intruding pathogens through
microbe-associated molecular patterns (32). Upon detection of a
pathogen, immune protective responses are immediately taken
place by the granulocytes through phagocytosis. The activated
granulocytes will then produce histamine and chemokines that
promote vasodilation of intestinal blood vessels and leukocyte
infiltration (38). To protect the host from pathogens,
neutrophils, which are a subset of fish granulocytes, release a
vast array of bactericidal molecules such as antimicrobial
peptides, peroxidase enzymes, reactive oxygen and nitrogen
intermediates (45). Neutrophils are among the granulocytes
that can readily infiltrate the teleost epithelium despite their
low abundance in the teleost gut (38). Mast cells, also known as
eosinophilic granular cells, are the granulocyte subpopulation
that is functionally analogous to mammalian mast cells and
highly vigilant against microbial intrusion through the fish
December 2021 | Volume 12 | Article 773193
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mucosal barrier (18). Upon activation by sensing pathogenic
invasion, teleost mast cells perform cell degranulation (38) and
produce mediators of inflammation (46). Teleost mast cells have
been found to mobilize and degranulate in response to parasitic
infections in the gut (47).

Teleost lamina propria houses a great diversity of cellular
components of the adaptive immunity necessary for a local
defensive response. All the aforementioned lymphocytes that
exist in the epithelium as IELs, namely the IgT+ B-cells and
cytotoxic T-cells, can also be found in the teleost lamina propria
(13, 38). In addition to these cells, the other lymphocyte subsets
have been reported in the lamina propria of the bony fish,
including IgM+ B-cells, IgD+ B-cells, CD8a+ cytotoxic T-cells,
helper T-cells, and regulatory T-cells (9, 48). Hitherto studies
have revealed that teleost fish cannot perform immunoglobulin
class switching (49). All B-cells can express two forms of
immunoglobulins: (1) B-cell receptor, which is a membrane-
bound immunoglobulin that serves as a receptor for specific
pathogen targeting; (2) antibody, which is the secreted
immunoglobulin form that is produced by activated and
differentiated B-cells, known as plasma cell or plasmablasts
(13). The activated B cells can migrate in the gastrointestinal
Frontiers in Immunology | www.frontiersin.org 4
epithelial layer after antigenic stimulation (34, 50). The
phagocytic ability of B-cells has been reported in some species
(51, 52). Teleost B-cells can express three heavy immunoglobulin
chain isotypes, i.e., IgM, IgD, and IgT/IgZ (13), encoded by genes
m, d, and t/z, respectively (53). Although the function of IgT/Z
antibodies has been elucidated elsewhere in the review, IgM
antibodies that were previously perceived as the systemic
adaptive humoral defense, have been found to coat mucosal
resident microbes, albeit at a lower rate than the IgT antibodies
(13). The binding of IgM antibodies to the corresponding targets
initiates the complement-mediated lysis via the classical
pathway, opsonization and agglutination of pathogens that
facilitate pathogen clearance by phagocytes, blocking off the
microbial active site, as well as neutralization of pathogen-
derived toxin (54). The IgD B-cells are still an enigmatic B-
lymphocyte subset as many relevant studies appear inconsistent
in terms of cell lineage and function. For instance, rainbow trout
IgM+ cells were found to co-express the IgD heavy chain (52, 55),
but a unique IgM-/IgD+ B-cell population was reported in
rainbow trout (Oncorhynchus mykiss) (56) and channel
catfish (Ictalurus punctatus) (57). Functional studies have
postulated that teleost IgD may be involved in mucosal
FIGURE 1 | Gut-associated lymphoid tissues (GALT) of finfish. Fish gut possesses diffusely organized GALTs that comprise two main leukocyte populations.
Firstly, intraepithelial leukocytes, which mostly consisted of IgM+ B-cells, cytotoxic T-cells, and macrophages. Secondly, the lamina propria leukocytes, which
are consisting of lymphocytes, macrophages, granulocytes and dendritic-like cells. Subpopulations have been reported in teleost cytotoxic T-cells, macrophages, and
helper T-cells.
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homeostasis (55, 58, 59) as this immunoglobulin is produced to
coat some gastrointestinal commensal bacteria (55, 59).
However, rainbow trout IgD has been reported to be
uninvolved in specific immunity in the mucosal organs during
parasitic infestation (13). Due to divergence in findings, the
immune function of teleost IgD remains mostly unclear and still
inconclusive (13).

Unlike the intraepithelial layer that bears only CD8-a+ gd
cytotoxic T-cells, the teleost gut lamina propria possesses both
the CD8-a+ T-cell populations of TRgd and TRab (38, 60). CD8-
a+ cells of TRab bind to intracellular pathogen-derived antigens
that are presented by the MHC class I molecules expressed on the
target cell and differentiate into activated effector cells to lyse the
target cells (60).

CD4+ helper T-cells can be found in the teleost
gastrointestinal lamina propria. This cell expresses T cell
receptors and the cluster of differentiation 4 (CD4) on its
surface for specific antigen recognition. In most reported
teleost species, in exception to the gadoid line, antigen-
presenting cells present antigenic peptides via the MHC-II and
activate naive helper T-cells to make them proliferate into
effector cells that produce inflammatory cytokines (32). These
antigen-presenting cells include macrophages, granulocytes,
dendritic-like cells as well as B-cells, and they release co-
stimulatory molecules to prime helper T-cells (18, 32).
Activated helper T-cells generate a cytokine cascade to
coordinate and enhance host immune responses. These cells
release IFN-g to mediate teleost cellular defense, which involves
the enhancements of CD8+ cell-mediated cytotoxicity and
phagocytosis by macrophages (61). Humoral-mediated
immunity can be elevated by teleost helper T-cells by
regulating B-cell immune response (62). To date, few major
types of helper T-cells have been reported in fish, namely CD4-1+

single-positive cells, CD4-2+ single-positive cells (63) as well as
CD4-1+/CD4-2+ double-positive cells (44). And two subtypes of
CD4-2, i.e., CD4-2a and CD4-2b, have been reported in brown
trout (64). Expression levels of CD4-1, CD4-2a, and CD4-2b
were recorded to be different in the same tissues of rainbow trout
against antigenic stimulation (64, 65). While CD4-1+ cells have
been revealed to play a pivotal role against viral diseases in
ginbuna crucian carp (Carassius auratus) (62), a study using
olive flounder as the animal model showed that CD4-2 helper T-
cells proliferated earlier and higher in number than CD4-1 cells
(66), suggesting that CD4-2 cells are important in the early phase
of cell-mediated immunity.

Regulatory T-cells are a subset of CD4-1+ cells in zebrafish
(44, 67). A study on zebrafish (67) uncovered that the gut-
derived CD4-1+ cells that were expressing the foxp3a and il-10
genes, which are gene signatures for the regulatory T-cells.
Studies have defined foxp3a+cells as the regulatory T-cells in
fish due to the notion that the foxp3a is a regulatory factor
involved in the immunosuppressive machinery, which includes
suppressing cell proliferation and cytokine production of
leukocytes (68, 69). Fish regulatory T-cells, known as
foxp3a+cells, promote an anti-inflammatory response that
restrains the over-exhaustive activities toward the mucosal
Frontiers in Immunology | www.frontiersin.org 5
non-self-antigens during steady-state, preventing an
autoimmune disorder, and mobilizing to the damaged region
to release tissue-specific regenerative factors that stimulate the
proliferation of regeneration precursor cells (69).

Absorption and Uptake of Antigens
Two major pathways of antigen uptake through the
intraepithelial layer have been described in the mammal, i.e.,
the paracellular and transcellular routes. The paracellular
pathway refers to the rate-limited passive transport of inert or
mostly cationic antigens, typically smaller than 600 daltons,
through the tight junctions between the epithelial resident cells
(18). Although it has been postulated that exogenous antigens
can cross the fish epithelium through this route in the steady-
state condition, to date, no study provides conclusive evidence to
this hypothesis (18, 38).

The transcellular transport of exogenous antigen across
teleost epithelial barriers depends on the physical nature of the
antigen (Figure 2). Fluid phase uptake of soluble antigens such as
ferritin has been proven to take place via non-specific pinocytosis
in grass carp (Ctenopharyngodon idella) and rainbow trout (38,
70–72). For small solid particles (<0.5 mm), as exemplified by
HRP, solid-phase uptake by receptor-mediated endocytosis has
been reported in the fish gut (18, 73). For larger particulate
antigens, uptake can occur via phagocytosis, where the antigens
are surrounded and internalized by the protrusion of cell
membrane forming phagosomes (18, 74).

In higher vertebrates, the transcellular route can be
accomplished by epithelium M-cells, dendritic cells and goblet
cells (18). Most of the bony fish studies evinced that the luminal
antigen uptake was attributed to the regular enterocyte, which is
also known as the epithelial cell, with antigen absorptive ability
(12, 18). In enterocytes, antigens are internalized into large
supranuclear vacuoles (endosomes) merged with lysosomes
containing enzymes, followed by systemic vascular release and
transfer of processed antigens to intraepithelial or lamina propria
macrophages (38, 71, 75). It has been proposed that the
mechanism of this transfer is akin to the mammalian melanin
transfer process in the retina (12). To date, the mechanism of the
antigen transfer is yet to be elucidated. Sea bass epithelial cells
express MHC-IIb, which indicates that this cell might be directly
serving as an antigen-presenting cell to activate the adaptive
branch of the mucosal immune system (35).

The existence of M-cells and dendritic cells in the teleost gut
is controversial. Absorptive cells that resemble mammalian M-
cells functionally and phenotypically have been reported in the
salmonid mid intestine (21, 27, 76, 77). These fish M-like cells
can uptake bovine serum albumin (27), but cannot internalize
inactivated bacteria (76). Different from mammalian mature M-
cells, fish M-like cells do not possess intraepithelial pockets, and
thus they are thought to be morphologically similar to
mammalian immature M-cells (18).

On the other hand, dendritic-like cells have been described in
trout (78, 79) and zebrafish (80). These cells match mammalian
dendritic cells’ hallmarks, such as activation by toll-like receptor-
ligands, expression of gene signatures such as cd83, il-1b, il-10r,
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Lee et al. Gut Immune System and Immunoprophylaxis
FIGURE 2 | Antigen uptake in the gut. Their mechanisms of transcellular transport for exogenous antigens across teleost epithelial barriers have been described,
namely fluid-phase uptake of soluble antigens by enterocytes via non-specific pinocytosis in carp and rainbow trout; solid-phase uptake of small solid antigens (<0.5
mm) by receptor-mediated endocytosis, and phagocytosis of larger particulate antigens. It has been proposed that the internalized antigens are processed in the
endosome by merging with lysosomes containing enzymes, followed by systemic vascular release and transfer of the processed antigens to the intraepithelial or
lamina propria antigen-presenting cells, viz. macrophages, some fish enterocytes expressed MHC-IIb, which indicates that this cell might directly be serving as an
antigen-presenting cell to activate the adaptive cells (35).
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and il-12 p40, in vivo mobilization ability, phagocytosis ability of
foreign particles, as well as the tree-like appearance (78, 81).
Trout dendritic-like cells are found to express CD8a, a
coreceptor of the cytotoxic T-cell (79).

Localization of antigen absorption varies among teleost
species. Mucosal antigen uptake has been described in the
posterior gut of European sea bass (Dicentrarchus labrax) (82),
the second segment of the carp gut (12), the second segment of
the salmonid midgut (83), the trout stomach and hindgut (84),
the ballan wrasse (Labrus bergylta) posterior gut (85), and the
Atlantic cod (Gadus morhua) rectum (86).

Oral Immune Tolerance
Oral immune tolerance is a state of immunological
unresponsiveness toward particular mucosal antigens, which
may be due to the prevention of aberrant or excessive immune
reactions to food-derived antigens or intestinal commensal
microbiota, or ascribable to prior exposure to the same
antigens (87). The physical-chemical barrier conferred by the
GALT wards off the undesired pathogenic invasion, but also
restrict the bioavailability of oral immunoprophylaxis to reach
the gut inductive site for initiating local immunization. Low
bioavailability of immunoprophylaxis-derived antigens is
perilous as it may induce oral immunotolerance (88).

Repetitive exposure to the same antigens may induce oral
tolerance. Repeated anal intubation of allogeneic cells reduced
specific cytotoxicity of T-cells in carp (89, 90). Pre-exposure offish
intestinal epithelial cell line (RTgutGC) to lipopolysaccharides
(LPS) strongly impeded the immunostimulatory secondary
response to the LPS. Similarly, pre-treatment of a fish spleen-
derived monocyte-macrophage cell line (RTS11) with LPS also
lowered the transcription of cytokines. Such immune tolerance
effect was not observed in both cell lines treated to the repetitive
exposures to b-glucans (87).

Furthermore, prolonged exposure to orally administered
antigens is another possible reason to evoke immunological
tolerance (72). A study on b-glucan observed that a gradual
down-regulation trend in immune gene expressions of the
rainbow trout that was fed with the immunostimulant for 30
consecutive days, as compared to the gene expression levels
recorded after the 15 consecutive days of post-feeding (91).

The mechanistic details of teleost oral immune tolerance
remain unclear (18). It has been proposed that two major
mechanisms may be involved: (1) induction of regulatory T-
cells, which is often associated with repetitive exposures to the
low dosage of antigen; (2) anergy or deletion, which is linked to
the antigen exposure of high dose (92).

In mammalian models, mucosal T-cells have been shown to
produce anti-inflammatory cytokines, particularly IL-4/13, IL-10,
and TGF-b, which can induce immunosuppression and oral
immune tolerance (18). These anti-inflammatory cytokines
activate regulatory T-cells that eventually promote tolerance
(76). The foxp3, a transcription factor expressed by activated
regulatory T-cells, is the key marker of oral immune tolerance
provoked by prolonged exposure to the same mucosal antigens.
This mechanism of oral immune tolerance is termed as the
induction of regulatory T-cells. In this mechanism, elevation in
Frontiers in Immunology | www.frontiersin.org 7
the foxp3 expression level is an indicator of oral tolerance in fish
(93). On the other hand, oral tolerance can be induced by T-cell
anergy and apoptosis. Although this mechanism has not yet been
elucidated, it has been proposed to be associated with overfeeding
the antigen. The anergy or apoptosis of T-cells stimulates the
production of TGF-b (92). Thus, in this mechanism, TGF-b is said
to be the indicator of oral immunosuppression. The upregulation
of the genes for foxp3, il-10, and tgf-b was observed in Atlantic
salmon subjected to oral tolerance, inferred by the suppression of
antibody production (94).
ORALLY ADMINISTERED
IMMUNOPROPHYLACTICS AND THE
IMPLICATION IN THE GUT IMMUNE
SYSTEM

Immunostimulants
Immunoregulators are environmentally friendly compounds safe
for animal utilization and can modulate the immune status of the
host, and thus make the animal able to cope with diseases (95, 96).
Herbal medicines have drawn much attention recently and are
often administered as feed additives using a whole plant or parts of
a plant (e.g., leaves, fruits, seeds or root), the extracts of the plant or
active compounds from the plant (97–99). Herbal compounds
have been considered promising natural and effective growth
promoters, antibacterial agents, and immunoprophylactic agents
for finfish (100–103) and improve appetite and alleviate stress-
mediated effects in fish (104). In the last few decades, investigation
of the effectiveness of the application of herbal medicines as
immunomodulators in aquaculture has been conducted to
reduce the use of chemicals and antibiotics during production
(105, 106). In fact, herbal medicine or plant extracts are rich in
various biologically active substances with beneficial health
properties, such as saponins, alkaloids, waxes, carotenoids,
vitamin, terpenoids, tannic acid, organic acids, volatile oils,
polysaccharides, glycosides, flavonoids, and others, are
considered to benefit aquatic animals with improved growth and
immune performance (107–110).

Many studies have reported the enhancement of systematic
immunological responses in a variety of fish species after
ingestion of herbal plants (or their extracts), such as increased
phagocytic activity, complement activity, the ability to generate
reactive oxygen and nitrogen species, lysozyme activity,
antiprotease activity, and expression of immune-related genes
in the blood, head kidney, spleen and liver (111–115), but only a
few reported local immune parameters in the MALT. In Table 1
we summarized studies in these past five years focusing on the
immune responses of the MALT and the increased resistance to
pathogenic microbes in fish that were subjected to dietary
phytotherapeutics of various doses and duration times. Studies
have demonstrated that dietary supplementation of medical
herbs can positively influence the intestinal structure and
improve the functionality of the gut. For example, Zahran et al.
(129) reported that oral administration of Withania somnifera,
commonly known as “Indian ginseng” or “winter cherry”, at a
December 2021 | Volume 12 | Article 773193
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TABLE 1 | Orally administrated herbs having modulatory activity on the gut immune system.

Source/form Fish species/
Body weight (g)

Doses Duration Results Resistance to
pathogen

Reference

Agaricus
bisporus/powder

Cyprinus carpio
(9.15 ± 0.09)

0-2% 8 weeks Intestine:
Expression of gr and gst ↑

N.A. (116)

Aloysia citrodora/
leave powder

Oncorrhyncus
myskiss
(2.5 ± 0.1)

0-2% 6 weeks Intestine:
Expression of il-1b, il-8 and tnf-a ↑, and tgf-b ↓, and il-10 –

N.A. (117)

Chenopodium
quinoa seed (QU)
and Opuntia ficus
indica peel (PP)/
powder

Oreochromis
niloticus
(21–25)

0-20% 45 days Intestine:
Pre challenge:
Intestinal villi length –, villi width ↑, goblet cell count (group PP20
only) ↑
Post challenge:
Intestinal villi length and width and goblet cell count ↑

Aeromonas sobria (118)

Curcumin/extract Cyprinus carpio
(16.37 ± 0.79)

0-15
g/kg

8 weeks Intestine:
Expression of sod and nrf2 ↑, and CAT and hsp70 –;
Expression of il-10 ↑, and il-1b, tnf-a and tlr22 ↓, and nf-kbp65 –

N.A. (119)

Dioscorea
opposita/powder

Cyprinus carpio
(75.19 ± 1.56)

0-2% 8 weeks Intestine:
SOD, CAT and LYZ ↑;
Total SCFA, AA, PA, BA ↑, and MDA –;
MV height ↑, and muscular thickness (mid-gut) –;
Expression of oc and zo-1 ↑;
Expression of il-1b, tgf-b, tlr4 and nfkb ↑, and il-10 and tnf-a –

(mid-gut)
Higher relative abundances of Fusobacteria and Bacteroidetes, and
lower relative abundances of Proteobacteria (e.g.
Enterobacteriaceae, Shewanella, Pseudomonas and Vibrio) and
ratio of Firmicutes/Bacteroidetes in fecal microbiomes; increased
the diversity of the gut flora

N.A. (120)

Ferula
assafoetida/
powder

Cyprinus carpio
(14.60 ± 1.29)

0-2% 8 weeks Intestine:
Expression of lyz, tnf-a and il-1b ↑, and il-8 –

N.A. (121)

Ginkgo biloba
leaf/extract

Epinephelus
lanceolatus ♂ ×
Epinephelus
fuscoguttatus ♀
(7.84 ± 0.35)

0-10
g/kg

8 weeks Intestine:
SOD, CAT and T-AOC ↑, and MDA ↓;
Expression of zo-1, -2, -3, oc and claudin 3a ↑ (lower conc.);
Expression of il-8 (higher conc.), il-10 (lower conc.), tgf-b (lower
conc.) and tor (lower conc.) ↑;
Expression of gpx, cat and gr ↑ (lower conc.) and ↓ (higher conc.),
but Keap1 ↓ (lower conc.) and ↑ (higher conc.);
Expression of caspase 3, 8 and 9 ↓ (lower conc.) and ↑ (higher
conc.)

N.A. (122)

Ginkgo biloba
leaf/extract

Cyprinus carpio
(7.84 ± 0.35)

0-10
g/kg

8 weeks Intestine:
Expression of il-1b, il-8, tnf-a, il-10, tgf-b, inos, cox2 and arg ↓, and
saa, hep, and gpx1 ↑, and sod –;
SUR ↑

Aeromonas
hydrophila

(123)

Jasonia glutinosa/
powder

Sparus aurata L.
(6.0 ± 0.8)

0-30% 15 and
30 days

Intestine:
Expression of cat and sod ↑ in the PrI on day 15

N.A. (124)

Prunus
domestica/extract

Oncorhynchus
mykiss
(27.61 ± 0.44)

0-1% 21 days Intestine:
Expression of il-10, il-6, il-8, il-12 and cox-2 ↑, and il-1b –;
SUR ↑

Yersinia ruckeri (125)

Psidium guajava/
leaf extract

Oreochromis
niloticus
(1.32 ± 0.04)

0-1% 84 days Intestine:
Insignificantly increased villi height and width;
SUR ↑

Aeromonas
hydrophila

(126)

Psidium guajava/
leaf powder

Cyprinus carpio
(15.88 ± 0.27)

0-1% 8 weeks Intestine:
Expression of il-1b and il-8 ↑, and tnf-a –

N.A. (116)

Silybum marianum
L./extract

Ctenopharyngodon
idella
(24.2 ± 0.1)

0-100
mg/kg

70 days Intestine:
InL, ILI, IW and ISI↑
Mucosal permeability ↓
Improved the intestinal histological pathological symptoms after
infection;
Expression of 9 TJ-related genes (zo-1, -2b, oc, jam-a, claudin-b,
-c, -f, -3c, -11) ↑, and 2 (claudin-12 and -15a) ↓, and claudin-7a,
-7b and -15b –;
Expression of 5 AJC-related genes (e-cadherin, a-catenin, b-
catenin, nectin, afadin) ↑;

N. A. (127)
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inclusion level of 5%, improved the growth of Nile tilapia,
possibly due to increased levels of digestive enzymes and
absorptive surface of the intestine, as well as a higher number
of goblet cells (GC) in the proximal and middle gut. An elevation
in the villous width in the gut from Nile tilapia (Oreochromis
niloticus) that ingested quinoa (Chenopodium quinoa) seeds and
prickly pear fruit (Opuntia ficus indica) peel was reported by
Ahmed et al. (118), and a higher number of GC counts in the
intestine was observed in the 20% prickly pear fruit peel-
supplemented group (118). Likewise, rainbow trout fed with
grapevine (Vitis vinifera) seed extract had increased GC density
and the number of intraepithelial lymphocytes in the intestine
(128). GC, specialized epithelial cells play a vital role in delivering
low molecular weight soluble antigens to dendritic cells in the
lamina propria in the steady-state (as known as goblet-cell-
associated antigen passages, GAP) in mammals (131, 132).
Moreover, GCs are important in the generation of mucin
which provides a thick mucus lining to the gut and protects
the mucosal surface by trapping pathogenic microbes (133). A
higher number of GCs was recorded in brown trout (Salmo
trutta) intestine infected with the parasite (134) and in Nile
tilapia, challenged with the bacteria Aeromonas sobria (118),
suggesting a conserved protective role by the teleost GCs (5).

Few studies have evaluated the influence of dietary
supplementation of medicinal plants on the expression of
junctional genes in the intestine. Meng et al. (120) investigated
the effects of oral administration of yam (Dioscorea opposita)
peels to common carp (Cyprinus carpio) and found higher
microvilli density and GC numbers as well as elevated
Frontiers in Immunology | www.frontiersin.org 9
transcript levels of tight junction (TJ)-related genes (occludin
(oc) and zonula occludens-1 (zo-1) (118). Similar findings were
also reported in common carp fed Yucca schidigera (known as
the Mojave yucca or Spanish dagger) extract in the feed, with
higher gene expression levels of zo-1, oc, and claudin 11 in the
intestine after an 8-week feeding trial (130). In hybrid grouper
(Epinephelus lanceolatus ♂ × E. fuscoguttatus ♀), zo-1, -2, -3, oc
and claudin 3a were induced in the gut when fed with high lipid
diets supplemented with Ginkgo biloba (maidenhair tree) leaf
extract (122). Dietary supplementation with silymarin (extracted
from Silybum marianum L.) improved the growth of juvenile
grass carp possibly owing to promoted intestinal histology (127).
Moreover, ingestion of silymarin induced transcript levels of
barrier-forming tight junction (TJ)- and adherent junction (AJ)-
related genes accompanied by the reduced expression of pore-
forming TJ genes by inhibiting a small Rho GTPase protein
(RhoA) and/Rho-associated protein kinase (ROCK) signaling
pathway in the gut, indicating that silymarin treatment could
enhance intestinal apical junctional complex (AJC) integrity by
strengthening TJ and AJ. (127). These findings indicate that
supplementation of certain herbal medicines can improve the
growth of fish and equally important, strengthen the immune
status of the gut.

Cytokines can be categorized into proinflammatory cytokines
(e.g., IL-1b, IL-8, TNF-a, and IL-6) and anti-inflammatory
cytokines (e.g., IL-10 and TGF-b) (130, 135). Cytokines are
crucial for regulating multiple aspects of the immune response.
Thus, they have been monitored to predict changes in the gut
immunity. Studies have shown the anti-inflammatory effects in
TABLE 1 | Continued

Source/form Fish species/
Body weight (g)

Doses Duration Results Resistance to
pathogen

Reference

Expression of 4 AJC-related genes (rhoa, rock, mlck and nm-ii) ↓;
GTP-RhoA protein levels ↓

Vitis vinifera seed/
extract

Oncorhynchus
mykiss
(~ 1.3)

0-200
mg/kg

60 days Intestine:
Villus height (PrI, MI, DI) and width (PrI, DI) ↑,
Tunica muscularis thickness, absorption surface area, villus density,
acidic/neutral/mixed mucin goblet cells –

Goblet cell density (PrI, DI) ↑,
Number intraepithelial lymphocytes (PrI) ↑;
Expression of c3, lyz and ifn-g –, and b-defensin3, tnf-a ↑

N. A. (128)

Withania
somnifera root/
powder

Oreochromis
niloticus
(45)

0-5% 60 days Intestine:
Diameter of lumen ↓ in the DI, and – in the PrI and MI;
Number of mucosal folds: ↑ in the PrI, but ↓ in the MI and DI;
Number of goblet cells: ↑ in the PrI and MI, but – in the DI;
Mucosal folds height: – in the PrI, but ↑ in the MI and DI;
Perimeter: – in the PrI and MI, but ↑ in the DI;
Area within the perimeter for each fold: – in the PrI and MI, but ↑ in
the DI;
Width of lamina propria: ↑ in the PrI, MI and DI;
Thickness of muscle: ↓ in the PrI, but –MI and DI

Streptococcus iniae
(only study the
expression of
cytokines in the head
kidney and spleen)

(129)

Yucca schidigera/
extract

Cyprinus carpio
(45.21 ± 0.43)

0-400
mg/kg

8 weeks Intestine:
T-AOC, C3, C4 and LYZ ↑, and MDA ↓, and total SOD and IgM –;
Expression of zo-1, oc, claudin 11 ↑ (TJ genes), claudin -3 and -7
–;
Expression of tgf-b2 ↑, il-10 –, and il-6, il-1b and tnf-a ↓
(inflammatory cytokine genes);
Expression of CuZnsod, cat, gpx1a and nrf2 ↑, and keap1 ↓
(antioxidant genes);

N.A. (130)
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the gut after the use of herbal medicinal products. TGF-b1 and
IL-10 are immunosuppressive cytokines that restrain
inflammation by decreasing the production of inflammatory
cytokines (135). Significantly downregulated mRNA expression
of proinflammatory cytokines (e.g., il-1b and tnf-a) and
upregulation of anti-inflammatory cytokines (e.g., il-10 and tgf-
b) were observed in the intestine of common carp after 8 weeks
of curcumin administration (119), Yucca schidigera extract (130)
and Ginkgo biloba leaf extract (123). Similarly, hybrid groupers
fed Ginkgo biloba leaf extract also exhibited higher expression of
il-10 and tgf-b in the intestine (122).

However, the opposite expression pattern of cytokines in
herbal medicine treated fish has also been reported. Increased
transcript levels of proinflammatory cytokines were reported in
the intestine of common carp with Psidium guajava (guava) leaf
powder (116), Dioscorea opposita (chinese yam) powder (120) or
Ferula assafoetida (asafetida) powder (121), and rainbow trout
with Aloysia citrodora (lemon verbena) leave powder (117) orVitis
vinifera seed extract (128). IL-1b is an effector in the inflammatory
responses expressed by distinct cell populations after the activation
of pattern recognition receptors (PRRs) once triggered by an
invading pathogen. IL-6 is known to play a major role in
haematopoiesis e.g. promoted macrophage growth (136), and is
with biphasic pro-and anti-inflammatory properties (135). IL-8 is
a chemokine for attracting neutrophils, monocytes, basophils, T
cells, and eosinophils (135). TNF-a, with overlapping functions
with IL-1b, is an immune gene expressed in the early phase of
infection and has a key role in regulating inflammation (135).
However, TNF-a can activate NADPH oxidase, which leads to the
generation of reactive oxygen species (ROS) that may promote
inflammation by activating inflammasomes and the release of
mature IL-1b and IL-18 cytokines (137–139), as well as serving as
second messengers to control the action of several signaling
pathways (140). Therefore, an increased expression level of
inflammatory cytokines in the intestine can have negative health
effects for fish (141).

Vaccines and Adjuvants
Vaccination is one of the essential and powerful prophylactic
means of infectious disease control that can provoke immune
memory and reduce the need for antibiotics in aquaculture (142).
Many types of vaccines have been developed with different ways
of introduction, including spray, oral, immersion and injection.
Although injectable vaccines have been proven to be effective,
some critical limitations such as the requirement of high labor
demand, trauma on the skin at the injection site that may cause
secondary infection, fish size at vaccination and handling stress
to the fish, have also been noticed (143). Oral immunization can
circumvent the aforementioned disadvantages; therefore, is now
an important topic under investigation (13). However, there are
still some obstacles that require solutions to achieve high efficacy
of oral vaccines (77).

The antigens in a vaccine may be broken down and
inactivated in the gastrointestinal tract before reaching
the intestinal mucosa and activating immune cells (144).
The availability of antigens will thus be lowered, and a low
Frontiers in Immunology | www.frontiersin.org 10
antigen dose will induce regulatory T-cell-mediated immune
tolerance (92). To protect the antigens from gastric
degradation, several encapsulation techniques such as using
alginate microparticles, virus-like particles (VLPs), chitosan,
liposomes, immunostimulating complexes (ISCOMs) and poly
(D, L-lactic-co-glycolic acid) (PLGA) have been developed and
summarized previously (92, 145, 146). ISCOMs are formulated
by the mixing of; amphipathic antigen, the saponin-based
adjuvant Quil-A, and cholesterol in a 1:1:1 ratio (147). ISCOM
technology-based Matrix M™ adjuvant has been studied in a
range of veterinary vaccines and has the potential to be
commercialized (147).

In terms of antigen production, subunit antigens are
particularly of interest since they can be produced using
various protein expression systems and are safe to the host
given the fact that they do not possess live components of the
pathogen (148). Escherichia coli (E. coli) (149) and yeast (150,
151) are two of the most widely used protein expression systems
for the production of subunit antigens in fish vaccinology (92),
but recent studies have also shown the potential of using other
enteric probiotics as vaccine vehicles.

Choosing the right enteric probiotic as a vaccine vehicle is
important as fish gastrointestinal mucus dissociates microbes
and is constantly sloughed off and replaced. The transient
availability or low doses of vaccine immunogens in the
inductive site of the gastrointestinal tract will result in poor
antigen uptake by the GALT and thus diminish the success rate
of immunization. Generally regarded as safe (GRAS) is a United
States Food & Drug Administration (FDA) designation stipulates
that any substance that is intentionally added to food is generally
considered safe by qualified experts. Lactic acid bacteria (LAB),
e.g. Lactococcus and Lactobacillus (152) and Bacillus subtilis
(153) are recognized as probiotics, which are GRAS to fish and
thus can be used as an oral vaccine vehicle to present antigen
(Table 2). LAB not only can colonize and persist in the
gastrointestinal tract, but with prospective applications such as
modulating the host immune system, competing with pathogens
for mucosal binding sites, promoting digestive function,
improving the disease resistance of the host, delivering
expression DNA and antigen presentation to mucosal tissue of
the host (152, 154, 170, 171).

Lactococcus lactis is a widely used bacterium and is a
prominent candidate to develop oral vaccines and host-vector,
since it possesses several advantages, such as: absence of
endotoxins and biogenic amine production, and ability to be
cultured in chemically defined media, it can be genetically
manipulated, the genome sequence is readily available and is
considered to have a safe profile for use in the development of
vaccine formulations (154, 172–174). Successful examples of
immunization and induction of protection of fish using
Lactococcus lactis-expressing antigen(s) from Edwardsiella
tarda (outer membrane protein (Omp)A and flagellar hook
protein (Flg)D) (142), viral hemorrhagic septicemia virus
(VHSV) (154), and hirame novirhabdovirus (HIRRV) (155)
have been reported. These studies demonstrated that the
immunization elicited higher expression of T cell markers and
December 2021 | Volume 12 | Article 773193
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TABLE 2 | Oral vaccines and the feeding regimes.

Source/form Fish species/
Body weight (g)

Doses Feeding regime Results Resistance to
pathogen

Reference

Lactococcus lactis BFE920
expressing Edwardsiella tarda
OmpA, FlgD, or a fusion antigen of
the two

Paralichthys
olivaceus
(86.36 ± 4.31)

~0.8-1.4 × 107

CFU/g
Twice with a one-week
interval

Intestine:
Expression of T cell responses
(cd4-1, cd4-2, cd8-a, t-bet, ifn-
g) ↑
Expression of tlr5m, il-1b and il-
12p40 ↑
SUR ↑ after being challenged at
4th week

Edwardsiella
tarda

(142)

Lactococcus lactis expressing the
G gene from VHSV

Oncorhynchus
mykiss
(7 ± 0.65)

1.0 × 1010

CFU/g and 1.0
× 108 CFU/g

Vaccination was
conducted on day 1–7
and day 15–21

SUR ↑ after being challenged
on day 60 post vaccination

VHSV (154)

Lactococcus lactis expressing
HIRRV-glycoprotein (G) on the cell
surface

Paralichthys
olivaceus
(35 ± 5)

1.0 × 109 CFU/
g diet

Vaccination was
conducted at week 1 and
week 5

Intestine:
IgM against HIRRV ↑ in the gut
mucus
SUR ↑ after being challenged at
8th week

HIRRV (155)

Lactococcus lactis BFE920
expressing OmpK and FlaB

Paralichthys
olivaceus
Juvenile (7.1 ± 0.8
g) and adult (140 ±
10 g)

1 × 107 CFU/g
feed

Vaccination was
conducted for 1 week
with a 1-week interval,
repeating three times

Intestine:
Expression of T cell responses
(cd4-1, cd4-2, cd8-a, t-bet, ifn-
g) ↑
Expression of tlr5m, il-1b and il-
12p40 ↑
SUR ↑ after being challenged at
7th week

Vibrio
anguillarum,
Vibrio
alginolyticus,
and Vibrio
harveyi

(156)

Lactobacillus casei expressing the
fusion protein of OmpI from A.
veronii TH0426 and C5 – I from
common carp (surface-displayed
or secreted)

Carassius carassius
(50.00 ± 1.00 g)

~1.0 × 109

CFU/g feed
Vaccination was
conducted on days 1–3
(prime vaccination), 18–20
(booster vaccination) and
34 (challenge)

Intestine:
Expression of il-1b, il-10, ifn-g
and tnf-a ↑post vaccination
SUR ↑ after being challenged
on day 34

Aeromonas
veronii

(157)

Lactobacillus casei
strain expressing Malt from
Aeromonas veronii TH0426

Cyprinus carpio
(65 ± 4)

~1.0 × 109

CFU/g feed
Vaccination was
conducted on days 0–2
(prime vaccination), 14–15
(booster vaccination) and
34 (challenge)

Intestine:
Expression of il-1b, il-10, ifn-g
and tnf-a ↑post vaccination
SUR ↑ after being challenged
on day 34

Aeromonas
veronii

(158)

Lactobacillus casei expressing the
OmpW of A. veronii (surface-
displayed or secreted)

Cyprinus carpio
(56 ± 1)

1.0 × 109 CFU/
g feed

Vaccination was
conducted on day 1–3
and on day 18–20

Intestine:
Expression of the il-1b, il-10,
ifn-g and tnf-a ↑ post
vaccination
SUR ↑ after being challenged
on day 34 after the boost
immunization

Aeromonas
veronii

(159)

Lactobacillus casei expressing the
FlaB of A. veronii (surface-
displayed or secretory)

Cyprinus carpio
(56 ± 1)

2.0 × 109 CFU/
g feed

Vaccination was
conducted on day 0–2
and on day 28–29

Intestine:
Expression of the il-1b, il-10,
ifn-g and tnf-a ↑ post
vaccination
SUR ↑ after being challenged
on day 58 after immunization

Aeromonas
veronii

(160)

Lactobacillus casei expressing the
OmpAI of A. veronii (surface-
displayed or secretory)

Cyprinus carpio
(50 ± 1)

2.0 × 109 CFU/
g feed

Vaccination was
conducted on day 1 and
on day 32

Intestine:
Expression of the il-1b, il-10,
ifn-g and tnf-a ↑ post
vaccination
SUR ↑ after being challenged
on day 66 after immunization

Aeromonas
veronii

(161)

Lactobacillus casei expressing
CK6-VP2 fusion protein

Oncorhynchus
mykiss
(11.5)

2 × 109 CFU/
fish

Vaccination was
conducted on days 1 and
32

Intestine:
Expression of b-defensin ↑
Skin mucus:
Titer of anti-VP2 IgT ↑

IPNV (162)

Lactobacillus casei expresses the
AHA1-CK6-VP2 fusion protein

Oncorhynchus
mykiss
(~ 10)

200 ml of
recombinant
strains

Orogastric intubation was
conducted on days 1, 2
and 3, and boost on days
31, 32, and 33

Intestine:
The colonization ability of pPG-
612-AHA1-CK6-VP2/L. casei
393 was higher than other
groups on day 3 and 7

IPNV (144)

(Continued)
Frontiers in Immunology | www.fron
tiersin.org
 11
 December 2021 |
 Volume 12 | Art
icle 773193

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Lee et al. Gut Immune System and Immunoprophylaxis
proinflammatory genes in the intestine (142) and higher survival
rate relative to the control group in the challenge assay a few
weeks post-vaccination. Interestingly, a recent study showed that
oral immunization of olive flounder (Paralichthys olivaceus) with
Lactococcus lactis BFE920 that express fusion antigens of OmpK
from Vibrio anguillarum and flagellin B subunit (FlaB) from
Vibrio alginolyticus increased the levels of serum antigen-specific
antibodies and expression of cytokines and T cell markers in the
intestine. It is important to highlight that the same study revealed
Frontiers in Immunology | www.frontiersin.org 12
the universal protective effects of the vaccine to fish from
multiple strains of Vibrio pathogens, namely Vibrio
anguillarum, Vibrio alginolyticus, and Vibrio harveyi, even
though the vaccine did not contain specific antigens from
Vibrio harveyi. The cross-protection against Vibrio harveyi
may happen due to the high homologies in protein sequences
and structures of the OmpK and FlaB among the three Vibrio
species, which then rendered in immunological cross-reactivity
via shared epitopes (156). Therefore, comprehensive antigen
TABLE 2 | Continued

Source/form Fish species/
Body weight (g)

Doses Feeding regime Results Resistance to
pathogen

Reference

Skin mucus:
Titer of anti-VP2 IgT ↑

Lactobacillus rhamnosus
expresses the ORF81 from CyHV3

Cyprinus carpio
(~ 50)

5.2 1010 CFU/g
feed

Vaccination was
conducted on day 1-3,
day 14-16 (booster
vaccination) and day 28-
30 (booster vaccination)

SUR ↑ after being challenged
on day 15 after the second
booster

CyHV3 (163)

Bacillus subtilis spores displaying
the VP7 of GCRV

Ctenopharyngodon
idella
(50 ± 5)

1.0 × 1010

spores/fish
Vaccination was
conducted on day 1 and
day 8

SUR ↑ after being challenged
on day 14 after the boost
immunization

GCRV (164)

Bacillus subtilis spore expressing
the VP4 of GCRV

Ctenopharyngodon
idellus
(23 ± 2)

2.3 × 1011

spores/fish/day,
amount to 1 ×
10−3 mg/g
(protein/fish)

Vaccination was
conducted daily for 8
weeks

Intestine:
Lower GCRV viral load in
intestine
Higher anti-GCRV IgZ titer in
the intestinal mucus
Expression of csf1r, mhc-ii, cd8
and il-1b ↑
SUR ↑ after being challenged
on week 10

GCRV (165)

Bacillus subtilis GC5 expressing
the Sip of S. agalactiae on the
surface

Oreochromis
niloticus
(22 ± 2)

109 CFU/100
mL/fish

Vaccination was
conducted once on week
0 and once on week 3

Intestine:
Expression of tp3, tnf-a, il-1b,
tgf-b, il-10, mhc-i, mhc-ii, cd4,
cd8, tcr-b, igm and t-bet were
differentially modulated post
vaccination
SUR ↑ after being challenged
on week 6 post-vaccination

Streptococcus
agalactiae

(166)

Yeast expressing the OmpG and
Omp48 of A. hydrophila

Carassius auratus
(~6)

1.5 × 108 heat-
killed yeast
cells/g meal
powder

Vaccination was
conducted daily for 4
weeks

SUR ↑ after being challenged
on day 28

Aeromonas
hydrophila

(150)

Saccharomyces cerevisiae
expressing ORF131 of CyHV-3 on
the cell surface

Cyprinus carpio var.
Jian
(~10)

1.6 × 109 CFU
yeast in 300 mL
PBS

Vaccination was
conducted 3 times at a 2-
week interval

SUR ↑ after being challenged at
four weeks post the third
immunization

CyHV-3 (151)

Rootless duckweed (Wolffia)
expresses LamB from Vibrio
alginolyticus

Danio rerio
(N.A.)

N. A. Vaccination was
conducted for 60 days
from month 0-2 and
boost for 30 days on
month 3-4

SUR ↑ after being challenged
six weeks post-vaccination
(booster)

Vibrio
alginolyticus

(167)

Tobacco leaves express RGNNV-
capsid protein

Epinephelus
septemfasciatus
(25.8 g)

200 mg/fish Vaccination was
conducted once a day for
five consecutive days

SUR ↑ after being challenged
on day 21 after immunization

RGNNV (168)

Escherichia coli expressing the
capsid protein of NNV

Dicentrarchus
labrax
(10–12)

1010 CFU/g
diet

Vaccination was
conducted 3 consecutive
days and a boost at day
14

SUR ↑ after being challenged at
30 days post vaccination

NNV (149)

Tobacco expressing the capsid
protein of NNV

Hyporthodus
septemfasciatus
(N.A.)

5 µg or 10 µg
plant-derived
recombinant
coat protein

Vaccination was
conducted every Monday
at 2-week intervals for a
total of 4 times

SUR ↑ after being challenged at
six days after the final
immunization

NNV (169)
December 2021 |
 Volume 12 | Art
icle 773193

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Lee et al. Gut Immune System and Immunoprophylaxis
mapping is encouraged for developing universal vaccines in fish
with high protection.

The literature accumulates evidence that Lactobacillus casei is
also a prominent live vehicle for expressing and transporting
heterologous antigens to mucosal sites. For example, the
recombinant Lactobacillus casei can be detected in the digestive
tract of common carp following oral administration, and
colonization was shown to be higher in the hind-gut than in
the prosogaster and mid-gut (158–161). Meanwhile, these
studies also showed that oral vaccination of common carp with
Lactobacillus casei (1-2 × 109 CFU/g feed) displaying antigen(s)
(surface-displayed or secreted) from Aeromonas veronii resulted
in elevated transcript level of immune genes in the intestine post-
vaccination and provided strong protection for common carps
against this pathogenic bacteria (158–161). Immunization of
crucian carp (Carassius carassius) with recombinant
Lactobacillus casei that expresses a fusion protein encoded by
of OmpAI gene from Aeromonas veronii and chemokine c5 – i
gene (served as a molecular adjuvant) from common carp
resulted in enhanced alkaline phosphatase, superoxide
dismutase and acid phosphatase in the serum and higher
expression of il-10, il-1b, tnf-a, and ifn-g in the heart, liver,
spleen, head kidney, and intestinal tract. More importantly,
recombinant Lactobacillus casei provided strong protection
(survival rate at least 60% versus 0% for the unimmunized
control group) against A. veronii infection (157).

Additionally, Lactobacillus casei was proven to be able to
express a fusion protein (VP2-CK6) of a viral gene (VP2) from
infectious pancreatic necrosis virus (IPNV) and a chemokine
(CK6) gene from rainbow trout that can induce leukocyte
migration, inflammatory responses and killing the target cells
(162). Orally vaccinated fish exhibited induced expression of b-
defensin in the intestine, higher anti-VP2 IgT titer in the skin
mucus and lower viral load in the liver and pancreas compared to
the control group (162). To further boost the effects of this oral
vaccine, a genetically engineered Lactobacillus casei was
constructed to present the Aeromonas hydrophila adhesion
(AHA1) -CK6-VP2 fusion protein (144). Recombinant AHA1
protein was illustrated to adhere to epithelial cells possibly due to
its strong hydrophobicity that can bind to the cell surface
receptor via covalent bonds (175). Intestinal colonization and
the ability to induce specific anti-IPNV-specific IgT and IgM
antibodies were found to be higher in the fish that had AHA1-
CK6-VP2 expressed Lactobacillus casei than other groups
(including the Lactobacillus casei that displayed VP2-CK6
recombinant protein), indicating that AHA1 helped in antigen
retention in the intestinal tract and enhance the immunogenicity
of the LAB vaccine (144).

The utilization of probiotic vaccines provided a certain
tolerance to harsh conditions in the gastrointestinal tract.
However, better cell viability of probiotics during passing
through the gastrointestinal tract would improve their efficacy.
For example, oral immunization of Koi carp (Cyprinus carpio)
with chitosan-alginate encapsulated live recombinant
Lactobacillus rhamnosus expressing ORF81 protein from
cyprinid herpesvirus 3 (CyHV-3) provided elevated antigen-
Frontiers in Immunology | www.frontiersin.org 13
specific IgM production in the serum and antigen-specific
IgM-secreting cells in the spleen (163). A higher survival rate
was noted for the fish orally vaccinated with the encapsulated live
probiotic vaccine than that of fish fed with the vector-containing
probiotic control group after CyHV-3 challenge (163). However,
it is worth mentioning that a comparison of recombinant
probiotic vaccines containing specific antigens (ORF81 in this
case) with or without encapsulation would provide valuable
information on the efficacy of encapsulation. The spores of
Bacillus subtilis can withstand wet heat, desiccation and
tolerate acid conditions. Additionally, B. subtilis spores exhibit
the potent adjuvant property that can benefit by inducing the
protective immune responses and minimizing tolerance (176),
which makes it an ideal antigen producing and delivering system
for the fish oral vaccine (165, 166). Research has demonstrated
that oral vaccination of grass carp (Ctenopharyngodon idella)
with the engineered B. subtilis spores that express VP7 (164) or
VP4 (165) from grass carp reovirus (GCRV) on the spore surface
could provide adequate immunity against GCRV infection;
although, the challenge assay, in these two studies, was
assessed for a very short time (14 days) following the last
vaccine administration. These works highlighted a novel
strategy of applying LAB and Bacillus subtilis spores, two
powerful and efficient expression systems as oral vaccine
delivery vehicles, which confer high immunogenicity and
sufficient protection against microbial infection.

An adjuvant is purported to be crucial in improving
immunogenicity and prolonging the duration of protection of a
mucosal vaccine (177). Choosing the right combination of
adjuvant and vaccine candidates will balance and circumvent
oral tolerance (145). Aluminum hydroxide and oil-based
adjuvants are the most commonly used adjuvants in injectable
vaccination of aquaculture due to their high efficacy and low
production cost (178). These adjuvants are less commonly used in
oral vaccine studies as they can result in local negative effects such
as necrosis and tissue inflammation (145). Recombinant cytokines
are gaining popularity as the ideal mucosal adjuvants as they do
not induce necrosis. Although synthetic cytokines have been long
applied as an adjuvant in the injectable vaccine in aquaculture, the
first fish study that evaluated the recombinant cytokine as an oral
adjuvant was reported by Galindo-Villegas et al. (179). By
incorporating recombinant TNF-a with a commercial oral
vaccine of V. anguillarum, higher immunostimulatory responses
including il-1b, lysozyme and IgT production were recorded in the
adjuvant group relative to the non-adjuvanted group (179). Other
pro-inflammatory cytokines such as IL-12 and IFN-g have been
proposed to be potential oral vaccine adjuvants (145).

Plants have been applied as bioreactors to produce
biopharmaceuticals including antigens for vaccines, growth
factors, antibodies, and cytokines (180). With thick and rigid
cell walls, transgenic plants are regarded as one of the ideal
solutions for antigen generation and protection simultaneously
(167). Additional advantages such as cost-effectiveness, high
scalability, and low risk of contamination by bacterial
components (e.g. endotoxins) are also proposed for plant
molecular farming (180). Feeding zebrafish with rootless
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duckweed (Wolffia globosa) expressing LamB (maltoporin) from
Vibrio alginolyticus resulted in high relative percent survival
(RPS) of the vaccinated fish (63.3%) from Vibrio infection (167).
Similarly, oral administration of the crudely purified protein
extract containing chloroplast-derived red-spotted grouper NNV
(RGNNV) virus-like particle (VLP) provided comparable
protection compared to a commercial injectable vaccine in the
sevenband grouper fish against RGNNV challenge (168).
CHALLENGES AND FUTURE
PERSPECTIVES

Despite the growing number of oral prophylactics being
reported, the lack of consistency in performance, particularly
on-site farm testing, and the limited successful application
remain pressing issues (181). As the most diverse and largest
vertebrate groups (182), fish display high heterogeneity in their
physiology and immune system (38). For instance, the gadoid
species do not possess CD4 (53) and MHC molecules (53, 183)
compared to the other finfish species. Anatomically, cultured
finfish can be differentiated as gastric and agastric species,
which differ significantly in the morphology and structure of
their gastrointestinal tract (38). As mentioned earlier, the
nomenclature applied for dividing the intestine in fish has
been inconsistent. These aforementioned factors have driven
the divergence in the findings of fish gut immunity. The
functionality and underlying mechanistic details of some
GALT immune components, viz. teleost IgD, remains obscure.

Immunological studies of fish are slower than those of their
mammalian counterparts. Furthermore, insights derived from
mammalian immune studies may not be applicable to
aquaculture. CD8-a+, a signature receptor of mammalian
cytotoxic T-cells have been reported to be expressed by fish
dendritic cells beside cytotoxic T-cells (79). The lack of specific
cellular biomarkers to differentiate leukocyte subpopulations in
many aquaculture species impedes the understanding of the gut
immune system in higher resolution (184).

Even though teleost fish were the first vertebrate animals to
start presenting the classic adaptive immunological features,
their antibody isotypes are more limited and primitive
compared to other animals on the upper scale of the
evolutionary tree (185); Thus, their adaptive immunological
responses are not as effective as other farmed livestock species
like poultry, swine or cattle, and the immunological memory
Frontiers in Immunology | www.frontiersin.org 14
might not be long-lasting. In addition, fish gut possesses intricate
GALT and a harsh gastrointestinal environment to fend off the
microbial intrusion, but it also greatly reduces the uptake of the
immunoprophylactics at the induction site (38). To provoke the
desired bioactivity and prevent oral tolerance, the research and
development of oral immunoprophylactics must address several
necessities, such as a substantial amount of antigen, proper
encapsulation or vector and a well-designed feeding regime
(38). To elicit long-lasting protection, there are trade-offs
between repetitive immunizations via booster and the risk of
getting anergy-mediated immune suppression. In addition to
these challenges, the design and technology of the orally
administered end prophylactics should be cost-effective to
prevent overtaxing aquaculture production costs.

Aquaculture practices worldwide are generating a diverse
range of finfish species. These species of finfish evolved
differently, in which the developmental biology of these
cultured finfish can have particularities. The differences in
phenotype, biological processes and responses, and molecular
functions are associated with the control and regulation at the
molecular level, where the epigenome can play role. Thus,
research findings from the study of one finfish species do not
always translate to another species. Therefore, extensive study of
various aspects, which include the fundamental immunology and
functional characterization; physiology; biomarker development;
and the optimization of the feeding regime as well as rearing
conditions are necessary for each species of interest.
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107. Yin G, Jeney G, Stromájer-Rácz T, Xu P, Jun X. Effect of Two Chinese Herbs
(Astragalus Radix and Scutellaria Radix) on non-Specific Immune Response
of Tilapia, Oreochromis Niloticus. Aquaculture (2006) 253:39–47. doi:
10.1016/j.aquaculture.2005.06.038

108. Galina J, Yin G, Ardo L, Jeney Z. The Use of Immunostimulating Herbs in
Fish. An Overview of Research. Fish Physiol Biochem (2009) 35:669–76. doi:
10.1007/s10695-009-9304-z

109. Yin G, Ardo L, Thompson KD, Adams A, Jeney Z, Jeney G. Chinese Herbs
(Astragalus Radix and Ganoderma Lucidum) Enhance Immune Response of
Carp, Cyprinus Carpio, and Protection Against Aeromonas Hydrophila. Fish
Shellfish Immunol (2009) 26:140–5. doi: 10.1016/j.fsi.2008.08.015

110. Wu YS, Lee MC, Huang CT, Kung TC, Huang CY, Nan FH. Effects of
Traditional Medical Herbs "Minor Bupleurum Decoction" on the non-
Specific Immune Responses of White Shrimp (Litopenaeus Vannamei).
Fish Shellfish Immunol (2017) 64:218–25. doi: 10.1016/j.fsi.2017.03.018

111. Baba E, Acar Ü, Yılmaz S, Zemheri F, Ergün S. Dietary Olive Leaf (Olea
Europea L.) Extract Alters Some Immune Gene Expression Levels and
Disease Resistance to Yersinia Ruckeri Infection in Rainbow Trout
Oncorhynchus Mykiss. Fish Shellfish Immunol (2018) 79:28–33. doi:
10.1016/j.fsi.2018.04.063

112. Zahran E, Abd El-Gawad EA, Risha E. Dietary Withania Sominefera Root
Confers Protective and Immunotherapeutic Effects Against Aeromonas
Hydrophila Infection in Nile Tilapia (Oreochromis Niloticus). Fish Shellfish
Immunol (2018) 80:641–50. doi: 10.1016/j.fsi.2018.06.009

113. Zemheri-Navruz F, Acar Ü, Yılmaz S. Dietary Supplementation of Olive Leaf
Extract Increases Haematological, Serum Biochemical Parameters and
Immune Related Genes Expression Level in Common Carp (Cyprinus
Carpio) Juveniles. Fish Shellfish Immunol (2019) 89:672–6. doi: 10.1016/
j.fsi.2019.04.037

114. Harikrishnan R, Devi G, Paray BA, Al-Sadoon MK, Al-Mfarij AR, Van Doan
H. Effect of Cassic Acid on Immunity and Immune-Reproductive Genes
Transcription in Clarias Gariepinus Against Edwardsiella Tarda. Fish
Shellfish Immunol (2020) 99:331–41. doi: 10.1016/j.fsi.2020.02.037

115. Yakubu Y, Talba AM, Chong CM, Ismail IS, Shaari K. Effect of Terminalia
Catappa Methanol Leaf Extract on Nonspecific Innate Immune Responses
and Disease Resistance of Red Hybrid Tilapia Against Streptococcus
Agalactiae. Aquac Rep (2020) 18:100555. doi: 10.1016/j.aqrep.2020.100555

116. Hoseinifar SH, Sohrabi A, Paknejad H, Jafari V, Paolucci M, Van Doan H.
Enrichment of Common Carp (Cyprinus Carpio) Fingerlings Diet With
Psidium Guajava: The Effects on Cutaneous Mucosal and Serum Immune
Parameters and Immune Related Genes Expression. Fish Shellfish Immunol
(2019) 86:688–94. doi: 10.1016/j.fsi.2018.12.001

117. Hoseinifar SH, Shakouri M, Doan HV, Shafiei S, Yousefi M, Raeisi M, et al.
Dietary Supplementation of Lemon Verbena (Aloysia Citrodora) Improved
Immunity, Immune-Related Genes Expression and Antioxidant Enzymes in
Rainbow Trout (Oncorrhyncus Mykiss). Fish Shellfish Immunol (2020)
99:379–85. doi: 10.1016/j.fsi.2020.02.006

118. Ahmed SAA, Abd El-Rahman GI, Behairy A, Beheiry RR, Hendam BM,
Alsubaie FM, et al. Influence of Feeding Quinoa (Chenopodium Quinoa)
Seeds and Prickly Pear Fruit (Opuntia Ficus Indica) Peel on the Immune
December 2021 | Volume 12 | Article 773193

https://doi.org/10.1016/j.micpath.2013.03.001
https://doi.org/10.1186/s12864-018-4570-8
https://doi.org/10.1016/j.fsi.2009.03.007
https://doi.org/10.1016/j.aquaculture.2021.736805
https://doi.org/10.1016/j.dci.2016.06.016
https://doi.org/10.1016/j.fsi.2006.09.010
https://doi.org/10.1016/j.fsi.2019.10.041
https://doi.org/10.1016/j.fsi.2017.02.027
https://doi.org/10.3389/fimmu.2015.00519
https://doi.org/10.1016/j.fsi.2018.12.057
https://doi.org/10.1371/journal.pone.0109337
https://doi.org/10.1016/0959-8030(92)90067-8
https://doi.org/10.1016/j.fsi.2005.03.008
https://doi.org/10.1016/j.fsi.2005.03.008
https://doi.org/10.1016/S0006-2952(99)00243-9
https://doi.org/10.3390/molecules25051126
https://doi.org/10.3390/pr9040595
https://doi.org/10.1016/j.fsi.2010.02.018
https://doi.org/10.1016/j.fsi.2010.02.018
https://doi.org/10.1016/j.fsi.2017.05.028
https://doi.org/10.4172/2155-9546.1000552
https://doi.org/10.22438/jeb/41/5(SI)/MS_12
https://doi.org/10.1016/j.aquaculture.2014.05.048
https://doi.org/10.1016/j.aquaculture.2014.05.048
https://doi.org/10.1016/j.fsi.2011.02.015
https://doi.org/10.1016/j.fsi.2011.02.015
https://doi.org/10.1016/j.aquaculture.2005.06.038
https://doi.org/10.1007/s10695-009-9304-z
https://doi.org/10.1016/j.fsi.2008.08.015
https://doi.org/10.1016/j.fsi.2017.03.018
https://doi.org/10.1016/j.fsi.2018.04.063
https://doi.org/10.1016/j.fsi.2018.06.009
https://doi.org/10.1016/j.fsi.2019.04.037
https://doi.org/10.1016/j.fsi.2019.04.037
https://doi.org/10.1016/j.fsi.2020.02.037
https://doi.org/10.1016/j.aqrep.2020.100555
https://doi.org/10.1016/j.fsi.2018.12.001
https://doi.org/10.1016/j.fsi.2020.02.006
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Lee et al. Gut Immune System and Immunoprophylaxis
Response and Resistance to Aeromonas Sobria Infection in Nile Tilapia
(Oreochromis Niloticus). Animals (2020) 10:2266. doi: 10.3390/ani10122266

119. Giri SS, Sukumaran V, Park SC. Effects of Bioactive Substance From
Turmeric on Growth, Skin Mucosal Immunity and Antioxidant Factors in
Common Carp, Cyprinus Carpio. Fish Shellfish Immunol (2019) 92:612–20.
doi: 10.1016/j.fsi.2019.06.053

120. Meng X, Hu W, Wu S, Zhu Z, Lu R, Yang G, et al. Chinese Yam Peel
Enhances the Immunity of the Common Carp (Cyprinus Carpio L.) by
Improving the Gut Defence Barrier and Modulating the Intestinal
Microflora. Fish Shellfish Immunol (2019) 95:528–37. doi: 10.1016/
j.fsi.2019.10.066

121. Safari R, Hoseinifar SH, Nejadmoghadam S, Jafar A. Transciptomic Study of
Mucosal Immune, Antioxidant and Growth Related Genes and non-Specific
Immune Response of Common Carp (Cyprinus Carpio) Fed Dietary Ferula
(Ferula Assafoetida). Fish Shellfish Immunol (2016) 55:242–8. doi: 10.1016/
j.fsi.2016.05.038

122. Tan X, Sun Z, Ye C. Dietary Ginkgo Biloba Leaf Extracts Supplementation
Improved Immunity and Intestinal Morphology, Antioxidant Ability and
Tight Junction Proteins mRNA Expression of Hybrid Groupers (Epinephelus
Lanceolatus ♂ × Epinephelus Fuscoguttatus ♀) Fed High Lipid Diets. Fish
Shellfish Immunol (2020) 98:611–8. doi: 10.1016/j.fsi.2019.09.034

123. Bao L, Chen Y, Li H, Zhang J, Wu P, Ye K, et al. Dietary Ginkgo Biloba Leaf
Extract Alters Immune-Related Gene Expression and Disease Resistance to
Aeromonas Hydrophila in Common Carp Cyprinus Carpio. Fish Shellfish
Immunol (2019) 94:810–8. doi: 10.1016/j.fsi.2019.09.056
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AA acetic acid
AHA1 Aeromonas hydrophila adhesion
AJC apical junctional complex
ARG arginase
BA butyric acid
C3 Complement 3
C4 Complement 4
CAT catalase
CD cluster of differentiation
CFU colony forming unit
CK6 Chemokine 6
COX cyclooxygenase
CSF1R colony-stimulating factor 1 receptor
CuZnSOD copper zinc superoxide dismutase
CyHV-3 Cyprinid Herpesvirus 3
DI distal intestine
flaB flagellin B
FlgD flagellar hook protein D
GALT gut-associted lymphoid tissues
GCRV grass carp reovirus
GPx glutathione peroxidase
GR glutathione reductase
GST glutathione S-transferases
HEP hepcidin
HIRRV Hirame novirhabdovirus
HSP heat shock protein
IEL intraepithelial lymphocyte
IFN interferon
Ig immunoglobulin
IL interleukin
ILI intestinal length index
InL intestinal length
iNOS inducible nitric oxide synthase
IPNV Infectious pancreatic necrosis virus
ISI intestinal somatic index
IW intestinal weight
JAM-A junctional adhesion molecule-A
Keap1 Kelch-like- ECH-associated protein 1
Lamb Lambda B

(Continued)
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LPS lipopolysaccharides
LYZ lysozyme
MDA malondialdehyde
MHC major histocompatibility complex
MI middle intestine
MLCK myosin light chain kinase
MV microvillus
N.A. Not available
NFkB nuclear factor kappa B
NMII non-muscle myosin II
NNV Nerve necrosis virus
Nrf2 nuclear factor erythroid 2–related factor 2
OC occluding
Omp outer membrane protein
ORF131 open reading frame 131
PA propionic acid
PBS phosphate buffered saline
PP20 prickly pear fruit peel-supplemented group (20%)
PrI proximal intestine
RGNNV red-spotted grouper nervous necrosis virus
RhoA a small Rho GTPase protein
ROCK the Rho associated protein kinase
SAA serum amyloid A
SCFA short chain fatty acids
Sip surface immunogenic protein
SOD superoxide dismutase
SUR survival rate
T-AOC total antioxidant capacity
T-bet T-box expressed in T cells
TCR-b T-cell receptor b chain
TGF transforming growth factor
TJ tight junction
TLR toll-like receptor
TLR5M membrane form of TLR5
TNF tumor necrosis factor
TOR target of rapamycin
TP3 Tilapia piscidin 3
TRgd T-cell receptors of the gd heterodimers
VHSV viral haemorrhagic septicaemia virus
VP2 viral protein 2
ZO zonula occludens
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