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The challenges associated with demonstrating a durable response using molecular-targeted
therapies in cancer has sparked a renewed interest in viewing cancer from an evolutionary
perspective. Evolutionary processes have three common traits: heterogeneity, dynamics,
and a selective fitness landscape. Mutagens randomly alter the genome of host cells
creating a population of cells that contain different somatic mutations. This genomic
rearrangement perturbs cellular homeostasis through changing how cells interact with their
tissue microenvironment. To counterbalance the ability of mutated cells to outcompete
for limited resources, control structures are encoded within the cell and within the organ
system, such as innate and adaptive immunity, to restore cellular homeostasis. These
control structures shape the selective fitness landscape and determine whether a cell that
harbors particular somatic mutations is retained or eliminated from a cell population. While
next-generation sequencing has revealed the complexity and heterogeneity of oncogenic
transformation, understanding the dynamics of oncogenesis and how cancer cells alter the
selective fitness landscape remain unclear. In this technology review, we will summarize
how recent advances in technology have impacted our understanding of these three
attributes of cancer as an evolutionary process. In particular, we will focus on how advances
in genome sequencing have enabled quantifying cellular heterogeneity, advances in
computational power have enabled explicit testing of postulated intra- and intercellular
control structures against the available data using simulation, and advances in proteomics
have enabled identifying novel mechanisms of cellular cross-talk that cancer cells use to
alter the fitness landscape.
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INTRODUCTION
The transformation of a normal cell into a cancerous cell involves
the acquisition of a series of genetic and epigenetic changes that
daughter clones inherit (Hanahan and Weinberg, 2011). Next
generation sequencing has reveal the breadth of genomic rear-
rangement that occurs in cancer (Stephens et al., 2009; Pleasance
et al., 2010b; Gerlinger et al., 2012). These genetic and epigenetic
changes can cause abnormal overexpression of proteins involved
in cellular signaling pathways and can contribute to acquisition of
these traits. Collectively, these genetic alterations rewire how cells
interpret extracellular cues (Pawson and Warner, 2007; Klinke,
2010b) and subvert intracellular control mechanisms that are
designed to maintain genetic integrity (Hollstein et al., 1991).
It is thought that cells containing mutations in specific genes
that impart an inherent proliferative advantage over cells of the
host and that, over time, dominate a local cellular community.
Demonstrating that a mutated gene, that is an oncogene, alters the
replicative potential of a transformed cell supports this view (e.g.,
Muller et al., 1988; Gishizky et al., 1993). In order to inhibit the
growth of malignant cells, drugs have been developed to promote
cell death by targeting the oncogene in oncogene-addicted cells
(Weinstein and Joe, 2008).

Demonstrating a durable clinical response in cancer using
molecular-targeted therapies has been difficult. In patient groups

stratified by a particular molecular biomarker, molecular-targeted
therapies exhibit remarkable efficacy for a window of time in a
subset of patients. For instance, overexpression of the epider-
mal growth factor receptor (EGFR) is observed in three-fourths
of primary colorectal tumors (Hemming et al., 1992; Mayer
et al., 1993) and provides support for targeting these cells using
panitumumab, a monoclonal antibody against EGFR. The ther-
apeutic window is short whereby almost all patients develop
resistance within several months (Amado et al., 2008; Karapetis
et al., 2008). KRAS (v-Ki-ras2 Kirsten rat sarcoma viral onco-
gene homolog) mutations are also a common occurrence in
colorectal cancer. In a recent clinical study with panitumumab,
38% of patients that were initially negative for KRAS muta-
tions developed circulating tumor cells that harbor detectable
mutations in KRAS within 5–6 months (Diaz et al., 2012). A
mathematical model was used to support the idea that resis-
tance was due to drug-induced selection of cellular variants
that harbored resistant mutations. A similar phenomena was
observed in response to imatinib mesylate (Gleevec) in patients
with chronic myeloid leukemia (Shah et al., 2002). While these
are just two examples, the emergence of resistance to almost all
molecular-targeted therapies in cancer brings a renewed interest in
cancer as an evolutionary process (Merlo et al., 2006; Greaves and
Maley, 2012).
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Inherent in the view of cancer as an evolutionary process is
that: (1) tumors consist of a heterogenous population of cells with
different fitness for survival, (2) the competition among cells of
a population is a dynamic process, and (3) there is a competitive
landscape in the tumor microenvironment that select for variants
with improved fitness. The fitness landscape includes compet-
ing for limited resources and intra- and extracellular mechanisms
that are designed to maintain cellular homeostasis. While genetic
sequencing technology has revealed the complexity and hetero-
geneity of oncogenic transformation, understanding the dynamics
of oncogenesis and how cancer cells alter the selective fitness land-
scape remain unclear. In part, this uncertainty has been due to a
scientific focus on how somatic mutations alter the inherent fitness
of a cell to compete for limited resources and evade intracellular
control structures (Nowak, 2006). Given the contemporary view
of the degree of somatic mutations in cancer, acquiring oncogenes
through random mutation also comes at a cost. Passenger muta-
tions provide a rich source of neoantigens that can be recognized
by the host immune system (Matsushita et al., 2012). Innate and
adaptive immune cells comprise an extracellular control structure
that is intended to restore cellular homeostasis within organ sys-
tems. Recent work suggests that malignant cells manipulate this
control structure early in oncogenesis (O’Sullivan et al., 2012).
In the following sections, we will describe how recent advances
in technology have impacted our understanding of these three
attributes of cancer as an evolutionary process. In particular, we
will focus on how advances in genome sequencing have enabled
improved quantification of cellular heterogeneity, how advances
in computational power have enabled explicit testing of postulated
intra- and extracellular control structures against the available data
using simulation, and how advances in proteomics have enabled
identifying novel mechanisms of cellular cross-talk that cancer
cells use to alter the fitness landscape.

A TUMOR CONTAINS A HETEROGENOUS POPULATION OF
MALIGNANT CELLS
Cellular heterogeneity within tumors has been recognized for sev-
eral decades (Fidler and Kripke, 1977). While early efforts focused
on phenotypic and morphologic heterogeneity, improved experi-
mental tools have expanded our contemporary understanding of
non-genetic and genetic sources of cellular heterogeneity within
a tumor. Non-genetic sources of cellular heterogeneity have been
associated with sources of cellular stress within the tumor. The
metabolic requirements for cell function coupled with the dif-
fusion of nutrients and waste products within the tumor mass
stratify the tumor into different regions: an actively proliferat-
ing outer shell, a senescent inner region, and a necrotic core
(Venkatasubramanian et al., 2006). The conditions within the
different regions impart one component of the selective fitness
landscape. For instance, malignant cells have an improved abil-
ity fulfill energetic requirements under non-ideal conditions that
include hypoxia, termed the Warburg effect (Warburg, 1956; Hsu
and Sabatini, 2008). In addition, emerging evidence suggests that
cellular stress associated with treatment promotes reversion of an
epithelial to mesenchymal-like phenotype, a phenomenon associ-
ated with resistance (Knutson et al., 2006; Higgins et al., 2007; Ebos
et al., 2009; Pàez-Ribes et al., 2009). Epithelial-to-mesenchymal

transition (EMT) is a biological process involved in normal devel-
opment. Elements of EMT are linked in cancer with the acquisition
of stem cell properties, increased invasion, and metastasis (Mani
et al., 2008). The acquisition of stem cell properties is also asso-
ciated with a change in oncogene dependence, such as a loss in
ErbB2 expression (Shipitsin et al., 2007) and a bypass of cellular
dependence on ErbB1 signaling (Barr et al., 2008). This implies
that clonally derived cells at different states of differentiation will
vary in therapeutic sensitivity (Voulgari and Pintzas, 2009; Sharma
et al., 2010). Taken together, these studies suggest that metabolic
cross-talk between cells that compete for limited resources and
alterations in cell phenotype due to EMT introduce a non-genetic
source of variability in how cells contained within a tumor respond
to therapy.

Genetic sources of heterogeneity among malignant cells arise
from the action of mutagens, such as compounds found in tobacco
and UV radiation. While different mutagens have different sig-
natures of DNA damage (Greenman et al., 2007), the random
nature of DNA damage and repair implies that there are mul-
tiple ways in which tumors can originate and that many cells
within a population may harbor mutations, each with a differ-
ent pattern of genetic alteration. To assess the diversity of cancers
that arise in a particular organ, large collaborative efforts have
focused on sequencing cancer genomes (e.g., Sjoblom et al., 2006;
Ding et al., 2008; McLendon et al., 2008; Pleasance et al., 2010a).
In early studies, resolution was limited to coding exons associ-
ated with protein-coding genes to identify base substitutions and
small insertions or deletions (Sjoblom et al., 2006; Ding et al., 2008;
McLendon et al., 2008). Next generation sequencing has enabled
expanded genome coverage where chromosomal rearrangement
and copy number changes could also be detected (Stephens et al.,
2009; Pleasance et al., 2010a,b). While many of these studies still
average over the collective tumor genome, the results highlight
the heterogeneity among patients with a given cancer. In focusing
on a specific cancer, a recent series of papers highlight the com-
plexity of genomic rearrangement that occurs in breast cancer
(Banerji et al., 2012;Curtis et al., 2012; Ellis et al., 2012; Shah et al.,
2012; Stephens et al., 2012). Collectively the results suggest that the
genomes of breast cancer cells are modified extensively such that
individual breast cancers carry a few consistent and functionally
characterized abnormalities and tens to thousands of other alter-
ations about which little is known. More recently, the genomic
alterations in single cells have also been reported, which highlight
the heterogeneity among cells of a population (Gerlinger et al.,
2012; Hou et al., 2012; Xu et al., 2012).

While these sequencing efforts have focused on clinically diag-
nosed tumors, autopsy studies suggest that alterations in the
somatic genome may be much more prevalent within an organism
than has been thought previously, a stage termed “occult cancer.”
Nearly forty percent (39%) of women in their forties have histo-
logic breast cancer and a similar percentage of men in their forties
have histologic prostate cancer (Bissell and Hines, 2011). In sup-
port of occult cancer, these cancer sequencing studies highlight
that many tumors emerge after a prolonged period of DNA dam-
age and repair (Pleasance et al., 2010a). To illustrate the progressive
change in the genome, phylogenetic trees associated with onco-
genesis have been reconstructed using high resolution sequences
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(Greenman et al., 2012; Nik-Zainal et al., 2012). In breast can-
cer, the reconstructed phylogenetic trees suggests that a majority
of the time associated with oncogenesis focuses on diversifying
the tumor population and selecting among nascent cancer cells.
The extent of genetic rearrangement in cancer cells also highlights
the frequency of mutagen-induced DNA damage and repair. For
instance in lung cancer, sequencing suggests that lung epithelial
cells acquire an additional mutation for every 15 cigarettes smoked,
despite intracellular mechanisms designed to restore the integrity
of DNA (Pleasance et al., 2010b). As the pattern of mutations is
not significantly different than expected by chance, the majority
of these mutations are thought not to confer a selective advan-
tage to the cancer cell. However, these passenger mutations may
provide a source of potent tumor neoantigens, as was observed in
carcinogen-induced mouse models of sarcoma (Prehn and Main,
1957; Matsushita et al., 2012). In addition, these sequencing stud-
ies also suggest that metastasis may occur at different stages in
different cancers. Breast cancer metastasis may occur early in onco-
genesis (Kuukasjarvi et al., 1997; Torres et al., 2007; Shah et al.,
2009) while prostate cancer metastasis occurs late in oncogenesis
(Liu et al., 2009). Clinically, cellular heterogeneity in cancer implies
that clonally homogeneous tumors may respond more favorably
to treatment using a molecular-targeted therapy while a clonally
heterogeneous tumor increases the likelihood that the population
contains tumor cells that can survive therapy-induced changes in
the fitness landscape.

THE TUMOR MICROENVIRONMENT IS A DYNAMIC
SYSTEM
The second attribute of evolutionary processes is that the differ-
ent cell types contained within the tumor microenvironment –
stromal cells, malignant clones, and cells of the immune system –
and their collective interactions create a dynamic system. This
dynamic system interacts with a control structure associated with
tissue homeostasis. Homeostasis is a central theme in physiology,
where causal mechanisms are used to maintain the physiological
state associated with life in the presence of external perturba-
tions. These causal control mechanisms span multiple levels of
organization (Klinke, 2010a) – from the cellular level, such as
the intracellular mechanisms that control sodium and potassium
concentrations in neurons following excitation, to the organisms
level, such as organ-level mechanisms that regulate body tem-
perature following changes in activity level. The challenge in
tumor immunology is trying identify the immune-related control
mechanisms that regulate the homeostatic composition of cells
within an organ and how tumor cells interfere with this control
structure.

To identify these control structures, one frequently creates a
mental model of how one thinks a system behaves based upon
prior knowledge of the system (i.e., a hypothesis); designs a
controlled experiment; and acquires data to infer using statistics
whether the mental model is a valid representation of the causal
mechanisms that regulate system behavior. Conventionally, the
mental models are “tested” against the observed data using tools
of inferential statistics that were originally developed in the early
1900s (Neyman and Pearson, 1933; Fisher, 1935). Collectively, this
process is called strong inference (Platt, 1964) or alternatively in

cerebello model-based inference. There are five challenges with
the conventional approach to identifying the control structure
associated with tissue homeostasis and oncogenesis: (1) the inter-
actions among cells occur locally in the tumor microenvironment,
(2) robust control typically involves redundant mechanisms, (3)
the control structures can be non-linear, (4) the roles that spe-
cific mechanisms play in regulating system response can change
with time, and (5) many control structures are still unknown (i.e.,
lurking mechanisms exist). To address these challenges, we will
first examine the weaknesses associated with the conventional
in cerebello model-based inference and propose an alternative
approach for inference that leverages contemporary advances in
computational power.

One particular challenge in how classical tools of inferential
statistics are used in practice is that one formulates the inference
test in terms of two alternative hypotheses: the null hypothe-
sis – the experimental perturbation introduces no change in the
system – and an alternative hypothesis – the observed response
is consistent with the proposed mechanistic hypothesis. If the
data observed under control and perturbed conditions are suffi-
cient different, the null hypothesis is rejected. Conventionally, the
alternative hypothesis is then accepted. This conclusion depends
on assuming that there are no other lurking mechanisms at
work in the system. To highlight the problematic nature of this
assumption, we consider recent controversial findings related to
anti-tumor immunity. Two recent papers suggest that the adaptive
immune system does not influence tumorigenesis and metas-
tasis formation nor chemotherapy response in a spontaneous
HER2-driven genetically engineered mouse model for breast can-
cer (Ciampricotti et al., 2011, 2012). These studies were in response
to work that suggests that adaptive immunity does influence
tumorigenesis (Shankaran et al., 2001; Dunn et al., 2002) and
clinical response to chemotherapy (Apetoh et al., 2007; Obeid
et al., 2007; Ghiringhelli et al., 2009; Mattarollo et al., 2011). de
Visser and colleagues argue that transplantable models for can-
cer do not resemble established spontaneous tumors and use a
genetically engineered mouse model (GEMM) where the mouse
mammary tumor virus (MMTV) is used to induce tissue-specific
expression of rat Her2 (Neu) in the mammary glands (i.e., the
MMTV-NeuT model, Boggio et al., 1998). In contrast, Jacks and
coworkers suggest that GEMMs of cancer may underestimate the
mutational and antigenic load of most human cancers (DuPage
et al., 2012).

Histological presentation of spontaneous breast cancer in the
MMTV-NeuT may resemble the human equivalent (van Leeuwen
and Nusse, 1995) but the molecular underpinnings of oncogenic
transformation in humans may be completely different. While
exome sequencing has yet to be reported, MMTV-NeuT tumors
exhibit distinct and homogeneous patterns of gene expression that
are unlike the human HER2+/ER-subtype (Herschkowitz et al.,
2007). Oncogenes, like HER2, are a well-characterized subset of
genes that upon amplification or silencing result in oncogenic
transformation. While cancers commonly contain altered onco-
genes, the random nature of DNA damage and repair implies
that there is a mutational cost associated with malignancy. In
thermodynamic terms, the conversion of one state to another
state always comes at a cost, this cost is an increase in disorder
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(i.e., entropy)1. So while the MMTV promotes the expression of
the oncogene, the available data suggests that the MMTV-NeuT
GEMM of breast cancer does not reproduce the degree of muta-
tional heterogeneity observed in human breast cancers. Moreover,
HER2/Neu overexpression has been suggested to downregulate
major histocompatibility complex (MHC) class I expression based
upon clinical data (Maruyama et al., 2010), GEMMs (MMTV-Neu;
Lollini et al., 1998), and cell models (Herrmann et al., 2004).

To aid in interpreting the reported MMTV-NeuT GEMM data,
we will consider a simple mathematical model for tumor growth.
The fate of a malignant clone in a tissue microenvironment can
be described as a dynamic system where competing cellular fates
are regulated by a combination of intracellular mechanisms, such
as initiation of cell proliferation or cell death, and extracellular
control mechanisms, such as the role that immune cells play in
eliminating microbes and foreign cells from the system. Mathe-
matically, these causal mechanisms regulate the change in tumor
size (CT ) as a function of time:

dCT

dt
=

oncogenes alter k’s
︷ ︸︸ ︷

(kp − kd) ·CT − kdI · CII · CT
︸ ︷︷ ︸

innate immmunity

− kdA · CAI · CT
︸ ︷︷ ︸

adaptive immmunity

, (1)

where kp and kd are the propensity for a given transformed clone
to either proliferate or die through an intrinsic mechanism within
a period of time, respectively. The last two non-linear terms
kdI · CII · CT and kdA · CAI · CT refer to the rates of cell death
elicited by innate and adaptive immunity, respectively, and CII and
CAI are the number of innate and adaptive immune cells within
a given tissue volume. These non-linear terms are the product of
three quantities: the abundance of immune cells within a given
tissue volume, the abundance of cancer cells within a given tissue
volume, and the propensity for a tumor cell to be killed following
contact with an immune cell within a given period of time. In
this simple model, the terms represent different biological control
mechanisms. On the surface, innate and adaptive immunity may
be considered redundant. However, as illustrated in Figure 1, the
control exerted by innate and adaptive immunity changes with
time. Our prior knowledge of relevant control mechanisms (i.e.,
that Neu overexpression downregulates MHC class I and the lack
of diversity of neoantigens decreases the likelihood for an effec-
tive cytotoxic immune cell response) can be implemented in the
model in the form of a reduced value for kdA. Then as the value
of kdA goes to zero, the presence or absence of adaptive immune
cells does not alter the tumor growth trajectory. As these papers

1To make the thermodynamic analogy, we assume that the genome is a closed
system and initially is comprised of a single genetic microstate. Mutations are
introduced through a random process associated with DNA damage and repair.
The acquisition of a genetic microstate that exhibits an improved fitness using
this random process is also associated with the population acquiring additional
microstates that exhibit neutral or negative fitness. Entropy is proportional to the
number of possible genetic microstates that cells within a population can occupy.
The analogy implies that adaptive immunity is an entropy detector. Cancers that
exhibit a simple mutation signature may not engage adaptive anti-tumor immunity
but may be more responsive to molecular-targeted therapy. Alternatively, cancers
that exhibit a complicated mutation signature may not exhibit a durable response
to molecular-targeted therapy and may be controlled by re-establishing adaptive
anti-tumor immunity.

provide no information regarding the killing efficacy of cytotoxic
T cell–tumor cell interaction, the data presented are insufficient
to support the stated conclusions. As alluded to in this example,
there are new methods for model-based inference that involve the
use of mathematical models and simulation to test hypotheses.

In contrast to in cerebello model-based inference, in silico
model-based inference is the statistical reasoning about our under-
standing of cause and effect in natural systems from experimental
observation using computer simulation. Similar to a microscope
that assists our natural ability to see small objects, mathemati-
cal models assist our natural intuition as they require an explicit
statement of underlying assumptions and establish formal rela-
tionships between cause and effect. While mathematical modeling,
per se, is not new to biology, there are recent advances in how our
current understanding of a reactive system can be tested against the
observed data. Conventionally called scientific hypothesis testing,
this process aims to protect against the possibility that a discovery
is based upon natural chance alone and not upon a new mech-
anism. The methods used for scientific hypothesis testing were
developed in the early 1900s. These methods were well suited
to the questions of the day, as we had very limited knowledge
of biological systems and we were limited to pencil-and-paper
calculations. Today, the intellectual landscape is different. High
performance computing and high-throughput assays have fun-
damentally changed the way we study biology and motivate a
contemporary approach. This contemporary approach is called
in silico model-based inference and draws on ideas from high
performance computing, statistics, and chemical kinetics. The
combination of high performance computing with statistics is an
active field of research that focuses primarily on data regression
problems using correlative (or empirical) models (for a discussion
of data regression in systems biology see Jaqaman and Danuser,
2006). Incorporating ideas drawn chemical kinetics enables in
silico model-based inference and reshapes how these existing com-
putational statistics tools are applied to problems of biological
network inference.

In traditional chemical kinetic applications, mechanistic mod-
els of reaction networks are used for different objectives. Objec-
tives include developing a mechanistically inspired empirical
model for interpolating reaction data, developing reduced-order
models of chemical kinetics to incorporate into more compli-
cated models that account for fluid transport and reaction, and
developing unbiased mechanistic models to aid in identifying key
reaction steps that are at work under particular conditions. This
last application is important if the resulting reaction model is
going to be used to predict reactive behavior under new condi-
tions and bears the most similarity to the challenges in biological
network inference. It has also been known that mechanistically
inspired empirical models have limited value in identifying novel
reaction mechanisms as postulated mechanisms impose bias a pri-
ori (Green, 2007). This shortcoming of mechanistically inspired
empirical models motivated generating mechanistic models of
reaction networks using rule-based methods (Green, 2007). More
recently, rule-based methods have also been embraced by the sys-
tems biology community (e.g., Faeder et al., 2009; Feret et al., 2009;
Bachman and Sorger, 2011). One of the advantages of a rule-based
method is that, instead of hand-crafting a reaction network using
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FIGURE 1 | Cellular homeostasis is a dynamic process that includes

both innate and adaptive immunity. (A) The dynamics associated with
immune surveillance to microorganisms in humans and mice (Murphy et al.,
2007). (B) Similarly, clones derived from 3’ methylcholanthrene-induced
sarcomas exhibit different phenotypic dynamics upon transplantation [WT
clones transplanted into RAG2−/− hosts (red) and RAG2−/− clones
transplanted into WT hosts (blue and yellow; O’Sullivan et al., 2012)].
Restoring homeostasis that microorganisms or tumor cells are not present in

the system requires both innate and adaptive immunity. The contribution of
innate versus adaptive immunity changes with time; innate immunity
dominates at early time points and initiates adaptive immunity that dominates
at late time points. Results for highlighted clones imply that WT clones (red)
have acquired ability to evade innate immunity and their ability to evade
adaptive immunity is unknown. RAG2−/− clones have acquired ability to
evade adaptive immunity (blue) or are unable to evade innate and adaptive
immunity (yellow).

a set of implicit assumptions, computer algorithms are used to
generate a reaction network given a set of reactants and a set of
transformations that are thought to act within the system. It is rel-
atively easy then to change the set of transformations and see how
a different set of transformations impacts the predictive power of
the resulting reaction network.

The rules represent fundamental transformations, such as
protein—protein interactions or elementary reactions steps, that
are associated with the flow of chemical information within reac-
tion networks. Each transformation has an associated rate constant
that quantifies how quickly a transformation can occur given the
presence of the reactants – a time scale. Moreover, the rate con-
stants associated with each rule can be different. This implies that
the overall flow of chemical information within reaction networks
is governed by the slowest transformation. In traditional chemical
kinetic applications, slow reactions are called rate-limiting steps.
The rate-limiting steps correspond to sensitive levers within the
reaction network that one can manipulate to achieve a desired
objective – such as an improved conversion rate or selecting flow
patterns within the reaction network to improve selectivity or yield
of a desired product. Generally, this behavior is called the slaving
principle [see comments on pg 6 of Klinke (2009, 2010a)].

In Klinke and Finley (2012), the time scales associated with the
model parameters are linked to the fundamental transformations
(i.e., protein–protein interactions or elementary reaction steps)
that transmit chemical information within reaction networks. We
show that only a subset of time scales can be uniquely identified
using the observed data (i.e., exhibit two-sided bounded distribu-
tions). Transformations that are fast – such a pre-formed multi-
protein complexes – and that are kinetically unimportant – such as
extremely slow reactions – exhibit one-sided distributions. More

importantly, this work demonstrates that the Adaptive Markov
Chain Monte Carlo algorithm described in Klinke (2009) was
the first to provide posterior distributions in the model param-
eters that are consistent with the slaving principle. Of note is
that the prior statistical inference studies applied to biological
network inference questions provide posterior distributions in
the model parameters that have two-sided bounds all supposedly
informed by data, such as a multivariate Gaussian distribution
(e.g., Brown and Sethna, 2003; Brown et al., 2004; Gutenkunst
et al., 2007; Vyshemirsky and Girolami, 2008; Toni et al., 2009;
Toni and Stumpf, 2010; Calderhead and Girolami, 2011; Erguler
and Stumpf, 2011). Given that none of the prior statistical infer-
ence studies provide “posterior” distributions that are consistent
with the slaving principle, this raises the question as to whether
these “posterior” distributions really reflect the data or whether
they reflect an arbitrary selection of a prior or biased model for-
mulation. For instance in Calderhead and Girolami (2011), the
authors assume a priori that all of the postulated mechanistic steps
encoded in the model are kinetically important – i.e., that there
are no fast or extremely slow reactions. They also fixed a pri-
ori parameters that were structurally non-identifiable. Two-sided
bounded distributions for all of the model parameters reported
in these studies is not surprising as conventional Markov Chain
Monte Carlo methods are used for regressing empirical models
to data and tests of Markov chain convergence are applied to the
model parameters.

As illustrated in Klinke et al. (2012), the in silico model-based
inference approach can incorporate the best available domain
knowledge, including competing hypotheses regarding topology,
and search for all possible parameter combinations that provide
model predictions consistent with the best available data. This
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paper illustrates three possible results from in silico model-based
inference. First, the model predictions may be consistent with the
observed data and only one competing topological hypothesis is
favored, which suggests that the observed data is able to discrim-
inate among the competing topological hypotheses and that the
corresponding topology is of sufficient complexity to explain the
observed data. The autocrine Tumor necrosis factor (TNF)-alpha
feedback mechanism illustrates this result. Second, model predic-
tions that are unable to match the observed data suggest that the
topology is missing important connections, such as paracrine feed-
back mechanisms that may be important in vivo but have no effect
under conventional in vitro conditions (e.g., see discussion of high
density results at the top of pg 4). Third, the model predictions
are consistent with the observed data but are unable to discrimi-
nate among competing topological hypotheses. The discovery of
differential STAT1/STAT4 activation by interleukin (IL)-12 illus-
trates the third type of result. According to the editor of Science
Signaling, this work “serves as an example of how mathematical
modeling can refine our understanding of signaling pathways.”
Ultimately, determining whether the topology of a reaction net-
work can be uniquely identified from the available data is essential
for identifying the right control structures at work in biological
systems.

THE SELECTIVE FITNESS LANDSCAPE IN CANCER CONTAINS
INTRA- AND EXTRACELLULAR CONTROL ELEMENTS
The third attribute of evolutionary processes is that local cellular
environment provides a selective fitness landscape for the reten-
tion or removal of malignant variants from a population. This
local fitness landscape includes competing for limited resources –
such as limited oxygen or glucose or stromal support – and active
intra- and extracellular control mechanisms that aim to restore
cellular homeostasis. Intracellular control mechanisms include
p53, a protein that helps control genomic integrity and is mutated
in more than half of all cancers (Hollstein et al., 1991), and the
retinoblastoma tumor suppressor gene (pRb), which encodes a
protein that regulates cell cycle (Friend et al., 1986). An example
of an extracellular control mechanism is the role of innate and
adaptive immunity in eliminating foreign or pathogenic organ-
isms from the cellular population. As highlighted in an influential
review (Hanahan and Weinberg, 2011), decades of cancer research
have revealed how intracellular control mechanisms are evaded
during oncogenesis. While it is well-known that tumor load lim-
its the efficacy of immune cells in controlling tumor growth (e.g.,
Maccubbin et al., 1989; Pulaski and Ostrand-Rosenberg, 1998; van
Elsas et al., 1999), our understanding of how cancer cells evade
extracellular control mechanisms is still emerging.

As summarized in Eq. 1, immune-mediated tumor regres-
sion is proportional to the product of three terms: the number
of tumor cells recognized by the host’s immune cells, the num-
ber of immune cells present in the tumor microenvironment that
can elicit tumor-directed cytotoxicity, and the cellular efficiency
of immune cells in eliciting tumor-directed cytotoxicity. Recent
large-scale studies that aim to quantify the diversity of human
cancer can also be used to identify the phenotype associated with
different immune cells recruited to the tumor microenvironment.
Understanding the composition and phenotype of cells contained

within tumors may help inform future cancer immunotherapies
(Kerkar and Restifo, 2012). As illustrated in Figure 2, mRNA
expression results from 224 colorectal tumor and normal pairs
reported as part of the Cancer Genome Atlas (TCGA) provide
an overview of the immunological bias present in colorectal can-
cer (Muzny et al., 2012). These gene expression signatures can
be used to infer the extent of natural killer (NK) cells, T cells,
and tumor-associated macrophages recruitment into the tumor
(see Figure 3) and the corresponding phenotype of immune cells
within the tumor microenvironment (see Figure 4; Wei et al.,
2009; Movahedi et al., 2010). Within this TCGA colorectal data
set, three patient clusters were identified based upon a subset of
genes associated with anti-tumor immunity and immunosuppres-
sive mechanisms. Group 1 corresponds to normal tissue with a
mixed Th1 and iTreg CD4+ T helper cell and M2 macrophage sig-
natures. Groups 2 and 3 correspond to colorectal cancer samples
with different immune signatures. Group 2 has a slightly lower
gene signature associated with NK, T cell, and macrophage infil-
trate compared to normal tissue samples while the immune cell
infiltrate exhibits a preference for Th1 T helper cell and mixed M1
and M2 macrophage signatures. The gene signature associated
with NK, T cell, and macrophage infiltrate is lowest in Group
3 and exhibits a mixed Th17 and Th2 T helper cell signature
and a macrophage signature similar to group 2. Due to the short
follow-up time associated with the colorectal study, the relation-
ship between overall survival and these immune cell signatures is
unclear. While these gene expression studies provide insight into
the number and phenotype of immune cells present within the
tumor microenvironment, identifying the control mechanisms
that become altered during oncogenesis are difficult to identify
from static snapshots of a biological state. Generally, identifying
causal mechanisms at work in multi-component systems is one
of the most pervasive problems in the analysis of physiological
systems (Khoo, 2000).

In engineering, this problem is called a system identification
problem where causal relationships between system components
are inferred from a set of input (i.e., biological cue) and out-
put (i.e., response) measurements (Khoo, 2000). In context of
anti-tumor immunity, an input may be the influx of cytotoxic T
lymphocytes that recognize tumor-specific antigens and an output
may be tumor regression. Many approaches exist for the identi-
fication of open-loop systems, where a change in input causes a
unique change in output. Reductionist methods have revealed a
wealth of knowledge regarding how isolated components of physi-
ological systems respond to biological cues. However, the different
cell types contained within the tumor microenvironment con-
stitute a closed-loop system, as implied by the observation that
tumor load influences the efficacy of immune cells that enter the
tumor microenvironment. A closed-loop system is defined as a
multi-component system where the output (i.e., response) of one
component provides the input (i.e., biological cue) to another
component. Closed-loop systems are particularly challenging as it
is impossible to identify the relationships among components of
a system based upon overall input (e.g., T cell infiltrate) and out-
put (e.g., tumor regression) measurements. One of the reasons for
this is that changes in the internal state of the system, such as an
increase in biological cues associated with tumor load, may alter
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FIGURE 2 | Immune gene expression signatures in colorectal

cancer clusters into three groups. mRNA expression obtained from
normal colorectal and cecum, colon, rectum, and rectosigmoid
adenocarcinoma tissue samples (columns) were hierarchically clustered
into three groups based upon the log2 median normalized expression ratio
for genes (rows) related to cell-mediated cytotoxic immunity and tumor

immunosuppression. The tissue of origin is highlighted by the blue bars
on top and gene expression is shown as a row-normalized heatmap. Red
denotes under-expressed and violet denotes overexpressed relative to the
population mean. Dendrogram indicates the degree of similarity among
genes (rows) or samples (columns) using the Ward’s minimum distance
method in R.
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FIGURE 3 | Patient clusters exhibit different immune cell signatures.

Relative immune cell infiltrate was estimated based upon the average
expression of genes associated with NK cells (KLRD1, KLRC1, KLRC2,
KLRC3), T cells (CD247, CD3G, CD3D, CD3E ), and macrophages (CD14,

CPM, MRC1, HLA-DRA, ITGAM ). Bivariate scatter plots are shown below the
diagonal, marginalized histograms stratified by the three groups are shown on
the diagonal, and correlation coefficients are shown above the diagonal.
Results are colored by group (Group 1: blue, Group 2: black, Group 3: red).

the response of the system to a defined input, such that there is
not a direct causal relationship between overall system input and
output. Historically, the causal mechanisms underlying the behav-
ior of closed-loop systems in physiology have been identified via
ingenious methods for isolating components within the integrated
system, that is methods for“opening the loop.”A classic example of
this is the discovery of insulin by Dr. Frederick Banting and Charles
Best in 1921 and it’s role in connecting food intake to substrate
metabolism (Roth et al., 2012). In this case, the biological cues
– insulin and glucagon – that facilitate communication between
components – endocrine pancreas, liver, and muscle – can be eas-
ily assayed in the blood. Observing and regulating these endocrine
hormones in the blood enable one to disassemble the closed-loop
system into a series of coupled open-loop systems. Each open-loop
system responds in defined ways to biological cues, as depicted in
the minimal model for the regulation of blood glucose (Bergman
et al., 1979).

There are two key differences in applying systems identifi-
cation methods to help identify the control mechanisms that
regulate anti-tumor immunity compared with the control mech-
anisms that regulate substrate storage and metabolism. First,

the biological scales are different: coordinated substrate storage
and metabolism is an organ-level phenomenon while anti-tumor
immunity is a cell population-level phenomenon. Second, the
cross-talk among components occurs locally through secreted pro-
teins or cell-to-cell contact. While the dynamics of cell-to-cell
interactions within the tumor microenvironment can be observed
using intravital live imaging (Engelhardt et al., 2012), the bio-
chemical cues responsible for cell cross-talk are more difficult to
identify in vivo. Moreover, samples from the peripheral blood
may not be representative of the local biological cues respon-
sible for cell cross-talk. Conventionally, immunohistochemical
methods have been used to identify local biological cues present
in the tissue microenvironment, a discovery process associated
with experimental bias. The experimental bias stems from the
fact that the method for detecting a local biological cue must
be selected a priori and that methods for detecting this bio-
logical cue must exist (i.e., an antibody must exist). Similar to
the development of rule-based modeling methods as a way to
minimize bias, proteomics provide less biased methods for iden-
tifying local signaling mechanisms that contribute to homeostatic
control.
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FIGURE 4 |The phenotype of immune cells within the tumor

microenvironment are different among the three groups. Posterior
probability distribution for T helper cell and macrophage phenotypes stratified
by group, where probability was based on mutually exclusive gene expression
patterns that are associated with each cell subset. T helper cell subsets were
based upon gene clusters associated with Th1 (CD4, TBX21, EOMES, FASL,
IFNG, IL10), Th17 (CD4, RORA, RORC, IL17A, IL17F ), Th2 (CD4, GATA3,

PPARG, IL4, IL5, IL6, IL10), and iTreg (CD4, FOXP3, RORC, TBX21, CCR6,
IRF4, MYB, TGFB1, IL10, EBI3, IL12A) differentiation (Wei et al., 2009).
Macrophage subsets were based upon gene clusters associated with M1
(IL6, IL12B, IL23A, NOS2, IDO1) and M2 (TIMP2, LYVE1, ARG1, KLF4, CD163;
Movahedi et al., 2010). Results are colored by group (Group 1: blue, Group 2:
black, Group 3: red). Posterior probability for each patient is also shown in the
bottom row of Figure 2 (Gray scale where 0 = white and 1 = black).

Proteomic methods have been incorporated into a variety of
workflows for identifying biochemical cues that underpin cell
population-level control mechanisms. Analogous to immunohis-
tology, recent work describes imaging protein, lipid, and small
molecule profiles in biological tissues using direct laser-assisted
ionization followed by time-of-flight mass spectrometry (Nemes
et al., 2010; Stauber et al., 2010). The distribution of lipid and
small molecular profiles can be obtained at a lateral resolution
of 350–35 μm (Campbell et al., 2012). However, discriminating
between extracellular and intracellular localization and identify-
ing higher molecular weight proteins is difficult given the current
technology, although improvements are likely (Jungmann and
Heeren, 2012). Another approach is to create minimal co-culture
model systems that reproduce critical aspects of the cellular cross-
talk that occurs within the tumor microenvironment. To identify
mechanism of resistance to anti-cancer therapies, Golub and
coworkers assayed the in vitro response of 45 different cancer cell
to 35 anti-cancer drugs while co-cultured with one of 23 different
stromal cell lines (Straussman et al., 2012). They used a reverse
phase protein array to identify that stromal cells secrete hepato-
cyte growth factor (HGF) that confers tumor cell resistance to
RAF inhibitors (e.g., vemurafenib). This mechanism for cellu-
lar cross-talk was supported by immunohistology results showing
that stromal cell expression of HGF correlates with innate resis-
tance to RAF inhibitor treatment in human melanoma. While the
results highlight that local paracrine cues can influence therapeutic

response, using a reverse phase protein array still assumes that the
proteins responsible for the observed behavior are measured by the
array. As a less biased alternative, mass spectrometry can be used
to identify proteins that are secreted within the co-culture system.
In Kulkarni et al. (2012), Klinke and coworkers used a 2D-gel elec-
trophoresis MALDI-TOF/MS workflow in conjunction with a high
content co-culture assay to identify that malignant melanocytes
secrete exosomes and Wnt-inducible signaling protein-1 (WISP1).
Exosomes are nanometer-sized endogenous membrane vesicles
that are produced by a diverse range of living cells and are thought
to play key roles in shaping intercellular communication, such
as immunity (Théry et al., 2009). By co-culturing the malignant
melanocytes with a Th1 cell line, they found that WISP1 inhibits
the functional response of the Th1 cell to IL-12. From a systems
identification perspective, in silico model-based inference was used
to confirm that, in isolation, the Th1 cell line can be described as
an open-loop system and that the in vitro co-culture model recre-
ates a closed-loop system. In silico model-based inference was also
used to infer that WISP1 is expressed at the periphery of B16-
derived tumors in vivo, a similar pattern of WISP1 expression was
observed in human melanoma. In addition to secreting WISP1,
they also found that the B16 model for melanoma overexpresses
one component of the IL-12 receptor, IL12Rβ2, that creates a local
cytokine sink for IL-12. In other work, they report that STAT4
is phosphorylated irreversibly, creating a short term memory to
IL-12 signaling (Klinke et al., 2012). The duration of this memory
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is limited by cell proliferation. Other groups have shown that local
delivery of IL-12 to the tumor microenvironment promotes tumor
regression in the B16 melanoma model (Kerkar et al., 2011, 2010)
and in the El4 thymoma model (Pegram et al., 2012). Collectively,
these studies imply that signaling by endogenous IL-12 within
the tumor microenvironment may help maintain T cell polar-
ization when cognate tumor antigens induce T cell proliferation
(Wang et al., 2007) and that manipulating this extracellular con-
trol mechanism may impart a survival advantage to the collective
tumor population. In summary, these examples illustrate that cou-
pling co-culture models with proteomics can uncover important
local control mechanisms and that choosing a particular pro-
teomics workflow involves a trade-off between selecting the degree
of abstraction from reality in designing the experimental system
and observing biochemical cues, given the current limits of the
technology.

CONCLUSION
It has been over a decade since molecular-targeted therapies rev-
olutionized the treatment of cancer. The clinical reality observed
in intervening years has dampened the initial enthusiasm, as effi-
cacy is limited to defined patient groups and durable response is
difficult to achieve. Contemporary understanding of oncogene-
sis paints a more complex picture of cancer as an evolutionary
process. As an evolutionary process, cancer has three hallmark
characteristics: (1) that malignant cells within the tumor microen-
vironment are heterogeneous, (2) that interactions among cells
within the tumor microenvironment comprise a dynamic sys-
tem, and (3) that intra- and extracellular control mechanisms

constitute a selective fitness landscape that determines the sur-
vival of cells within the tumor microenvironment. Innate and
adaptive immunity function as important extracellular control
mechanisms. Observed in a subset of melanoma patients, durable
response to a new immunotherapy provides hope that restoring
these extracellular control mechanisms can be used as an effective
weapon in the battle against cancer (Hodi et al., 2010). How-
ever, increasing the subset of patients that receive clinical benefit
requires an improved understanding of cancer as an evolutionary
process. Here, we have reviewed some of the emerging technolo-
gies that have improved our understanding of these evolutionary
hallmarks. A common theme in this review is how new technol-
ogy improves our ability to limit unintended bias. At the same
time, advances in computing power motivate new methods for
model-based inference that leverage the rich body of knowledge
accumulated over decades of oncology and immunology research.
Only through an integrated approach, will we be able to deliver a
true revolution in cancer treatment.
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